000099160 001__ 99160
000099160 005__ 20230519145401.0
000099160 0247_ $$2doi$$a10.3390/cryst11010038
000099160 0248_ $$2sideral$$a122662
000099160 037__ $$aART-2021-122662
000099160 041__ $$aeng
000099160 100__ $$0(orcid)0000-0002-3083-9355$$aRey-García, F.
000099160 245__ $$aLaser floating zone growth: Overview, singular materials, broad applications, and future perspectives
000099160 260__ $$c2021
000099160 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099160 5203_ $$aThe Laser Floating Zone (LFZ) technique, also known as Laser-Heated Pedestal Growth (LHPG), has been developed throughout the last several decades as a simple, fast, and crucible-free method for growing high-crystalline-quality materials, particularly when compared to the more conventional Verneuil, Bridgman-Stockbarger, and Czochralski methods. Multiple worldwide efforts have, over the years, enabled the growth of highly oriented polycrystalline and single-crystal highmelting materials. This work attempted to critically review the most representative advancements in LFZ apparatus and experimental parameters that enable the growth of high-quality polycrystalline materials and single crystals, along with the most commonly produced materials and their relevant physical properties. Emphasis will be given to materials for photonics and optics, as well as for electrical applications, particularly superconducting and thermoelectric materials, and to the growth of metastable phases. Concomitantly, an analysis was carried out on how LFZ may contribute to further understanding equilibrium vs. non-equilibrium phase selectivity, as well as its potential to achieve or contribute to future developments in the growth of crystals for emerging applications.
000099160 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón$$9info:eu-repo/grantAgreement/ES/DGA/T54-20R
000099160 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000099160 590__ $$a2.67$$b2021
000099160 592__ $$a0.459$$b2021
000099160 594__ $$a3.2$$b2021
000099160 591__ $$aCRYSTALLOGRAPHY$$b12 / 26 = 0.462$$c2021$$dQ2$$eT2
000099160 593__ $$aChemical Engineering (miscellaneous)$$c2021$$dQ2
000099160 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b227 / 345 = 0.658$$c2021$$dQ3$$eT2
000099160 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ2
000099160 593__ $$aCondensed Matter Physics$$c2021$$dQ2
000099160 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000099160 700__ $$aIbáñez, R.
000099160 700__ $$0(orcid)0000-0001-5685-2366$$aAngurel, L.A.$$uUniversidad de Zaragoza
000099160 700__ $$aCosta, F.M.
000099160 700__ $$0(orcid)0000-0002-0500-1745$$aFuente, G.F.
000099160 7102_ $$15001$$2065$$aUniversidad de Zaragoza$$bDpto. Ciencia Tecnol.Mater.Fl.$$cÁrea Cienc.Mater. Ingen.Metal.
000099160 773__ $$g11, 1 (2021), 38 [29 pp]$$pCrystals$$tCrystals$$x2073-4352
000099160 8564_ $$s683340$$uhttps://zaguan.unizar.es/record/99160/files/texto_completo.pdf$$yVersión publicada
000099160 8564_ $$s2747745$$uhttps://zaguan.unizar.es/record/99160/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099160 909CO $$ooai:zaguan.unizar.es:99160$$particulos$$pdriver
000099160 951__ $$a2023-05-18-13:40:04
000099160 980__ $$aARTICLE