000099170 001__ 99170
000099170 005__ 20230519145402.0
000099170 0247_ $$2doi$$a10.3390/nano11010160
000099170 0248_ $$2sideral$$a122667
000099170 037__ $$aART-2021-122667
000099170 041__ $$aeng
000099170 100__ $$aRauf, S.
000099170 245__ $$aCoating of conducting and insulating threads with porous mof particles through langmuir-blodgett technique
000099170 260__ $$c2021
000099170 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099170 5203_ $$aThe Langmuir-Blodgett (LB) method is a well-known deposition technique for the fabrication of ordered monolayer and multilayer thin films of nanomaterials onto different substrates that plays a critical role in the development of functional devices for various applications. This paper describes detailed studies about the best coating configuration for nanoparticles of a porous metal-organic framework (MOF) onto both insulating or conductive threads and nylon fiber. We design and fabricate customized polymethylmethacrylate sheets (PMMA) holders to deposit MOF layers onto the threads or fiber using the LB technique. Two different orientations, namely, horizontal and vertical, are used to deposit MIL-96(Al) monolayer films onto five different types of threads and nylon fiber. These studies show that LB film formation strongly depends on deposition orientation and the type of threads or fiber. Among all the samples tested, cotton thread and nylon fiber with vertical deposition show more homogenous monolayer coverage. In the case of conductive threads, the MOF particles tend to aggregate between the conductive thread’s fibers instead of forming a continuous monolayer coating. Our results show a significant contribution in terms of MOF monolayer deposition onto single fiber and threads that will contribute to the fabrication of single fiber or thread-based devices in the future.
000099170 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E31-17R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2016-78257-R$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/MAT2017-86826-R
000099170 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000099170 590__ $$a5.719$$b2021
000099170 592__ $$a0.839$$b2021
000099170 594__ $$a6.6$$b2021
000099170 591__ $$aPHYSICS, APPLIED$$b37 / 161 = 0.23$$c2021$$dQ1$$eT1
000099170 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000099170 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b109 / 345 = 0.316$$c2021$$dQ2$$eT1
000099170 593__ $$aChemical Engineering (miscellaneous)$$c2021$$dQ1
000099170 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b55 / 180 = 0.306$$c2021$$dQ2$$eT1
000099170 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b53 / 109 = 0.486$$c2021$$dQ2$$eT2
000099170 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000099170 700__ $$0(orcid)0000-0003-3691-3437$$aAndrés, M.A.
000099170 700__ $$0(orcid)0000-0003-2095-5843$$aRoubeau, O.
000099170 700__ $$0(orcid)0000-0002-3492-6456$$aGascón, I.$$uUniversidad de Zaragoza
000099170 700__ $$aSerre, C.
000099170 700__ $$aEddaoudi, M.
000099170 700__ $$aSalama, K.N.
000099170 7102_ $$12012$$2755$$aUniversidad de Zaragoza$$bDpto. Química Física$$cÁrea Química Física
000099170 773__ $$g11, 1 (2021), 160 [10 pp]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000099170 8564_ $$s986608$$uhttps://zaguan.unizar.es/record/99170/files/texto_completo.pdf$$yVersión publicada
000099170 8564_ $$s2751560$$uhttps://zaguan.unizar.es/record/99170/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099170 909CO $$ooai:zaguan.unizar.es:99170$$particulos$$pdriver
000099170 951__ $$a2023-05-18-13:42:11
000099170 980__ $$aARTICLE