000099172 001__ 99172
000099172 005__ 20230519145402.0
000099172 0247_ $$2doi$$a10.3390/e23010003
000099172 0248_ $$2sideral$$a122670
000099172 037__ $$aART-2021-122670
000099172 041__ $$aeng
000099172 100__ $$aLedari, M.B.
000099172 245__ $$aExergy analysis of a bio-system: Soil–plant interaction
000099172 260__ $$c2021
000099172 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099172 5203_ $$aThis paper explains a thorough exergy analysis of the most important reactions in soil– plant interactions. Soil, which is a prime mover of gases, metals, structural crystals, and electrolytes, constantly resembles an electric field of charge and discharge. The second law of thermodynamics reflects the deterioration of resources through the destruction of exergy. In this study, we developed a new method to assess the exergy of soil and plant formation processes. Depending on the types of soil, one may assess the efficiency and degradation of resources by incorporating or using biomass storage. According to the results of this study, during different processes from the mineralization process to nutrient uptake by the plant, about 62.5% of the input exergy will be destroyed because of the soil solution reactions. Most of the exergy destruction occurs in the biota–atmosphere sub-system, especially in the photosynthesis reaction, due to its low efficiency (about 15%). Humus and protonation reactions, with 14% and 13% exergy destruction, respectively, are the most exergy destroying reactions. Respiratory, weathering, and reverse weathering reactions account for the lowest percentage of exergy destruction and less than one percent of total exergy destruction in the soil system. The total exergy yield of the soil system is estimated at about 37.45%.
000099172 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000099172 590__ $$a2.738$$b2021
000099172 592__ $$a0.553$$b2021
000099172 594__ $$a4.4$$b2021
000099172 591__ $$aPHYSICS, MULTIDISCIPLINARY$$b42 / 86 = 0.488$$c2021$$dQ2$$eT2
000099172 593__ $$aElectrical and Electronic Engineering$$c2021$$dQ2
000099172 593__ $$aPhysics and Astronomy (miscellaneous)$$c2021$$dQ2
000099172 593__ $$aInformation Systems$$c2021$$dQ2
000099172 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000099172 700__ $$aSaboohi, Y.
000099172 700__ $$0(orcid)0000-0003-0702-733X$$aValero, A.$$uUniversidad de Zaragoza
000099172 700__ $$aAzamian, S.
000099172 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000099172 773__ $$g23, 1 (2021), 3 [28 pp]$$pEntropy$$tENTROPY$$x1099-4300
000099172 8564_ $$s420790$$uhttps://zaguan.unizar.es/record/99172/files/texto_completo.pdf$$yVersión publicada
000099172 8564_ $$s2812850$$uhttps://zaguan.unizar.es/record/99172/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099172 909CO $$ooai:zaguan.unizar.es:99172$$particulos$$pdriver
000099172 951__ $$a2023-05-18-13:42:20
000099172 980__ $$aARTICLE