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Abstract
Species belonging to theMycobacterium tuberculosisComplex (MTBC) showmore than
99% genetic identity but exhibit distinct host preference and virulence. The molecular
genetic changes that underly host specificity and infection phenotype within MTBCmem-
bers have not been fully elucidated. Here, we analysed RD900 genomic region across
MTBCmembers using whole genome sequences from 60 different MTBC strains so as to
determine its role in the context of MTBC evolutionary history. The RD900 region comprises
two homologous genes, pknH1 and pknH2, encoding a serine/threonine protein kinase
PknH flanking the tbd2 gene. Our analysis revealed that RD900 has been independently
lost in different MTBC lineages and different strains, resulting in the generation of a single
pknH gene. Importantly, all the analysedM. bovis andM. caprae strains carry a conserved
deletion within a proline rich-region of pknH, independent of the presence or absence of
RD900. We hypothesized that deletion of pknH proline rich-region inM. bovismay affect
PknH function, having a potential role in its virulence and evolutionary adaptation. To
explore this hypothesis, we constructed twoM. bovis ‘knock-in’ strains containing the
M. tuberculosis pknH gene. Evaluation of their virulence phenotype in mice revealed a
reduced virulence of bothM. bovis knock-in strains compared to the wild type, suggesting
that PknH plays an important role in the differential virulence phenotype ofM. bovis vs
M. tuberculosis.
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Author summary
Tuberculosis is caused in humans and animals by organisms from the Mycobacterium
tuberculosis Complex (MTBC), that share more than 99% genetic identity but exhibit dis-

tinct host preference and virulence. While Mycobacterium tuberculosis is the main causa-

tive agent of human TB, Mycobacterium bovis is responsible for bovine TB disease, that

exacts a tremendous economic burden worldwide, as well as being a zoonotic threat.

Unlike the human restriction of M. tuberculosis, M. bovis has a broader host range and it

has been found to be more virulent than M. tuberculosis in different animal models. How-

ever, the molecular basis for host preference and virulence divergence between M. tuber-
culosis and M. bovis is not fully elucidated. Here we study the genetic variations of the

genomic region RD900 in the context of MTBC phylogeny. RD900 contains two genes

encoding orthologues of the serine/threonine kinase PknH, which is linked to the regula-

tion of several bacterial processes including virulence. We found that M. bovis pknH genes

show a conserved deletion that is not present in M. tuberculosis strains, and we evaluated

the potential impact of these variations in the regulation of M. bovis vs M. tuberculosis vir-

ulence through the construction and in vivo characterization of M. bovis pknH mutant

strains.

Introduction
The Mycobacterium tuberculosis Complex (MTBC) is composed of several highly genetically

related mycobacterial species (>99% nucleotide sequence identity) that infect and cause tuber-

culosis (TB) in a range of mammalian hosts. MTBC species can be broadly classified into

human-adapted mycobacteria, comprising the obligate human pathogens Mycobacterium
tuberculosis sensu stricto and Mycobacterium africanum, and animal-adapted mycobacteria,

referring to those that can propagate and transmit in a range of wild and domesticated animal

hosts. Despite their high degree of genomic identity, MTBC members exhibit important differ-

ences in relation to host range, transmissibility, pathogenesis and virulence [1, 2].

Mycobacterium bovis is the causative agent of bovine TB, which is responsible for high eco-

nomic losses in livestock productivity and disease control costs and remains a major problem

in many developed livestock-producing countries as well as in developing countries [3]. Unlike

the human restriction of M. tuberculosis, M. bovis has a broader host range. Although it mainly

sustains infection in cattle, M. bovis infection affects many other mammalian species and can

be found in a range of maintenance hosts such as deer, possums and badgers that act as wildlife

reservoirs. The route of transmission from these reservoir species to cattle and vice versa is not

fully elucidated, but it is proposed that close contact, aerosol and faecal-oral routes play a role

[3, 4]. Furthermore, M. bovis poses a risk as a zoonosis for humans, mainly through the con-

sumption of raw milk or close contact with infected cattle. However, transmission of M. bovis
among immunocompetent human hosts is uncommon, representing a dead end or spillover

host [5]. Conversely, M. tuberculosis has been independently shown to be attenuated in cattle

[6, 7], while M. bovis strains show greater virulence than M. tuberculosis in animal models

such as mice or rabbits [8–10].

M. tuberculosis has evolved an extensive signalling network that includes, among others, 11

serine threonine protein kinases (STPKs) involved in the regulation of many aspects of bacte-

rial physiology. STPKs have been shown to play a crucial role in the growth and survival of M.

tuberculosis during infection, controlling a variety of cellular processes related to cell division,

cell wall biosynthesis, cellular metabolism, transcriptional regulation and virulence [11]. PknH

is a transmembrane STPK that presents a typical conserved N-terminal kinase domain
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followed by a proline-rich region, a predicted transmembrane single helix domain and an

extracellular C-terminal sensor domain. It has been shown that PknH phosphorylates itself

and other substrates, and it plays a role in cell wall biosynthesis, response to nitric oxide stress

and the dormancy response [12–15]. PknH has also been implicated in virulence, as an M.

tuberculosis H37Rv pknH knock-out mutant was shown to be hypervirulent in a mouse model

[16].

The organization of the genome region that contains the pknH gene exhibits substantial

variation across MTBC strains. The M. tuberculosis H37Rv genome contains a single copy of

the pknH gene which is located downstream of embR, one of the substrates phosphorylated by

PknH [12]. Genome sequencing of the M. africanum GM041182 strain revealed a different

genetic organization to that observed in M. tuberculosis H37Rv, showing two different pknH
genes (pknH1 and pknH2) that flank a potential ABC transporter named tbd2. This observa-

tion led to the description of a new Region of Difference, named RD900, that was first

described as a lineage specific locus. The RD900 locus is 3141 bp long and contains a single

complete gene (MAF12860, tbd2) and the 3’ end of another (MAF12870, pknH2) [17]. This

region was initially thought to be deleted in M. bovis and M. tuberculosis “modern” lineages.

However, although RD900 locus was not present in the original M. bovis AF2122/97 genome

annotation, resequencing of this genome revealed that the RD900 locus is actually present in

this M. bovis strain [18].

Both pknH1 and pknH2 genes present in M. africanum GM041182 and M. bovis AF2122/97

exhibit a high degree of identity between their kinase domains, but they have different sensor

domains; this may affect sensing of environment signals by PknH1 and PknH2, and conse-

quently may result in differential cellular responses. The proline-rich region of M. africanum
pknH2 has a deletion of about 100 bp compared to pknH1 and to the M. tuberculosis H37Rv

pknH orthologue. The same proline-rich region is deleted in M. bovis AF2122/97 pknH2, but is

also deleted in pknH1 [17, 18].

Here, we analyzed the RD900 genomic region across MTBC members to determine its plas-

ticity across MTBC evolutionary history, using whole genome sequencing data from 60 repre-

sentative MTBC strains. In addition, we performed a comparative study between M.

tuberculosis, M. bovis and M. africanum strains regarding their virulence and dissemination

capacity in mice. We also hypothesized that the PknH proline rich-region deletion found in

M. bovis could have an impact on the enhanced virulence associated with these strains. To elu-

cidate this hypothesis, we constructed two M. bovis strains in which we introduced the M.

tuberculosis pknH1 gene, and determined their virulence phenotype in mice. We finally used

transcriptomics to assess the impact of introduction of the M. tuberculosis pknH1 gene on

global gene expression in the recombinant M. bovis.

Results
Independent RD900 deletion events across MTBC and a conserved deletion
inM. bovis andM. caprae pknH genes
In order to delineate variation in the RD900 locus and pknH genes across the different MTBC

lineages, and the potential evolutionary impact of this variation, we performed an analysis of

this genomic region using WGS data from 60 isolates representative of the different MTBC lin-

eages (S1 Table). The original sequence reads of the different MTBC strains were downloaded

in fastq format from GenBank and aligned to the reference sequence of M. africanum
GM041182 RD900 locus, including the tbd2 gene, both pknH genes (pknH1 and pknH2) and

the two flanking genes embR and MAF_RS06695. The resulting alignments were first analysed
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for the presence or absence of RD900, and for the presence or absence of the deletion within

the proline-rich region in the pknH genes.

The RD900 region was found to be present in all analysed genomes of M. canettii, a

‘smooth’ colony species thought to be similar to the progenitor of the MTBC. The M. canettii
genome shows the same genomic organization as M. africanum: the tbd2 gene flanked by two

pknH genes and a deletion within the proline-rich region of pknH2 but not pknH1 (Fig 1A).

The same locus organization was present in the analysed M. tuberculosis Lineage 7 isolates.

However, the presence of RD900 was found to be variable among M. tuberculosis Lineage 1

strains. Some of the analysed isolates contained an intact RD900 region whereas others had a

single complete pknH gene containing an intact proline region sequence. As previously

described, RD900 was found to be deleted in all the analysed isolates from M. tuberculosis
“modern” lineages (Lineages 2, 3 and 4) which are distributed worldwide. In contrast, RD900

was found to be present in all the analysed M. africanum Lineage 5 and Lineage 6 isolates,

although variability was observed within the proline-rich region sequence of pknH1 which was

intact in some isolates and deleted in others.

In the animal adapted species, the RD900 region was found to be present in the analysed

isolates from M. mungi, M. microti and M. pinnipedii, with the sequence encoding the proline-

rich region deleted in pknH2 but not pknH1. In contrast, RD900 was found to be deleted in M.

orygis, which presented a single pknH gene containing the complete proline-rich encoding

region. Finally, the presence of RD900 in M. caprae, M. bovis and BCG strains was found to be

variable among the different isolates analysed. In all of these latter strains, both with or without

the RD900 region, we found that the different pknH gene copies had the proline-rich region

deleted. The only exception came from one M. bovis strain (M. bovis B2 7505) in which RD900

was deleted and the resulting single copy of pknH had a complete proline rich region. This

strain was isolated from a human patient in Uganda [19] and was subsequently described to

show M. tuberculosis RD patterns [20]; hence, it appears actually to be an M. tuberculosis
strain.

In order to better understand the evolutionary process that this particular region underwent

across the MTBC members, we analysed the presence of point mutations (synonymous, mis-

sense and frameshift mutations) in the RD900 locus across the analysed strains through a vari-

ant and consequence calling analysis. The results for the missense and frameshift mutations

are represented in a clustered heat map showing the presence/absence data for each mutation

(Fig 1B). Mutations present in only a single isolate from the same lineage were excluded. In the

clustered heatmap it can be observed that some isolates of the same lineage are clustered

together whereas other isolates from the same lineage are not clustered, reflecting the inter-

strain variability of this region across the different MTBC lineages. The M. bovis and M. caprae
strains with an intact RD900 region were more closely related than those strains in which the

RD900 region was deleted, reflecting their different evolutionary pathways.

Finally, in order to confirm the results obtained from the genomic analysis of pknH genes,

and focusing on the differences between M. tuberculosis and M. bovis strains, we designed spe-

cific primers to verify the presence or absence of the proline-rich region in M. bovis pknH
genes compared to M. tuberculosis. To confirm the presence of this deletion, a PCR was per-

formed using a primer pair flanking the region of the deletion. This PCR was performed using

DNA extracts from M. tuberculosis H37Rv and different M. bovis strains: the reference strains

AF2122/97 and AN5; the multidrug resistant strain M. bovis B, responsible for large TB out-

breaks in Spain [21]; and a BCG strain. An amplification product of lower molecular weight

was obtained from the DNA extracts of all the tested M. bovis strains compared to M. tubercu-
losis H37Rv, reflecting the deletion of the proline-rich region in M. bovis strains (Fig 1C).
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M. bovis disseminates more efficiently thanM. tuberculosis andM.
africanum in a mouse model
We next evaluated in vivo infection and dissemination differences between MTBC members

by performing a comparative virulence experiment in mice using M. tuberculosis, M. bovis and

M. africanum strains. C57BL/6 mice were infected by the intranasal route with a low dose chal-

lenge (* 200 CFUs). We used GFP-expressing strains so that we could assess cell-to-cell

spread by flow cytometry. The mycobacterial strains used were the M. tuberculosis reference

laboratory strain H37Rv, the M. tuberculosis clinical isolate Mt103 [22], the M. bovis reference

strain AF2122/97 and the M. africanum clinical isolate HCU2828 (Fig 2A).

Our results showed a higher bacterial load in lungs from mice infected with M. bovis com-

pared to those infected with M. tuberculosis or M. africanum strains. This was observed both at

one and four months post-challenge (Fig 2B). Accordingly, lung histopathology analysis

revealed more extensive inflammatory foci with inflammatory infiltrate in lung parenchyma

along with tissue degeneration in the M. bovis-infected group compared to other groups (Fig

2C). We also assessed bacterial dissemination into spleen, liver and kidneys. We found a signif-

icantly higher bacillary load in kidneys at both time points in M. bovis compared to M. tuber-
culosis and M. africanum infected mice. In the case of the liver, significantly higher M. bovis
dissemination was evident at 4 months post-infection. In general, these results suggested a

greater ability of M. bovis to disseminate and persist in these non-lymphoid organs. No signifi-

cant differences were observed in CFU counts from spleen, although bacillary loads were

slightly higher in M. bovis infected mice (Fig 2D).

We next studied the ability of the different MTBC species to disseminate cell-to-cell within

the lung. We analysed by flow cytometry the percentages of GFP-positive cells in cellular sus-

pensions from lungs. At one month post-infection, the proportion of GFP+ cells was found to

be higher in the M. bovis group, which reflected a greater ability of M. bovis to establish at the

primary site of infection than M. tuberculosis or M. africanum strains (Fig 2E and 2F). Total

and GFP+ infected lung macrophage and neutrophil populations were analysed using specific

surface markers for each population at one month post-infection. In accordance with the

enhanced virulence phenotype of the M. bovis strain, we found a strongly increased neutrophil

influx in this group (Fig 2G and 2H). Interestingly, different studies have shown an associa-

tion, both in humans and animal models, between an increase of neutrophil infiltration in the

lungs and a higher degree of TB disease [23–26].

Introduction of theM. tuberculosis pknH allele intoM. bovis results in
lower virulence in mice
Our results indicated that all the MTBC species, except M. bovis and M. caprae, contained a

pknH gene that included the proline-rich region. Thus, considering our findings showing the

higher virulence of M. bovis, together with a previous study that described a more virulent phe-

notype of a pknH knock-out M. tuberculosis H37Rv strain [16], we hypothesized that the

Fig 1. RD900 analysis across MTBCmembers. (A) Schematic representation of RD900 locus organization in MTBC. pknH genes are

represented with the kinase domain in purple, the proline rich region in blue and the different sensor domain in orange for pknH1 and

white for pknH2. The presence of the deletion in the proline rich region is represented with an “X”. The number of analysed isolates

(n) for each MTBC specie is indicated. (B) Presence/absence of missense and frameshift mutations in RD900 locus across MTBC.

Clustered heat map constructed from the presence/absence data of missense and frameshift mutations in RD900 locus from the MTBC

analysed isolates. The presence or absence of RD900 and the deletion within the proline-rich region in PknH1 is also indicated. (C)

Verification of the presence of proline-rich region deletion in M. bovis AF2122/97, AN5, MBZ and BCG and M. tuberculosis H37Rv

pknH genes by PCR using a primer pair flanking the deleted region.

https://doi.org/10.1371/journal.ppat.1009061.g001
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deletion within the proline-rich region of M. bovis pknH genes may lead to an inactive or dif-

ferently regulated protein that in turn affects virulence.

To address this hypothesis, we constructed two M. bovis strains in which the pknH gene

from M. tuberculosis H37Rv was introduced into the chromosome using the integrative plas-

mid pMV361. The complemented M. bovis strains were the reference strain AF2122/91 and

the AN5 strain. Both of them are RD900+ M. bovis strains, and therefore carry two homolo-

gous pknH copies, deleted for the proline-rich region (Fig 1C). To achieve comparable levels of

pknH expression to those observed in H37Rv, the pknH gene was cloned under the control of

its own promoter.

The introduction of the pMV361 plasmid carrying the M. tuberculosis H37Rv pknH gene

(pknHTB) into the M. bovis strains was verified by colony PCR (Fig 3A). Using a primer pair

flaking the proline-rich region deletion, the recombinant colonies showed two amplification

products, one corresponding to the introduced complete pknH from M. tuberculosis H37Rv

(442 bp) and the other one corresponding to the M. bovis pknH genes (352 bp). Once it was

confirmed that the pknHTB gene was correctly integrated into the knock-in M. bovis strains

(AF2122::pknHTB and AN5::pknHTB), pknHTB expression was evaluated and showed compara-

ble levels in both M. bovis knock-in strains and M. tuberculosis H37Rv (S1 Fig).

Then, C57BL/6 mice were i.n. infected with a low dose (*200 CFUs) of the M. bovis
AF2122/97 and AN5 WT strains and their corresponding pknHTB knock-in strains. Lung his-

topathology and bacterial burden determination in lungs and spleen were performed after 4

weeks of infection (Fig 3B). A significant reduction in bacterial load in lungs and spleen was

observed for both AF2122::pknHTB and AN5::pknHTB strains compared to their wild type M.

bovis parental strains (Fig 3C). In accordance with expectations, histopathology revealed lower

inflammatory damage and tissue degeneration in lungs from the pknHTB knock-in strains

(Fig 3D).

To further characterize the phenotype of M. bovis::pknHTB in vivo, we constructed a GFP-

expressing version of the strain, and we thereafter infected mice with these strains. We first

confirmed that lung bacterial burden profile was similar to that observed with non-fluorescent

strains at one month post challenge, to check that introduction of the new plasmid did not

alter strain virulence (Fig 3F). Analyses of lung cellular suspensions revealed a significantly

higher percentage of GFP+ infected lung cells in M. bovis AF2122 infected mice than in M.

bovis AF2122::pknHTB and M. tuberculosis H37Rv infected mice (Fig 3G). The analysis of lung

infected populations also showed a higher percentage of infected neutrophils in mice infected

with the AF2122 wild-type strain (Fig 3H). In this experiment we evaluated antigen-specific

IFNγ responses following ex vivo stimulation of lung cells with a preparation of tuberculosis

antigens (Purified Protein Derivative, PPD). We found a stronger response in cellular suspen-

sions from M. bovis AF2122-infected mice compared to M. bovis pknHTB knock-in and M.

tuberculosis groups (Fig 3I). Lung IFNγ responses have been described as a surrogate marker

Fig 2. M. bovis exhibits greater virulence thanM. tuberculosis andM. africanum in the mouse model. (A) Schematic representation

of the infection model in C57BL/6 mice. (B) Bacterial burden in lungs at one at four months post-infection. (C) Representative images

(1.5x) of heamtoxilin-eosin staining of lungs from mice infected with the different pathogens at one and four months post-infection.

(D) Bacterial burden in spleen, liver and kidneys at one and four months post-infection. (E) Representative dot-plots of GFP+-infected

lung cells from lung cell suspensions of M. tuberculosis, M. bovis and M. africanum infected mice at one month post-infection. (F)

Percentages of GFP+-infected lung cells from lung cell suspensions of M. tuberculosis, M. bovis and M. africanum infected mice at one

month post-infection. (G) Cell number of GFP+-infected lung macrophages and neutrophils from lung cell suspensions of M.

tuberculosis, M. bovis and M. africanum infected mice at one month post-infection. (H) Percentages of total CD45+ macrophages and

neutrophils from lung cell suspensions of M. tuberculosis, M. bovis and M. africanum infected mice at one month post-infection. Data

are represented as mean ± SEM from two independent experiments (n = 6 mice/group). Statistical analysis was performed by two-way

ANOVA (B,D), one-way ANOVA (F) and multiple unpaired T-test (G,H,I). �p< 0.05; ��p< 0.01; ���p< 0.001; ����p< 0.0001.

https://doi.org/10.1371/journal.ppat.1009061.g002
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for worse disease progression in different animal models, including mice and non-human pri-

mates [27–30].

Transcriptomic characterization of the AF2122::pknHTB strain
In order to elucidate the molecular role of PknH and gain insight into the differences observed

in vivo between M. bovis WT and pknHTB knock-in strains, a transcriptomic analysis of M.

bovis AF2122/97 vs AF2122::pknHTB was performed from RNA extractions of in vitro cultures

under standard conditions. Differentially expressed (DE) genes were filtered using a cutoff of

p-value (adjusted) = 0.05 and log2fold change > 1.5 or< -1.5. Using these parameters, 145 DE

genes were detected; 54 of them were down-regulated in AF2122::pknHTB compared to the

WT AF2122 strain, and 91 of them were up-regulated (Fig 4A and S2 Fig). The DE genes

found in this analysis are involved in a range of cellular processes. Genes involved in regulatory

pathways, intermediate and lipid metabolism, cell wall processes and PE/PPE proteins were

found to be differentially expressed, as well as 46 genes encoding conserved hypothetical pro-

teins (Fig 4B and S2 Fig). As expected, one of the up-regulated genes in AF2122::pknHTB is

embR (Mb1298C), a verified PknH substrate that is phosphorylated by PknH and that plays a

role in the regulation of cell wall component synthesis. The embCAB operon, controlled by

EmbR, also showed low level upregulation but this did not meet the statistical thresholds for

inclusion in our DE genes. Also amongst the genes that were upregulated in AF2122::pknHTB

were espACD, required for ESX-1 Type VII secretion (Fig 4C). Other genes involved in ESX-1

secretion did not show differential expression. The espACD locus is adjacent to the RD8 dele-

tion in M. bovis [31], a deletion that has been shown to lead to altered regulation of espACD in

M. bovis as compared to M. tuberculosis [32, 33].

Previous work has shown a role for PknH in the synthesis of phthiocerol dimycocerosates

(PDIM). Deletion of pknH from M. tuberculosis was shown to decrease PDIM levels, with the

PpsE polyketide synthase, part of the biosynthetic pathway, showing increased protein levels

in the ΔpknH mutant [34]. However, none of the PDIM biosynthetic genes (ppsABCDE,

papA5, mas, fadD28) were DE between AF2122::pknHTB and WT.

Among the identified DE genes which may have a role in virulence are cysN (Mb1317) and

cysD (Mb1316), which were down-regulated in AF2122::pknHTB. These genes are involved in

sulfur metabolism and appear to play an important in vivo role [35]. Similarly, mce genes

(Mb0178/mce1D, Mb0177/mce1C, Mb0176/mce1B and Mb0175/mce1A) were up-regulated

in AF2122::pknHTB compared to the WT strain (Fig 4C). Proteins encoded by mce genes have

been described to interfere with host cell signaling and it has been shown that mutation of

Fig 3. Introduction ofM. tuberculosis pknH intoM. bovis strains reduces its virulence in the mouse model. (A)

Verification of M. tuberculosis pknH integration into M. bovis::pknHTB strains genome through colony PCR using two

primer pairs flanking the deletion within the proline-rich region of pknH gene. (B) Schematic representation of the infection

model in C57BL/6 mice. (C) Bacterial burden in lung and spleen from M. bovis AF2122 and AN5 WT and M. bovis AF2122::

pknHTB and AN5::pknHTB strains one month post-infection. (D) Representative images (1.5x) of heamtoxilin-eosin staining

of lungs from mice infected with the different pathogens at one and four months post-infection. (E) Schematic

representation of the infection model in C57BL/6 mice with fluorescent M. bovis and M. tuberculosis strains. (F) Bacterial

burden in lung from M. tuberculosis H37Rv, M. bovis AF2122 and M. bovis AF2122::pknHTB strains one month post-

infection. (G) Percentages of GFP+-infected cells from lung cell suspensions of M. tuberculosis H37Rv, M. bovis AF2122 and

M. bovis AF2122::pknHTB at one month post-infection. (H) Percentages of GFP+-infected neutrophils from lung cell

suspensions of M. tuberculosis H37Rv, M. bovis AF2122 and M. bovis AF2122::pknHTB at one month post-infection. (I)

Specific IFNg response in lung single-cell suspensions from M. tuberculosis H37Rv and M. bovis AF2122 and AF2122::

pknHTB stimulated with PPD. IFNg specific response was measured in the supernatants after 48 hours of incubation by

ELISA. Represented values correspond to the difference between IFNγ production in non-stimulated vs PPD stimulated

cells. Data are represented as mean ± SEM from two independent experiments (n = 6 mice/group). Statistical analysis was

performed by one-way ANOVA (C, F, G, H, I). �p< 0.05; ��p< 0.01; ���p< 0.001; ����p< 0.0001.

https://doi.org/10.1371/journal.ppat.1009061.g003
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these genes affects M. tuberculosis virulence in mice [36, 37]. Also, the expression of two meta-

bolic genes and their regulator namely prpD, prpC and prpR (enoding methylcitrate dehydra-

tase, methylcitrate synthase and their transcriptional regulator, respectively; Fig 4C) were

decreased in AF2122::pknHTB relative to WT.

A comprehensive listing of DE genes between M. bovis AF2122/97 and M. tuberculosis
H37Rv during in vitro growth has been previously described [38]. We therefore examined

whether introduction of pknHTB into M. bovis switched the expression of these DE genes in M.

bovis to more closely match their expression in M. tuberculosis H37Rv. This revealed a mini-

mal overlap, with only Mb1904, Mb3504 and PE31 showing expression in AF2122::pknHTB

that more closely resembled levels in M. tuberculosis H37Rv than M. bovis WT (S2 Table).

There were also a subset of DE genes in AF2122::pknHTB that amplified previously described

DE genes between M. bovis AF2122 and M. tuberculosis H37Rv. For example, increased

expression of mpb83-dipz-mpb70 was seen in AF2122::pknHTB (Fig 4C), a locus that is highly

expressed in M. bovis as compared to M. tuberculosis [38, 39].

Discussion
Understanding the molecular basis of pathogenesis of the bovine and human tubercle bacilli is

crucial to define host tropism and to develop new approaches to control bovine TB. M. bovis
has been described as being more virulent than M. tuberculosis in several animal models as

well as having a wide host range that includes humans [3, 8–10]. Conversely, although M.

tuberculosis is a successful human pathogen, it has been described to be attenuated in cattle [6,

7]. These major changes in host tropism and virulence belie the low levels of genetic diversity

Fig 4. RNA-seq analysis ofM. bovis AF2122 wild type (WT) andM. bovis AF2122::pknHTB. (A) Top differentially expressed genes between WT

and AF2122::pknHTB on log2 scale. (B) Functional classification of genes showing differential expression (DE) between WT and AF2122::pknHTB

complement; functional classification as per Cole et al (1998). (C) Heat map of selected genes between WT and AF2122::pknHTB (pknH) as referred to

in text. Relative expression levels for each biological replicate are shown.

https://doi.org/10.1371/journal.ppat.1009061.g004
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within MTBC species. However, previous results in the literature provide evidence for how

genomic differences between M. bovis and M. tuberculosis can lead to differential phenotypic

features. For instance, evolutionary conserved mutations in the M. bovis PhoPR system were

shown to explain the lack of trehalose-containing glycolipids in M. bovis compared to M.

tuberculosis and have been associated with host preference [32]. Other genetic polymorphisms

that define host specificity and infection phenotypes of M. bovis and M. tuberculosis remain to

be elucidated. Here we revisited M. tuberculosis vs M. bovis infection in the mouse model and

explored the role of RD900 locus and pknH genes in the context of MTBC evolution, and par-

ticularly the potential impact of RD900 on M. bovis and M. tuberculosis virulence phenotypes.

Since PknH has been described to regulate several physiological processes in M. tuberculosis
and to have a role in virulence, variations across this genomic region may have major implica-

tions on the bacterial infection phenotype. The presence or absence of the RD900 region in

MTBC species has been controversial, as it was first described as a lineage specific locus in an

M. africanum strain, but it was later found to be also present in M. bovis AF2122/97 [17, 18,

21]. RD900 contains two homologous pknH genes flanking the tbd2 gene. Recombination

between pknH genes in some MTBC species results in the loss of the tbd2 gene and in the gen-

eration of a single pknH gene. The presence of homologous and repetitive sequences within

flanking pknH genes can lead to errors in genome sequencing and annotation when using

older MTBC genome assemblies as a reference, and genome annotations could contain errors

within the RD900 region, similar to that seen in the original M. bovis AF2122/97 genome

assembly [40]. Therefore, we aimed to study RD900 variation across MTBC species not only

because of the potential importance of this locus in defining bacterial phenotypes, but also to

clarify the configuration of this region across MTBC species.

Our genomic analysis revealed the presence of the RD900 locus in M. canetti, M. tuberculo-
sis ‘ancient’ lineages, M. africanum, M. mungi, M. microti, M. pinnipedii, M. caprae and M.

bovis strains. However, variation in the presence or absence of RD900 was found in M. tuber-
culosis Lineage 1, M. caprae and M. bovis strains, including BCG strains. These results suggest

that deletion of RD900 occurred independently in different lineages and different strains

within these lineages. The occurrence of independent recombination events between pknH
paralogues at different evolutionary branches in RD900 deleted (RD900-) strains could result

in the generation of a truncated pknH gene. However, variant calling analysis of the resulting

pknH gene in RD900- strains revealed a single intact pknH gene with no frameshift mutations,

suggesting that independent homologous recombination events generate a potentially func-

tional gene. This could indicate a possible selective advantage for the reduction of pknH para-

logues or a potential need to conserve at least one functional pknH gene. Interestingly, similar

recombination patterns and genomic organization of pknH genes has also been found in other

Mycobacterium species such as M. abscessus and M. marinum [17], and similar recombination-

deletion events between homologous genes that result in the formation of a single new gene

have also been described in cases such as pks5 in M. canettii strains. Recombination of pks5
genes and loss of pap seems to have occurred in the common ancestor of the MTBC and is pro-

posed to have contributed to evolutionary success and host adaptation, as it is related with the

loss of lipooligosaccharide production in MTBC species [41]. In addition to the absence/pres-

ence of RD900 that results in one or two pknH genes being present, another major variation

within the pknH gene is the presence of a proline-rich region that is attached to the catalytic

domain of the PknH protein. This proline-rich region is deleted in the pknH2 gene of all the

analysed MTBC isolates that contain a complete RD900 locus. Furthermore, all of the analysed

M. bovis and M. caprae strains have the proline-rich region deleted in both pknH1 and pknH2
genes in RD900+ strains. Consequently, the single pknH gene resulting from pknH recombina-

tion events in M. bovis and M. caprae RD900- strains carries the same deletion.
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Considering the M. canettii RD900 locus as the ancestral state of the RD900 region, and

based on sequence homology between the different domains of PknH1 and PknH2, it can be

hypothesized that the recombination site in the M. tuberculosis “modern” lineages could be

located at the homologous kinase domains, resulting in an in-frame pknH gene composed of

the kinase domain from pknH2 and the proline-rich region, transmembrane and sensor

domain from pknH1. In M. bovis and M. caprae strains with the complete RD900 locus, a dele-

tion in the proline-rich domain may have happened first, resulting in an RD900 locus with

both pknH genes carrying the same deletion. Hence, in M. bovis and M. caprae strains with a

deleted RD900 locus, homologous recombination between the two pknH genes would result in

a single pknH lacking the proline-rich region (Fig 5).

In addition to pknH2, RD900-negative MTBC strains lack in the tbd2 gene. The specific

function of this gene is unknown, as well as the consequences of its absence in the RD900 neg-

ative strains. tbd2 gene encodes a transmembrane ATP binding cassette (ABC) transport pro-

tein of unknown function that has a central ATP binding domain and six possible membrane-

spanning domains in the C-terminal portion [17]. The N-terminal region contains a FHA

domain, which is a phosphoprotein recognition domain. Thus, it can be hypothesized that

Tbd2 could be phosphorylated by the adjacent PknH protein or by others STPKs. Indeed,

phosphorylation of other PknH substrates, such as EmbR, has been shown to be mediated by

the FHA domain [12].

The genomic analysis of the RD900 locus presents some limitations. Since genome sequenc-

ing reads were aligned to a reference sequence, it was not possible to detect large insertions or

deletions not present in the reference sequence. Furthermore, the sequence identity between

pknH1 and pknH2 leads to multi-mapping reads, which are reads that can map to more than

one locus within the reference sequence and that complicates definitive assignment of read

positions. Another approach to analyse this region would be to do de novo assembly of the

genome and to align the contigs to a reference sequence. However, the issue with this latter

method is that the sequence of the RD900 locus was split into different contigs if the available

read length was lower than 150 bp, which was the case for the most of the available genomic

data that was analysed in this study.

Fig 5. Hypothetical RD900 homologous recombination events inM. tuberculosis “modern” lineages andM. bovis andM. caprae.

https://doi.org/10.1371/journal.ppat.1009061.g005
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We characterized infection and virulence differences between M. tuberculosis, M. bovis and

M. africanum strains in C57BL/6 mice. In agreement with previous literature, we found M.

bovis to be more virulent than M. tuberculosis during early and advanced stages of infection in

the mouse model, showing greater lung pathology and higher bacterial burden in lungs and

other organs, especially the liver and kidneys. This phenotype correlates with a higher percent-

age of infected lung cells in M. bovis infected mice one month post-infection. At this time

point, the majority of infected lung cells were neutrophils and a minority were macrophages.

The level of infected neutrophils was higher in M. bovis infected mice, which also correlates

with higher neutrophil infiltration in the total lung cell population. Increased neutrophilia has

been previously related to exacerbation of TB pathology and poor prognosis, and a neutrophil-

driven IFN-inducible transcript signature in human whole blood of patients with active TB

correlates with clinical severity [23, 25, 26, 42]. Here we show that lung neutrophilia and

increased numbers of infected neutrophils in the lung correlate with enhanced pathology,

higher bacterial burden and dissemination in M. bovis infected mice compared to mice

infected with M. tuberculosis or with the closely related M. africanum.

Our PCR analysis of M. bovis cDNA using proline-rich region flanking primers indicated

that pknH gene is expressed by M. bovis strains (S1B Fig). Indeed, RNAseq analysis from

AF2122 strain showed reads from both pknH copies [43], suggesting that deletion of the pro-

line-rich region in M. bovis and M. caprae PknH could lead to generation of an uncomplete

PknH protein, which may contribute to M. bovis and M. caprae virulence. This hypothesis

would be consistent with a previous observation from the literature describing increased viru-

lence in a pknH-deficient M. tuberculosis strain. The proline-rich region in PknH is not present

in other mycobacterial STPKs and its function in PknH its unknown. It could act as a linker

between the catalytic and transmembrane domains, or it may be involved in protein-protein

interactions or adaptor functions, as similar proline-rich domains in eukaryotic signalling pro-

teins have been associated with functions in protein recognition, binding and oligomerization

[44–46].

To address the possible impact of PknH differences between M. tuberculosis and M. bovis,
two M. bovis strains carrying the pknH gene from M. tuberculosis H37Rv were constructed,

and their virulence phenotypes were studied in the mouse model. A reduction in lung pathol-

ogy and bacterial load in lungs and spleen was observed for both M. bovis AN5 and AF2122

pknHTB knock-in strains compared to their parental M. bovis WT strains. This phenotype was

further confirmed in AF2122 strains using GFP-expressing bacteria. A reduction in lung

infected cells and infected neutrophils in the AF2122::pknHTB strain compared to the WT

AF2122 was observed, which correlates with lower bacterial load and lung pathology and fur-

ther supports a detrimental role for neutrophils in pulmonary TB infection.

In order to better understand the molecular processes that are regulated by PknH, a tran-

scriptomic analysis of M. bovis AF2122/97 WT and AF2122::pknHTB strains was performed

that revealed 145 DE genes under standard culture conditions. The gene encoding EmbR, a

verified PknH substrate, was found to be up-regulated in the AF2122::pknHTB strain. EmbR is

a transcriptional regulator that controls the synthesis AG and LAM, which are structural com-

ponents of mycobacterial cell wall that may have a role in the modulation of host response dur-

ing infection [12, 14].

The upregulation of the espACD locus in the M. bovis AF2122::pknHTB may seem at odds

with the decreased virulence of this recombinant strain. The espACD has been shown to be

essential in ESX-1 secretion, a key determinant of M. tuberculosis virulence [32, 47]. In PhoPR

mutants, it has been shown that reduced espACD expression leads to reduced ESX-1 secretion

and reduced virulence (34). However, it has also been previously shown that upregulation of

espACD does not always lead to increased ESX-1 secretion or increased virulence. Pang et al
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[48] showed that while deletion of MprAB in M. tuberculosis led to increased transcription of

espA and espD, there was a concomitant decrease in EspA, EspB and EsxA secretion. Further-

more, the mprAB mutant induced decreased levels of IL1-β and TNF-α during macrophage

infections. Further exploration of the linkages between PknH and the ESX-1 system in M.

bovis will be needed to clarify whether a similar situation as seen by Pang et al pertains. As

noted above, the deletion of RD8 leads to altered regulation of the espACD locus in M.bovis
[32, 33], so PknH may play a distinct role in regulation of this locus in M. bovis as compared to

M. tuberculosis.
As introduction of the pknHTB allele into M. bovis significantly altered gene expression, the

question arose as to whether this altered transcriptome would recapitulate some of the known

transcriptomic differences between M. bovis and M. tuberculosis [38]. While a subset of genes

switched expression in AF2122::pknHTB to resemble expression in M. tuberculosis (S2 Table),

they did not provide clear clues as to the altered virulence of the recombinant.

A variety of genes involved in intermediate and lipid metabolism were found to be DE

between the M. bovis WT and pknHTB knock-in strain, which may lead to differences in meta-

bolic pathways or lipid profiles that could also contribute to virulence differences. Interest-

ingly, cysD and cysN genes were found to be down-regulated in AF2122::pknHTB strain. These

two genes are involved in sulfur metabolism and have been found to be highly expressed in

intracellular conditions as well as in bacteria isolated from mouse lungs [35], suggesting that

their repression in the AF2122::pknHTB strain may also play a role in its attenuation. The

downregulation of the methylcitrate cycle genes prpCD (and their regulator, prpP) may suggest

a decrease in lipid catabolism which is a key in vivo carbon source; nevertheless, previous work

showed that a ΔprpDCM. tuberculosis mutant was not attenuated in a mouse model [49],

hence arguing against a role for the downregulation of these genes in attenuation of AF2122::

pknHTB. Additionally, while a large number of genes encoding hypothetical and PE/PPE pro-

teins were found to be DE, their function and hence possible role in virulence remains to be

elucidated.

PknH is a STPK master regulator that can phosphorylate and regulate other mycobacterial

STPKs, which in turn control other substrates and bacterial functions [50]. Thus, a complex

interplay between multiple factors and cross-regulated pathways is likely involved in the gene

expression profile and ultimate phenotype of the PknH mutant strains. Additionally, culture

conditions may also be an important factor for the identification of PknH-regulated genes and

for the ultimate determination of the AF2122 WT vs AF2122::pknHTB gene expression profile.

PknH has been described to phosphorylate DosR, which is involved in the regulation of the

latency response under stress conditions [51]. PknH phosphorylation of DosR enhances its

DNA binding activity and favours the induction of DosR-regulated genes, whose expression is

altered in an M. tuberculosis H37RvΔpknH mutant under stress culture conditions [52]. DosR

and DosR-regulated genes were not identified as DE genes in our RNA-seq analysis of AF2122

vs AF2122::pknHTB. However, it is of course possible that these regulons could be affected by

the intracellular conditions during in vivo infection with these strains. Therefore, although a

variety of genes were found to be DE between these strains in basal in vitro conditions, further

studies of expression differences using other culture conditions that regulate PknH induction,

such as stress conditions (hypoxia or NO), would be useful to provide a more complete view of

PknH regulation in these strains.

Previous studies have demonstrated higher virulence of M. bovis compared to M. tuberculo-
sis in several animal models, such as mice or rabbits. In addition, experimental infections of

cattle have demonstrated that M. tuberculosis, at least from lineage 4, is attenuated in the

bovine host [6, 7]. Clearly, as we show here, the genetic differences between M. bovis and M.

tuberculosis can contribute to the varying degrees of virulence shown for these animal hosts.
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Ultimately however, an evolutionary successful strategy depends on host factors as well as

pathogen virulence, the interaction of which drives transmission and maintenance of the path-

ogen in the host population. Indeed, M. bovis is able to spread and sustain across different ani-

mal populations, both domesticated (e.g. cattle) and wild (e.g. badgers and deer), yet human-

to-human transmission of M. bovis is a rare event. Thus, one could hypothesize that M. bovis
has evolved to exploit dissemination routes distinct from respiratory transmission. Conversely,

M. tuberculosis has evolved towards human adaptation to which respiratory dissemination is

integral and which may rely on a functional PknH.

In relation to the evolution of the distinct human vs animal adapted MTBC, the two com-

ponent PhoPR system seems to have a crucial role. M. bovis strains contain point mutations in

the region encoding the extracellular domain of PhoR, which impairs the signalling of this sys-

tem. Thus, as described by Gonzalo-Asensio et al (34), the expression of phoP regulon genes is

divergent in M. bovis as compared to M. tuberculosis, which could again play a role in their

compromised capacity to spread via human-to-human. Interestingly, an M. bovis strain, called

the ‘B strain’ caused a severe TB outbreak in Spain in the 1990s and disseminated efficiently

among humans. This latter strain overexpressed the phoP gene and subsequently expressed the

PhoP regulon at levels similar to M. tuberculosis, highting the linkages between this regulon

and efficient human-to-human transmission.

In summary, our results suggest a role for PknH in the differential regulation of virulence

and infection in M. bovis and M. tuberculosis. The apparent alteration, or lack, of PknH activity

in M. bovis leads to increased virulence in animal hosts. Indeed, this finding may help explain

the reduced evidence for latency in M. bovis infection in animals, whereby infected livestock

or wild mammals usually exhibit a more progressive and disseminated disease presentation as

compared to human disease [53]. Our findings therefore have implications for our under-

standing of the genetic underpinnings and evolution of host adaptation in the MTBC.

Materials andmethods
Ethics statement
Experimental work was conducted in agreement with the Spanish Policy for Animal Protec-

tion RD53/2013 and the European Union Directive 2010/63 for the protection of animals used

for experimental and other scientific purposes and experimental procedures were approved by

the Ethics Committee for Animal Experiments of University of Zaragoza (CEA).

Animals
C57BL/6JR mice were purchased from Janvier Biolabs. All mice were housed and maintained

in specific pathogen-free conditions and observed for any sign of disease in the facilities of

Centro de Investigación de Encefalopatı́as y Enfermedades Transmisibles Emergentes (ES 50

297 0012 009). Male and female mice between the ages of 8 to 10 weeks were used for all the

experiments.

Bacterial strains and culture conditions
Mycobacterial strains were grown at 37˚C in Middlebrook 7H9 broth (BD Difco) liquid

medium supplemented with 0.05% Tween 80 (Sigma) and 10% (v/v) Middlebrook albumin

dextrose catalase enrichment (ADC; BD Biosciences 0.2% dextrose, 0.5% bovine serum albu-

min, 0.085% NaCl and 0.0003% beef catalase). For cultures in solid media, Middlebrook 7H10

agar (BD Difco) supplemented with 10% ADC (BD Biosciences) was used. When required,

medium was supplemented with 20 μg/ml of kanamycin (Km) or 20 μg/ml of streptomycin
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(Sm). For the culture of M. bovis strains liquid and solid media was supplemented with sodium

pyruvate (Sigma) 4 mg/ml.

All GFP-expressing carry with the replicative plasmid pJKD6 encoding the green fluores-

cent protein (GFP), a kind gift from Luciana Leite, Butantan Institute, Brazil. This plasmid car-

ries de gfp gene under the control of a strong promoter generated through error-prone PCR of

the PL5 promoter from the mycobacteriophage L5 resulting in high levels of GFP expression

[54].

Bacterial suspensions for intranasal infections were prepared in PBS from quantified glyc-

erol stock solutions.

Construction ofM. bovis::pknHTB knock-in strains
For the construction of the M. bovis::pknHTB knock-in strains, the pknH gene from M. tubercu-
losis H37Rv (pknHTB) was cloned using the integrative plasmid pMV361. The gene insert was

synthesized and subcloned in NheI site of pMV361 by Genscript Company (Piscataway, USA).

M. bovis AF2122/97 and AN5 competent cells were obtained and electroporated with pMV361-

pknHTB plasmid. Oligonucleotides used for PCR verifications are detailed in S3 Table.

GFP-expressing strains of M. tuberculosis H37Rv and Mt103, M. bovis AF2122/97 and M.

africanum HCU2828 were generated by transformation by electroporation with the replicative

plasmid pJKD6 carrying a kanamycin resistance cassette. GFP-expressing AF2122::pknHTB

was generated through transformation by electroporation with the replicative plasmid pJKD6

carrying a streptomycin resistance cassette.

Intranasal infection
Mice were infected with a low dose (�100–200 CFUs) of the different mycobacterial strains by

the intranasal route. The animals were anesthetized by inhalation route with Isofluorane

(Isboa Vet) using a vaporizer and intranasal administration was performed with two instilla-

tions of 20 μl of the bacterial suspension prepared in PBS. Bacterial suspensions for infection

were plated in solid agar medium to determine the CFUs used for in vivo challenges.

Bacterial burden determination
For bacterial burden determination in lung, spleen, liver and kidneys, the organs were asepti-

cally removed and homogenized in 1 ml of H2O using a GentleMacs dissociator (Miltenyi Bio-

tec). CFUs were determined by plating serial dilutions on solid 7H10 medium supplemented

with 10% ADC and sodium pyruvate when required.

Histological analysis
For lung histopathology analysis, left lung was removed and fixed in 4% formaldehyde for 24

hours prior to hematoxylin-eosin (HE) staining. Histological staining was performed in the

Pathological Anatomy Service from CIBA (Zaragoza, Spain) and images were obtained with a

Leica DM5000B optical microscope.

Lung single cell suspensions
For lung cell suspensions, lungs were aseptically removed and homogenized in HEPES buffer

(HEPES 10 mM, NaCl, 150 mM, KCl 5 mM, MgCl2 1 mM, CaCl2 1,8 mM pH 7,4) containing

DNaseI (AppliChem) 40 IU/ml and Collagenase D (Roche) 2 mg/ml using a GentleMacs dis-

sociator (Miltenyi Biotec) according to manufacturer instructions. Lungs were incubated at

37˚C for 30 minutes and further homogenized with the GentleMacs dissociator. The

PLOS PATHOGENS PknH locus differences in the context ofMycobacterium tuberculosisComplex evolution

PLOS Pathogens | https://doi.org/10.1371/journal.ppat.1009061 December 21, 2020 17 / 24

https://doi.org/10.1371/journal.ppat.1009061


homogenates were filtered through a 70 μm cell strainer (MACS SmartStainers, Miltenyi Bio-

tec) and centrifuge at 1500 rpm for 5 min. Red blood cells were lysed using Red Blood Cell Lys-

ing Buffer (Sigma-Aldrich) and finally, cells were pelleted and resuspended in RPMI (Gibco)

culture medium.

Antibody staining and flow cytometry analysis
Lung single cell suspensions were plated in U-bottom 96-well plates and incubated for 15 min-

utes at 4˚C with FcR blocking reagent (Miltenyi Biotec). Surface staining was performed for 20

min at 4˚ C using different combinations of antibodies to define lung myeloid populations of

macrophages and neutrophils. Then, cells were washed and fixed with 4% paraformaldehyde

for 30 minutes.

Cells were acquired using a Gallios flow cytometer (Beckman Coulter) and the results were

analysed using Weasel Software.

For the analysis of lung myeloid populations, total lung macrophages were defined as CD45

+Ly6G-CD11c+ and neutrophils as CD45+Ly6G+CD11c-CD11b+ (S3 Fig).

Cytokine determination
Lung cell suspensions were plated in U-bottom 96-well plates and incubated for 48 h in the

presence or absence of PPD 10 μg/ml. Supernatants were collected to determine IFNγ
response. Quantification of IFNγ was performed using a specific commercial ELISA kit (Mab-

tech Biotech) according to manufacturer instructions.

Statistics
Mice were distributed in groups of at least 6 animals per cage prior to experimental proce-

dures. Results were not blinded for analysis and randomization was not applicable to these

studies. Rstudio and GraphPad Prism software (version 6) was used for graphical representa-

tion and statistical analysis. Statistical test used in each experiment are indicated in the figure

legends. Outlier values were determined applying Grubb’s test. A p value of < 0.05 was consid-

ered significant (�p< 0.05, ��p< 0.01,���p< 0.001, ����p< 0.0001).

Comparative genomics
Computational analysis of RD900 region across MTBC was performed using WGS data of 60

different MTBC isolates (S1 Table). We did not use annotations based on existing assemblies

since misannotations are likely present in this locus due to the fact that homologous domains

shared between pknH genes cannot be uniquely aligned with short reads. Such reads are

marked as multi-mappers and ignored; resulting assemblies are therefore split into contigs

over such a region and annotation software may miss genes. To avoid this, we downloaded the

original raw sequence reads in fastq format from GenBank for each available isolate (S1

Table).

The raw reads were aligned to a reference sequence (M. africanum GM041182 RD900

locus) representing the most complete version of the RD900 across the MTBC. In this way we

could most readily see missing elements in the other species. Reads were aligned using bwa

(mem algorithm) [55] and the resulting bam files were sorted and indexed using samtools. The

alignments were visualized in IGV [56] to identify the presence or absence of RD900 and the

presence of the deletion in the proline-rich region within pknH genes. Finally, a variant calling

analysis was performed to identify point mutations present in this region from the different
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MTBC analysed species. Variant calling, filtering and consequence calling were performed

using freebayes (https://arxiv.org/abs/1207.3907) and bcftools.

RNA-seq analysis
M. bovis AF2122 wild type and M. bovis AF2122::pknHMtb knock-in were grown in triplicate

standard 7H9 medium with pyruvate (see Bacterial strains and culture conditions above) to

mid-log phase (OD0.4–0.6). RNA was extracted by QIAzol lysis Reagent and RNeasy Mini Kit

(Qiagen). DNA was removed by TURBO DNase (Thermo Fisher) and RNA Clean-Up and

Concentrator (Zymo).

The concentration and quality of all the RNA samples were checked using Nanodrop,

Qubit (Thermo Fisher) and Agilent 2100 bioanalyzers. RNA was sent for commercial sequenc-

ing (Novogene) for library preparation and 150 bp paired-end reads sequencing on an Illu-

mina HiSeq.

RNA-seq data were first processed using FastQC (https://www.bioinformatics.babraham.

ac.uk/projects/fastqc/) tool to check the quality of the raw reads. The raw reads were trimmed

by Trim-galore (https://www.bioinformatics.babraham.ac.uk/projects/trim_galore/) to trim

off reads with bad quality and adapters used for sequencing. Alignment to the reference

genome M. bovis AF2122/97 was done using bwa mem [55]. Gene expression was determined

from the resulting bam files using featureCounts [57]. The count data was then analysed for

differential expression of genes between the wild type and mutant with the DESeq2 R package

[58]. Significant genes were selected at a log2 fold change threshold of 2.

Supporting information
S1 Fig. Expression of pknHTB inM. bovis::pknHTB knock-in strains. (A, B) Confirmation of

pknHTB presence in M. bovis::pknHTB strains. cDNA was analyzed by PCR, either with the

reverse primer included inside the proline-rich region (A), or with both primers flanking this

sequence (B). In the first case, cDNA amplification was only observed when pknHTB was

expressed, whereas in the second case amplification occurred in both cases, with a different

fragment size depending on the pknH expressed. (C) pknHTB expression was measured by

qRT-PCR using the proline-rich region flanking primers. Graph represents mean±SD from

one experiment with three replicates, corresponding to the fold-change value in comparison to

H37Rv expression.

(TIF)

S2 Fig. Functional classification of differentially-expressed (DE) genes between AF2122
wild-type and pknHTB knock-in strains.
(TIF)

S3 Fig. Flow cytometry analysis for the identification of lung macrophages and neutrophil
populations.
(TIF)

S1 Table. Genomic data of MTBC isolates used for the genomic analysis of RD900 locus.
(DOCX)

S2 Table. Filtered DE gene overlap betweenM.bovis::pknHTB vsM. bovisWT, andM. bovis
WT vsM. tuberculosis. �Gene expression data from M. tuberculosis were obtained from Mal-

one et al. [38].

(DOCX)
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