000099230 001__ 99230
000099230 005__ 20230622083321.0
000099230 0247_ $$2doi$$a10.1049/pel2.12030
000099230 0248_ $$2sideral$$a122249
000099230 037__ $$aART-2020-122249
000099230 041__ $$aeng
000099230 100__ $$0(orcid)0000-0003-4858-9734$$aLope, I.$$uUniversidad de Zaragoza
000099230 245__ $$aFirst self-resonant frequency of power inductors based on approximated corrected stray capacitances
000099230 260__ $$c2020
000099230 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099230 5203_ $$aInductive devices are extensively employed in power electronic systems due to their magnetic energy storage and power transfer capabilities. The current trend is towards increasing the frequency of operation in order to reduce the size of the magnetic components, but the main drawback is that the parasitic capacitance effect can become significant, and degrade the performance of the system. This work analyses the influence of this stray capacitance, and considers how to improve the performance of the device. In general, the impact of the stray capacitance on a magnetic component can be reduced by two methods: reducing the parasitic capacitance between turns of the winding or, alternatively, modifying the arrangement of the connection between turns. To evaluate the last option, an approximated expression of the first self-resonant frequency of the magnetic device is proposed. This gives a rapid assessment of the performance of different devices maintaining the overall equivalent inductance. The proposed expression accounts for the influence of the connection between turns in the bandwidth of the component. Finally, some numerical results are verified with planar coils manufactured on two-layer printed circuit boards.
000099230 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/PID2019-103939RB-I00$$9info:eu-repo/grantAgreement/ES/MICINN-AEI/RTC-2017-5965-6$$9info:eu-repo/grantAgreement/ES/DGA/FSE
000099230 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000099230 590__ $$a2.641$$b2020
000099230 591__ $$aENGINEERING, ELECTRICAL & ELECTRONIC$$b126 / 273 = 0.462$$c2020$$dQ2$$eT2
000099230 592__ $$a0.637$$b2020
000099230 593__ $$aElectrical and Electronic Engineering$$c2020$$dQ2
000099230 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000099230 700__ $$0(orcid)0000-0001-7901-9174$$aCarretero, C.$$uUniversidad de Zaragoza
000099230 700__ $$0(orcid)0000-0001-7207-5536$$aAcero, J.$$uUniversidad de Zaragoza
000099230 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000099230 7102_ $$15008$$2785$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Tecnología Electrónica
000099230 7102_ $$12002$$2247$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Electromagnetismo
000099230 773__ $$g14, 2 (2020), 257-267$$pIET power electron.$$tIET Power Electronics$$x1755-4535
000099230 8564_ $$s925986$$uhttps://zaguan.unizar.es/record/99230/files/texto_completo.pdf$$yVersión publicada
000099230 8564_ $$s2716013$$uhttps://zaguan.unizar.es/record/99230/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099230 909CO $$ooai:zaguan.unizar.es:99230$$particulos$$pdriver
000099230 951__ $$a2023-06-21-15:03:04
000099230 980__ $$aARTICLE