000099261 001__ 99261 000099261 005__ 20230622083321.0 000099261 0247_ $$2doi$$a10.1103/PhysRevResearch.2.013312 000099261 0248_ $$2sideral$$a122457 000099261 037__ $$aART-2020-122457 000099261 041__ $$aeng 000099261 100__ $$0(orcid)0000-0002-6388-4056$$aSoriano-Paños, D.$$uUniversidad de Zaragoza 000099261 245__ $$aVector-borne epidemics driven by human mobility 000099261 260__ $$c2020 000099261 5060_ $$aAccess copy available to the general public$$fUnrestricted 000099261 5203_ $$aVector-borne epidemics are progressively becoming a global burden, especially those related to flaviviruses, and the effects of different factors such as climate change or the increase of human mobility can sensibly increase the population at risk worldwide. Such outbreaks are the result of the combination of different factors including crossed contagions between humans and vectors, their demographic distribution and human mobility among others. The current availability of information about all those ingredients demands their incorporation into current mathematical models for vector-borne disease transmission. Here, relying on a Markovian formulation of the metapopulation dynamics, we propose a framework that explicitly includes human-vector interactions, mobility, and demography. The analysis of the framework allows us not only to derive an expression of the epidemic threshold capturing the conditions for the onset of the epidemics but also to highlight some unseen features of vector-borne epidemics, such as abrupt changes in the unfolding patterns of the disease for small variations of the degree of mobility. Finally, driven by these insights, we obtain a prevalence indicator to rank populations according to their risk of being affected by a vector-borne disease. We illustrate the utility of this indicator by reproducing the spatial distribution Dengue cases reported in the city of Santiago de Cali (Colombia) from 2015 to 2016. 000099261 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/E36-17R$$9info:eu-repo/grantAgreement/ES/MCIU-AEI-FEDER/PACSS-RTI2018-093732-B-C22$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2015-71582-C2$$9info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2017-87519-P$$9info:eu-repo/grantAgreement/ES/MINECO/MDM-2017-0711 000099261 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/ 000099261 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion 000099261 700__ $$aArias-Castro, J.H. 000099261 700__ $$aReyna-Lara, A. 000099261 700__ $$aMartinez, H.J. 000099261 700__ $$aMeloni, S. 000099261 700__ $$0(orcid)0000-0002-3484-6413$$aGomez-Gardeñes, J.$$uUniversidad de Zaragoza 000099261 7102_ $$12003$$2395$$aUniversidad de Zaragoza$$bDpto. Física Materia Condensa.$$cÁrea Física Materia Condensada 000099261 773__ $$g2, 1 (2020), 013312 [12 pp.]$$pPhys. rev. res.$$tPhysical Review Research$$x2643-1564 000099261 8564_ $$s835132$$uhttps://zaguan.unizar.es/record/99261/files/texto_completo.pdf$$yVersión publicada 000099261 8564_ $$s3119772$$uhttps://zaguan.unizar.es/record/99261/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada 000099261 909CO $$ooai:zaguan.unizar.es:99261$$particulos$$pdriver 000099261 951__ $$a2023-06-21-15:03:04 000099261 980__ $$aARTICLE