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Abstract

Forest ecosystems provide environmental and economic services of great importance to the
society. The characterization of these environments has been traditionally accomplished with
intense field work. In comparison, the application of remote sensing tools provides a greater
overview over large spatial and temporal scales while minimizing costs. Although optical data and
Synthetic Aperture Radar (SAR) allow estimating forest stand variables, the development of
LiDAR sensors such as Airborne Laser Scanner (ALS) have improved three-dimensional
characterization of forest structure. The availability of two ALS public data coverages for the
Spanish territory, provided by the National Plan for Aerial Ortophotography (PNOA), opens new

research opportunities to generate useful information for forest management.

This PhD Thesis used low-density ALS-PNOA data to estimate different forest variables, with
support in fieldwork, in the Aleppo pine (Pinus halepensis Miller) forests of Aragdén region. The
addressed research is relevant mainly for two reasons: first, the examination of suitable
methodologies and error sources in forest stand variables prediction at local (small area) and
regional scales (large area), and second, the application of ALS data to the characterization of

forest areas as a socio-economic reservoir.

This PhD Thesis is a compendium of four scientific papers, which sequentially answer the
objectives established. Firstly, a comparative analysis of different parametric and non-parametric
models was performed to estimate biomass losses and CO2 emissions using low-density ALS and
Landsat 8 data in a burnt Aleppo pine forest. Secondly, we assess the suitability of variable
selection methods when estimating total biomass in Aleppo pine forest stands using low-density
ALS data. In the third manuscript, the quantification and mapping of forest residual biomass in
Aleppo pine forest of Aragon region and the assessment of the effect of ALS and environmental
variables in model accuracy were accomplished. Finally, the temporal transferability of seven
forest stands attributes modelling using multi-temporal ALS-PNOA data in Aleppo pine forest at
regional scale was explored. In this case, the temporal transferability was assessed comparing two
methodologies; the direct and indirect approach. The first one fits a model for one point in time
and estimates the forest variable for another point in time. The indirect approach adjusts two

models in different points in time to estimate the forest variables in two different dates.

The results derived from this research indicated that Spearman’s rank and All Subset Selection are
the most appropriate methods in the ALS metrics selection step commonly applied in modelling.
The suitability of the regression methods depends on the sample size and complexity. Thus,
multivariate linear regression outperformed non-parametric methods with small samples while
support vector machine was the most accurate method with larger samples. Model accuracy
increased with higher point density and canopy pulse penetration, while decreasing with wider
scan angles. Furthermore, the presence of steep slopes and shrub reduced model performance. In
the case of forest stand variables prediction using multi-temporal ALS data, although the indirect

approach produced generally a higher precision, the direct approach provided similar results,



constituting a suitable alternative to reduce modelling time and fieldwork costs. The fusion of ALS
and passive optical data have evidenced the suitability of this information for quantifying wildfire
COz emissions to atmosphere, constituting a good alternative when multi-temporal ALS data is not
available. The estimation of forest inventory variables as well as different biomass fractions, such
as total biomass and forest residual biomass, provided valuable information to characterize

Mediterranean Aleppo pine forests and improve forest management.



Resumen

Los espacios forestales son una fuente de servicios, tanto ambientales como econémicos, de gran
importancia para la sociedad. La caracterizacion de estos ambientes ha requerido tradicionalmente
de un laborioso trabajo de campo. La aplicacion de técnicas de teledeteccion ha proporcionado una
vision mds amplia a escala espacial y temporal, a la par que ha generado una reduccion de los
costes. La utilizacion de sensores optico-pasivo multiespectrales y de sensores radar posibilita la
estimacion de parametros forestales, si bien el desarrollo de sensores LiDAR, como el caso de los
escaneres laser aeroportados (ALS), ha mejorado la caracterizacion tridimensional de la estructura
de los bosques. La disponibilidad publica de dos coberturas LiDAR, generadas en el marco del
Plan Nacional de Ortofotografia Aérea (PNOA), ha abierto nuevas lineas de investigacion que

permiten proporcionar informacion util para la gestion forestal.

La presente tesis utiliza datos LiDAR aeroportados de baja densidad para estimar diversas
variables forestales, con ayuda de trabajo de campo, en masas forestales de Pino carrasco (Pinus
halepensis Miller) en Aragén. La investigacion aborda dos cuestiones relevantes como son la
exploracion de las metodologias mas adecuadas para estimar variables forestales considerando
escalas locales y regionales, teniendo en cuenta las posibles fuentes de error en el modelado; y,
ademas, analiza la potencialidad de los datos LiDAR del PNOA para el desarrollo de aplicaciones

forestales que valoricen las areas forestales como recursos socio-economicos.

La tesis se ha desarrollado segtin la modalidad de compendio de publicaciones, incluyendo cuatro
trabajos que dan respuesta a los objetivos planteados. En primer lugar, se realiza un analisis
comparativo de distintos modelos de regresion, paramétricos y no paramétricos, para estimar la
pérdida de biomasa y las emisiones de CO: en un incendio, mediante la utilizacion de datos
LiDAR-PNOA y datos Opticos del satélite Landsat 8. En segundo lugar, se explora la idoneidad de
distintos métodos de seleccion de variables para estimar biomasa total en masas de Pino carrasco
utilizando datos LiDAR de baja densidad. En tercer lugar, se cuantifico y cartografio la biomasa
residual forestal en el conjunto de masas de Pino carrasco de Aragén y se evalud el efecto de
diversas caracteristicas de la tecnologia LiDAR y de las variables ambientales en la precision de los
modelos. Finalmente, se analiza la transferibilidad temporal de modelos para estimar a escala
regional siete variables forestales, utilizando datos LiDAR-PNOA multi-temporales. A este
respecto, se compararon dos enfoques que permiten analizar la transferibilidad temporal: en
primer lugar, el método directo ajusta un modelo para un determinado punto en el tiempo y
estima las variables forestales para otra fecha; por otra parte, el método indirecto ajusta dos
modelos diferentes para cada momento en el tiempo, estimando las variables forestales en dos
fechas distintas.

Los resultados obtenidos y las conclusiones derivadas de la investigacion indican que la técnica
basada en coeficientes de correlacién de Spearman y el método de seleccién por todos los
subconjuntos constituyen los métodos de seleccion de métricas LiIDAR mas apropiados para la

modelizacion. El analisis de métodos de regresion para la estimacion de variables forestales indico



que su idoneidad variaba de acuerdo con el tamafio y complejidad de la muestra. El método de
regresion linear multivariante arrojé mejores resultados que los métodos no-paramétricos en el
caso de muestras pequenas. Por el contrario, el método Support Vector Machine produjo los
mejores resultados con muestras grandes. El incremento de la densidad de puntos y de los valores
de penetracion de los pulsos LiDAR en el dosel, asi como la presencia de angulos de escaneo
pequetos, incrementd la exactitud de los modelos. De forma similar, el incremento de la pendiente
y la presencia de arbustos en el sotobosque implican una reduccion en la exactitud de los modelos.
En la estimacion de variables forestales utilizando datos LiDAR multi-temporales, aunque la
utilizacion del enfoque indirecto arrojo generalmente una mayor precision en los modelos, se
obtuvieron resultados similares con el enfoque directo, el cual constituye una alternativa dptima
para reducir el tiempo de modelado y los costes de realizacion de trabajo de campo. La fusion de
datos LiDAR y datos Optico-pasivos ha evidenciado la conveniencia de los métodos aplicados para
cuantificar las emisiones de CO: a la atmosfera generadas por un incendio. Esta metodologia
constituye una alternativa adecuada cuando no existen datos multi-temporales LiDAR. La
estimacion de variables de inventario forestal, asi como de diversas fracciones de biomasa, como la
biomasa total y la biomasa residual forestal, proporciona informacion valiosa para caracterizar las

masas forestales mediterrdneas de Pino carrasco y mejorar la gestion forestal.
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1. Introduction

This chapter describes the main concepts and the conceptual
framework in which this PhD Thesis was developed. Firstly,
ALS technology and its use for forestry purposes are
described. Secondly, the use of ALS data for estimating forest
stand variables, at local and regional scales, using different
regression algorithms is presented. Then, the research
justification, hypothesis and aims are defined. Finally, the
chapter depicts the PhD Thesis structure, including the
developed research items and their link to the different
objectives that form a thematic unity.






Introduction

1.1. Background

1.1.1. Airborne laser scanning

The characterization and quantification of forest resources started in Europe during the late 18
century when society was concerned about wood availability, being the main source of fuel. The
estimation of forestry metrics, especially volume, was performed by visual interpretation. The
development of forest surveys, inventory tools, sampling and statistical methods and the advance
in computers during 19* and 20t century yield great progress in forestry science. The growth of
remote sensing tools such as aerial images, optical passive satellite images, and Synthetic Aperture
Radar (SAR) data provided a greater overview of forest resources over large areas (Boyd &
Danson, 2005). However, the expansion of Light Detection and Ranging (LiDAR) technology has
improved the three-dimensional (3D) characterization of forest ecosystems being a suitable tool for

forestry variables estimation (Zhao et al., 2018).

LiDAR technology measures the distance between a laser transmitter and an object or surface
using a monochromatic beam of light, coherent and directional (Andersen et al., 2005). The origin
of this technology started in the early 1960s when Theodore Harold Maimam developed the first
ruby laser that emits powerful pulses of collimated red light. In the 1980s the profile LiDAR was
used for forestry application (Aldred & Bonnor, 1985; Maclean & Krabill, 1986). Further growth
occurred in the 90s with the generation of Digital Terrain Models (DTM) and forest inventory
variables estimation (Lefsky et al., 1999; Means et al., 1999; Naesset, 1997). During the last two
decades the use of LiDAR technology have exponentially grown, being developed diverse

hardware, software and applications within the forestry topics.

According to the platform used, three main types of LiDAR technologies exist: terrestrial laser
scanners (TLS), airborne laser scanners (ALS) and satellite laser scanners (SLS). ALS is one of the
most widespread for forestry purposes (Maltamo et al., 2014). Topographic ALS sensors emit their
own electromagnetic flux within the infrared wavelengths (900 to 1,064 nm). These wavelength
denotes high reflectance values of vegetation and transmissivity of atmosphere (Lefsky et al.,
2002). The basic information captured by ALS is denominated point cloud, referring to a dense set
of x, y and z coordinates that register the object reflexions reached by the laser light.

ALS technology is usually classified in two main types, according to the way it measures distances
between the sensor and the object reached by the laser beam: full-waveform systems and discrete
return systems. Full-waveform systems completely register the reflected energy. The distance
between transmitter and object is measured using phase difference between emitted signal and
scattered radiation. Full-waveform sensors provide richer data than discrete return systems, while
the processing is more demanding. Although several processing methodologies has been proposed
such as voxelization, sometimes the wavelengths are converted into point clouds similar to the
ones provided by discrete sensors but with higher number of returns per pulse. On the other hand,
discrete return systems capture one to five returns per emitted laser pulse. The distance between

the transmitter and the object is measured as a function of time. The generalized use of discrete
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return sensors for forestry and topographic purposes may be explained by the higher

implementation in the commercial sector (Shan & Toth, 2008).

ALS discrete-return systems have been widely used for estimating forest variables. Trees are porous
objects from the laser pulse point of view. The laser beam can travel through the canopy and the
system is able to capture up to five returns. The first return in a forested area may reach the top of
the tree or canopy surface, the intermediate or low returns might be scattered by the tree branches
and leaves or even the understory, while the last return might reach the terrain. This capability of
ALS sensors provides a reliable 3D representation of forest structure. Canopy penetration pulse
varies according to canopy closure, determining the points that reach the terrain. According to
Chasmer et al. (2006b) only 50% of last returns in forested areas are backscattered by the terrain.

ALS sensors also capture, through a photodiode, the energy reflected by the objects. This
information is denominated intensity, registered in 8 or 12 bits. The intensity refers to each laser
echo with a footprint varying from 0.2 to 1.0 m in small footprint discrete returns ALS sensors
(Andersen et al., 2005; Evans et al. 2009). Intensity values varies according to different parameters
such as surface roughness and wetness, flight height, angle of incidence, instrumental
characteristics, atmospheric conditions, between others. Consequently, the use of intensity values
requires the normalization or calibration of the data in each acquisition. In this sense, although
intensity data has been used for some applications, such as species classification (Korpela et al.,

2010; Watt et al., 2007), it is still not broadly implemented for forestry purposes.

The main components of an ALS discrete sensor are the platform, the laser sensor, the Global
Navigation Satellite System (GNSS), the Inertial Measurement Unit (IMU) and the data manager or
computer with specific software. The laser scanner includes the laser pulse transmitter, the
scanning mechanism and the receptor to record the distance to the objects. The laser scanner emits
laser pulses, with a scanning frequency of up to 300 kHz, directed to the terrain surface. The
scanning mechanism (oscillating mirror, rotating polygon, palmer scan, fibre scanner, etc.) draws
specific scanning patterns to capture the terrain surface in each flight line (Vosselman & Maas,
2010). The scanning angle or sensor field of view (FOV) and the flight height determine the strip width.
Accordingly, the overlap between strips modifies the flight time and accuracy (Evans et al., 2009).

The GNSS rover unit, located inside of the plane, collect the position from the GNSS satellites. The
enhancement of GNSS position accuracy, performed at real time using reference stations or base
differential GNSS at the ground level, provide a centimeter nominal accuracy. The IMU includes
the Inertial Navigation System (INS), managing the pith, roll and yaw of the plane (Baltsavias,
1999). The use of computers to manage the data collected by the GNSS and IMU with specific
software allows providing the x, y and z coordinates for each return pulse along the flight

acquisition, constituting the ALS point cloud (Baltsavias, 1999).

1.1.2. Forest variable estimation using remote sensing data

ALS data have been proven as a suitable technique for mapping forest vertical and horizontal

structure as well as to derive forestry variables (Zhao et al., 2018). The use of structural and

4
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textural information derived from passive optical data have been explored to derive forestry
parameters (Dube & Mutanga, 2015; Pfeifer et al., 2012). In this sense, the availability of wide
temporal series have provided better results on forestry variables estimation when characterizing
disturbance history (Cohen et al., 1996, Coops & Waring, 2001). However, the data captured by
passive optical sensors tend to saturate under closed canopy conditions and in dense forests (Lu,
2006). The use of orthophotography to derive forestry parameters such as stand density, height or
cover, between others, has also been explored, providing lower accuracies than active sensors
(Campbell, 2006) such as SAR or LiDAR.

SAR systems allow characterizing forest structure at global scale. This technology uses different
wavelengths from the microwave to provide information about leaves, branches and stems
(Periasamy, 2018; Tanase et al., 2014). Although SAR data availability have increased and there
exist recent advances in processing software, as for example the tools provided by the Copernicus
program, difficulties still arise in estimating forestry variables in heterogeneous and dense forests
(Hyde et al, 2006). The improvement of structure from motion (SfM) algorithms and
photogrammetric techniques provides new insights in the 3D characterization of forest structure.
In this sense, unmanned aircraft vehicles (UAV) have been proposed to estimate forestry variables
(Giannetti et al.,, 2018; Kachamba et al.,, 2017; Puliti et al.,, 2017), characterize forest fuels
(Fernandez-Alvarez et al., 2019), detection of canopy gaps (Bagaram et al., 2018) or tree-stump
(Puliti et al., 2018) mainly for small geographical areas (Shin et al.,, 2018). Furthermore, the
derivation of 3D point clouds from ortophotography may increase 3D data availability and
improve the subsequent estimation of forestry variables, especially those that describe canopy
height (Noordermeer et al., 2019).

ALS have a broad range of applicability within forest management, as for example estimation of
forest inventory variables (Guerra-Herndndez et al., 2016a; Montealegre et al., 2016), fire-induced
change quantification (McCarley et al., 2017) or characterization of forest structural diversity (Kane
et al., 2011). ALS point density refers to the number of points per square meter, denoting the
spatial resolution. There are two approaches within LiDAR literature to estimate forest variables:
the individual tree-based approach (ITB) and the area-based approach (ABA) (Latifi et al., 2015).

The ITB approach generally involves a sequence of tree detection, feature extraction, and
estimation of tree variables (Maltamo et al., 2014). Furthermore, it also requires field
measurements at tree level. Several algorithms have been proposed for tree segmentation as well
as feature extraction (raster-based, point based or multisource-based), providing different
accuracies under different forest complexities (Sackov et al., 2019). The ITB approach generally
requires point densities higher than 4-5 points m* (Andersen et al., 2006).

The ABA approach was created by Naesset (1997) and it is also known as the two phase approach
inventory or double sampling inventory (Naesset, 2002). The first phase consist on determining the
relationships between ALS metrics and the forest stand variables estimated using field data
measurements. The second phase fits models that are subsequently extrapolated to the whole
study area. The ABA approach has been widely implemented for the estimation of forestry
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variables (Gonzalez-Ferreiro et al., 2013; Latifi et al., 2010; Noordermeer et al., 2018), being a
suitable approach for applications using low point density datasets, as the case of the ALS data
from the National Plan for Aerial Ortophotography (ALS-PNOA data) in Spain.

The effort made by countries and organizations (i.e.: Finland, Spain, Czech Republic) to provide
open low density ALS data at regional and national scales creates new opportunities for forest
management. The analysis of the processing methodology of low density ALS-PNOA data in
Mediterranean forests has been addressed by Montealegre et al., (2015a and b) who compared
several filtering and interpolation routines to assess the most suitable methods to work within

Aleppo pine forested areas.

The generation of models requires the selection of the most suitable ALS metrics and regression
methods. Variable selection, also known as feature selection, constitutes a relevant step in
modelling generation. The recently increase in size of datasets, with tens, hundreds or thousands
of available variables, increased the research interest on selection techniques (Guyon & Elisseeff,
2003). This growth in the availability of variables generates a dimensionality problem, typical in
many fields of science (Mehmood et al., 2012), which refers to the existence of a higher number of
variables than samples. These problem is also known as large p small n problem (Martens et al.,
1992). The large number of ALS metrics that are derived from the point cloud has substantially
increased the number of variables in forestry modelling, being sometimes even higher than the

number field plots sampled.

Dealing with large feature sets presents several disadvantages such as technical and model
decrease of accuracy. Although hardware and software have improved in the last decades, the use
of a large number of variables takes too many computational resources and slows down regression
algorithms. Furthermore, in accordance with Kohavi & John (1997), there may be a decrease of

model accuracy when the number of variables is significantly higher than the optimal.

Concerning variable selection, a variety of methods exists in order to reduce the dimensionality
problem as well as to deal with large feature sets. According to Guyon & Elisseeff (2003) variable
selection process have three objectives: improve the prediction performance of the predictors,
reduce time and cost when determining the predictors and provide a better understanding of the
generated models. A similar definition was proposed by Pefia (2002), who established that this
selection process should follow the principle of parsimony; filtering or reducing the predictor

variables in order to generate models as simple as possible, while maximizing their power.

Variable selection constitutes the first step in model fitting. The regression analysis constitutes the
process to estimate or model a relationship between variables. This analysis can be categorized in
two main types: parametric and non-parametric regression. The classical regression approach is
the parametric one, which assumes the existence of a finite set of parameters. On the contrary, non-

parametric methods consider that data distribution cannot be defined by a finite set of parameters.

Parametric regression relies on strong assumptions such as normality, homoscedasticity, linearity,

independence, no-collinearity and absence of atypical values. In non-parametric models, meeting
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these requirements is not necessary, turning them into a more flexible tool. There exists a wide
variety of parametric and non-parametric methods; from simple linear regression models to
complex neural networks models. According to Hazelton (2015), non-parametric methods are

divided in kernel and local polynomial regression, spline-based regression or regression trees.

The use of machine learning algorithms, showed good performance in several research fields as
data mining. Machine learning algorithms, defined as algorithms and statistical models that do not
require specific instructions and whose form of the function is unknown, are not directly
associated to the two established types of regressions. Parametric regression have been
traditionally used in forestry for stand variable prediction with ALS data (Penner et al., 2013).
Recently, the application of non-parametric and machine learning methods to this topic has
increased popularity (Bollandsas et al., 2013b; Chirici et al., 2008; Liaw & Wiener, 2002).

Model accuracy varies according to several factors such as field and ALS data characteristics, forest
complexity, variable selection and regression method used, between others. In this sense, ALS
flight configuration determines the final data characteristics, as the quality of the point cloud,
affecting model performance. ALS sensors are configured with different scanning patterns, pulse
frequencies, scanning frequencies, scanning angles and beam divergence. This configuration,
summed up to the flight altitude and speed produce different footprint sizes and point densities.

All these settings are normally different from one flight to another.

Several authors have explored the effect of some of these settings on the prediction error in forest
attributes modelling. Yu et al. (2004) concluded that an increase in flight altitude decreases
accuracy in trees detection and tree height prediction, affecting more to deciduous species than
coniferous ones. The effect of footprint size has received little attention in the literature, however
several authors agreed that, in small footprint applications, the largest footprints generate a higher
bias in the prediction of tree heights (Andersen et al., 2006; Hirata, 2004; Roussel et al., 2017). An
increase of pulse frequency, defined as the number of pulses per second and expressed in kilohertz
(kHz), generates a lower penetration of the pulses through the canopy (Chasmer et al., 2006b;
Naesset, 2009), implying a decrease in tree height prediction accuracy (Chasmer et al., 2006a). The
effect of scan angle is relatively low up to ~20°, producing considerably higher prediction errors in
forestry metrics with higher values (Liu et al., 2018; Montaghi, 2013). According to Andersen et al.
(2006), the beam divergence also affect tree height predictions; a decrease in the angle increases
accuracy. Furthermore, the analysis of the effect of point density determines that a decrease of this
factor generally does not produce a decrease in accuracy (Garcia et al., 2017; Roussel et al., 2017).
Finally, some environmental variables such as slope have been considered a source of error in ALS
processing in forested areas. The presence of steep slopes generally increase the errors in point
cloud filtering and interpolation processes (Montealegre et al., 2015b).

Forest structure refers to the size, shape, and horizontal and vertical distribution of leaves,
branches and stems. These characteristics vary along time, being affected by natural or anthropic
disturbances. Fire is caused by natural factors such as volcanic eruptions or lightning and has
historically transformed the landscape. Traditional human activities used fire to manage different
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land uses, providing an anthropogenic dimension of wildfires. These disturbances constitute some
of the most important socio-environmental hazards in Mediterranean forest ecosystems, that might
be enhanced by climate change, since extreme meteorological conditions or long droughts increase
the fire risk (Gonzélez-de Vega et al.,, 2016; Sebastidn-Lopez et al., 2008). Although statistic
registers showed a reduction in the number of fire events during the last decade (2001-2010), the

occurrence of large fires (>500 ha) in Spain has increased (Rodrigues et al., 2014).

Aleppo pine (Pinus halepensis Miller) is a flammable species, frequently affected by wildfires,
characterized by a high stand density and a continuous presence of branches along the stem
(Pausas et al., 2008). Pine forests have a high resilience to fire, but their regeneration process might
fail when fire recurrence is high. Forest fires have important effects in vegetation dynamic and
atmosphere, as may emit large quantities of greenhouse gases (GHGs) and represent an important
carbon sink (Akagi et al., 2013; van der Werf et al, 2010; Wiedinmyer et al., 2011). The
quantification of wildfire carbon dioxide (CO2) emissions is vital for climate regulation policies
(Mieville et al., 2010) as well as for highlighting the service that forests provides to societies (Lal,
2008). The estimation of fire GHGs emissions requires pre-fire biomass estimation , the assessment
of the fraction of biomass consumed by fire, usually related to fire severity, and, subsequently, the
use of conversion factor to estimate GHG emissions (De Santis et al., 2010). The use of passive
remote sensing to estimate fire severity have been broadly analysed in the literature (Garcia-
Llamas et al.,, 2019). Thus, different indexes have been proposed to account for fire damage in
vegetation as Normalized Burn Ratio (Key & Benson, 2005), Relative delta Normalized Burn Ratio
(Miller & Thode, 2007), between others. Furthermore, the use of ALS data to quantify biomass
have been tested for different ecosystems (Garcia et al., 2010; Neesset, 2011).

The estimation of forestry inventory variables is one of the most relevant application for forestry
purposes (Latifi et al., 2010; Montealegre et al., 2016). As mentioned above, forest ecosystems
constitute important carbon sinks and play a major role in managing GHGs emissions. In this
sense, the estimation of biomass and carbon content has growing interest. Several studies have
explored the estimation of aboveground tree biomass using ALS data in different ecosystems
(Guerra-Hernandez et al., 2016b; Mauya et al., 2015). However, the estimation of some biomass
fractions, such as shrub biomass or forest residual biomass, have been less studied (Estornell et al.,
2012; Hauglin et al., 2014). The presence of understory in forested areas and the existence of
shrubland areas are very common in the Mediterranean basin land cover. Thus, the quantification
of these biomass fractions may improve the account of carbon reservoirs. Furthermore, the use of
some biomass fractions for bioenergy purposes may reduce the CO: emissions to the atmosphere
produced by other fuels and might help to reach the climate and energy targets of the European
Energy Roadmap (Hamelin et al., 2019). Finally, the management of these fractions have several
benefits for rural development, as the reduction of wildfire risk or the emergence of new business

opportunities for forestland owners (Hauglin et al., 2012).

ALS data provides a wide range of applications when multi-temporal data is available. Forest

managers could use multi-temporal ALS data for applications such as: characterizing natural or
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anthropic changes, determining under sampled areas and selectively add plots for future
inventories, applying existing ALS-based models to subsequent acquisitions in forests with similar
characteristics, reducing field work (Fekety et al., 2015) and improving the accuracy of long period
forestry trend analysis using fusion of active and passive optical data. Despite the great potential
of multi-temporal analysis, its application is still limited by the acquisition costs as well as the need
of temporal-concomitant field data (Cao et al., 2016; Dubayah et al., 2010; Ferraz et al., 2018).

The recent effort made by countries and organizations to provide multi-temporal datasets creates
new opportunities for upgrading forest inventories at local and regional scales. Local scale refers to
small areas whose stand characteristics are similar while regional scale determine large areas with
higher stand and structural variability. In addition, several authors have estimated height growth
(Gatziolis et al., 2010; Socha et al., 2017) as well as biomass and carbon dynamics (Hudak et al.,
2012; Poudel et al., 2018). The estimation of volume (Naesset & Gobakken, 2005; Poudel et al., 2018;
Yu et al., 2008), basal area (Naesset & Gobakken, 2005) and site index (Noordermeer et al., 2018) as
well as the quantification of wildfire changes (McCarley et al, 2017) and gaps presence
(Vepakomma et al., 2008) or the analysis of defoliation effect (Solberg et al., 2006) have also been
performed. Two approaches, direct and indirect, have been proposed to model forest attributes
using multi-temporal ALS data over time (Bollandsas et al., 2013). The direct approach fits one
model for one point in time and temporally transfers the model to other point in time. The indirect
one fits two different models for each point in time. The exploration of these approaches provides
useful information to forest managers for the reduction of field data acquisitions (Noordermeer et
al., 2018).

1.2. Importance and justification

LiDAR technology, and specifically airborne laser scanners, has become a valuable source of 3D
information to characterize forest ecosystems. Different products can be derived using ALS data,
from the generation of precise DTM and digital surface models (DSM) to the characterization of
forest stands variables. Thus, the combination of ALS data with field work as well as with data
from other remote sensing sources provides accurate information to quantify and evaluate forest

resources.

Wildfires constitute a socio-environmental hazard in Mediterranean ecosystems. These events are
caused by natural or anthropogenic factors and constitute a relevant source of greenhouse gases
emission to the atmosphere. Aleppo pine, being a pyrophyte species, is one of the most affected by
fires in Spain. The estimation of fire emissions requires the quantification of pre-fire biomass and
the fraction of biomass consumed by the fire. The traditional estimation of pre-fire biomass was
performed with field data campaigns, while the estimation of post-fire biomass was based in
visual examination or field-based weighting. In this sense, the use of remote sensing tools to
determine fire severity, and subsequently, burn efficiency has been widely analysed. The
capabilities of ALS data to describe forest structure and quantify forest biomass and the
advantages provided by its fusion with optical passive data, might enhance quantification of

greenhouse gases emissions sourced from wildfires.
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One of the most widespread applications of LIDAR data within forestry is the estimation of stand
variables. Traditionally, the estimation of these variables required a systematic sampling of a high
number of field plots. The use of ALS data allows applying a stratified random sampling, reducing
fieldwork costs, while providing structural information, generally, for the whole study area. Apart
from the estimation of traditional inventory variables, as for example dominant height and
number of stems or volume, the estimation and mapping of biomass and carbon content has
growing interest. In this sense, the estimation of different biomass fractions, such as shrubs and
forest residual biomass, has been less analysed. The estimation of these variables are required to
better quantify biomass and carbon stocks in Mediterranean Aleppo pine forests at local and

regional scales.

The recent effort made by some countries, organizations and companies to acquire multi-temporal
datasets opens new opportunities for upgrading forest inventories. Two approaches, the direct and
indirect one, exist in ALS literature for temporally transfer models using multi-temporal ALS data.
In this sense, different results are found in previous research when comparing both
methodologies. The exploration of temporal transferability for estimating forestry attributes at
regional scale might improve forest management while reducing modelling time and fieldwork

costs.

The exploration of variable selection methods in forest stand variables modelling, using ALS data,
might help users to increase model efficiency while reducing modelling time. Variable selection
constitutes a relevant step in modelling, especially when the number of independent variables is
greater than the sample plots. Furthermore, several studies concluded that the use of large feature
sets in modelling presents several disadvantages, such as the use of too many computational

resources and the decrease in model accuracy.

The selection of a type of regression method is very important when generating forest stand
predictions. Different studies have compared regression algorithms to estimate forest variables
determining that the method and parametrization influence model accuracy. Furthermore, the
number of ALS metrics included and the number of field plots used to generate the models may
also have an important effect. Thus, exploring parametric and non-parametric methods to estimate
forest stand variables in Mediterranean pine forest is relevant, as the selection of one method

determines model accuracy and consequently forest resources quantification.

The effect of several ALS sensor and flight parameters, as well as of some environmental
characteristics on accuracy of predictions has been confirmed by several forest attributes studies.
The reduction of point density, the increase of flight altitude, the use of large footprints, the
reduction of pulse frequencies or the increase of scan angles, decrease model accuracy.
Furthermore, the effect of slope on DTM quality and on the prediction of some stand variables has

been also analysed.

Summarizing, this research tried to enrich the knowledge of Mediterranean Aleppo pine forests,
which are characterized by a heterogeneous structure and a rugged topography. Furthermore, the
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development of forestry applications using ALS-PNOA data enhanced the utility of these public

data and may improve forest management at local and regional scales.

1.3. Hypotheses and objectives

The estimation of forest stand variables at local and regional scales using ALS and field data
constitutes a relevant research topic that provides applicable information for forest managers. ALS
data is a suitable technique for mapping 3D structure by relating point clouds to field data. Thus,

ALS data has improved traditional forest inventory accuracy while reducing costs.

However, the characterization of Aleppo pine forest as carbon sink, including the different tree
and shrub biomass fractions, has been less analysed. The availability of public ALS-PNOA data
allows developing studies at regional scale, while previous research performed within
Mediterranean ecosystems mainly focus on local scales. Furthermore, although the accessibility to
multi-temporal ALS data is still limited by the acquisition costs and by the need of temporal-
concomitant field data, the availability of this information provides an opportunity for several
applications as forest change characterization. Additionally, the exploration of regression methods
when considering different number of field plots and the effect of ALS characteristics and
environmental conditions in the prediction error can improve the accuracy of ALS derived
products. In this sense, we hypothesized that the use of ALS-PNOA and field data is useful for
characterizing Mediterranean Aleppo pine forests with an heterogeneous structure and a hilly
topography as well as developing forest applications still not explored in those forests

environments.

The main aim of this PhD Thesis was the estimation of forest variables, at local and regional scales,
using ALS-PNOA and field data in Aleppo pine forests of Aragén. This objective encompassed
several specific aims, which are linked to the papers that constitute the PhD Thesis body (Table 1):

1. Explore the usefulness of low-density ALS data to new applications: estimation of biomass
losses and CO: emissions to atmosphere, quantification and mapping of forest residual
biomass and estimation of different tree fractions and shrub fraction of biomass at stand
level.

2. Explore the temporal transferability of models for estimating forest stands attributes at
regional scale using multi-temporal ALS-PNOA data.

3. Compare different parametric and non-parametric methods in forest variable modelling.

4. Assessing the suitability of different variable selection methods in order to improve
accuracy following the principle of parsimony.

5. Assessing the effect of some ALS parameters and environmental conditions in model

performance.

1.4. Structure

According to the selected modality by paper compendium, this PhD Thesis includes four chapters

and an appendix. In addition to the structure here presented, the first chapter includes the
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conceptual framework, the research justification and the objectives. The second chapter describes
the study area, data and materials used in the research, as well as the methods and techniques
applied to achieve the different objectives. The third chapter contains the published papers that
constitute the PhD Thesis body. Finally, the fourth chapter includes the main conclusions as well
as possible future research lines. Additionally, the appendix summarizes the metrics of the papers
that constitute the PhD Thesis body.

Table 1 includes the specific objectives, methods and utilized tools, linked with the published
papers. Figure 2 shows a diagram with the PhD Thesis structure and the relationship between
studies, considering the applications, field inventory campaigns, materials and methods. In
general, the study area is limited to Aleppo pine forest in Aragon region, but part of the research
was performed in smaller zones, according to data availability and complexity. Consequently, the
following four zones were selected (Figure 1), being described in more detail in Chapter 2:

Inventory extension

Inventory number

1
1
D Objective zones

~ ZoneA Designation of
~ objective zone

Wildfire

- Aleppo pine forests
T

Figure 1. Location of study zones and inventories. High spatial resolution orthophotography from PNOA
Spatial Data Infrastructure (SDI) is included as backdrop.

e Zone A is located in “Las Cinco Villas” region, northwest of Aragon.
e Zone B included two test areas located in the middle Ebro Basin.
e Zone C included a broad part of Aleppo pine forest in Aragén region and cover part of the

Ebro Basin and Iberian Range.
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e Zone D represents 197,951.24 ha of the whole Aleppo pine forested area of Aragdn. It

included all the species distribution range; the forested areas in Zone C, as well as the ones

located in the pre-Pyrenees and in the south of Teruel city.

Table 1. Summary of PhD Thesis specific aims, methods, tools, and its contributing papers.

Specific objectives

Methods and techniques

1. Estimate biomass - Computation of above ground biomass per plot using allometric
losses and CO: equations.
emissions using low- | - Comparison of nine regression methods to estimate above ground
density ALS data in biomass.
a burnt Aleppo pine | - Assessment of statistically significant differences between models
forest. using Friedman and Nemenyi post-hoc statistical tests.

3. Compare different - Extrapolation of the model to the burned area and estimation of pre-

parametric and non- fire biomass.

parametric models - Estimation of fire severity using ANBR index from Landsat 8.

- Mapping pre-fire Aleppo pine forest using the Spanish National
Forest Map and ALS data.

- Application of three burning efficiency factors according to ANBR
values.

- Conversion of biomass losses to carbon content and, subsequently to

CO: emissions.

Publication

Domingo, D., Lamelas, M.T., Montealegre, A.L., de la Riva, . 2017. Comparison of regression models to
estimate biomass losses and CO: emissions using low-density airborne laser scanning data in a burnt

Aleppo  pine  forest.  European  Journal of Remote Sensing, 50 (1), 384-396. doi:
10.1080/22797254.2017.1336067.
Specific objectives Methods and techniques

1. Estimating total
biomass in Aleppo
pine forest stands
using low-density
ALS data.

- Computation of total biomass per plot using tree and shrub
allometric equations.

- Selection of independent ALS variables using five selection
processes.

- Comparison of five regression methods to estimate total biomass.

- Modelling and comparison between regression models using
statistical tests.

- Mapping of total biomass.

4. Assessing the
suitability of variable

selection methods.

Publication

Domingo, D., Lamelas, M.T., Montealegre, A.L., Garcia-Martin, A., de la Riva, ]. 2018. Estimation of total
biomass in Aleppo pine forest stands applying parametric and nonparametric methods to low-density
airborne laser scanning data. Forests, 9,158-175. doi: 10.3390/f9030158.

Specific objectives Methods and techniques

- Computation of seven forest stand variables per plot using

2. Explore the temporal
allometric equations.

transferability of
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models for
estimating forest
stands attributes at
regional scale using
multi-temporal ALS-
PNOA data.

- Generation of concomitant field data using the PHRAGON 2017
model included in the Simanfor simulator.

- Assessment of temporal transferability by comparing direct and
indirect approaches using multi-temporal ALS data.

- Prediction of stand variables and model comparison using statistical
tests.

Publication

Domingo, D., Alonso, R, Lamelas, M.T., Montealegre, A.L., Rodriguez, F, de la Riva, ]. 2019. Temporal
Transferability of Pine Forest Attributes Modelling Using Low-Density Airborne Laser Scanning Data.
Remote Sensing, 11(3), 261. doi: 10.3390/rs11030261.

Specific objective

Methods and techniques

- Computation of forest residual biomass per plot using three biomass

1. Quantifying and k . _ .
mapping forest fractions: thick, medium and thin branches.
residual biomass. - Comparison of variable selection processes and regression methods.
5. Assessing the effect |~ Assessment of the effect of three ALS characteristics on model
of some ALS accuracy: point density, scan angle and canopy penetration pulse.
parameters and - Assessment of the effect of two environmental characteristics on
environment model accuracy: slope and shrub presence.
conditions in model | - Modelling and comparison between regression models using
performance. statistical tests.
- Mapping and quantifying of forest residual biomass in 87.66% of
Aleppo pine forested area in Aragon region.
Publication

Domingo, D., Montealegre, A.L., Lamelas, M.T., Garcia-Martin, A., de la Riva, ]., Rodriguez, F, Alonso, R.
2019. Quantifying forest residual biomass in Pinus halepensis Miller stands using Airborne Laser
Scanning data. GIScience and Remote Sensing, 56 (8), 1210-1232. doi: 10.1080/15481603.2019.1641653
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{ Chapter 3.1 J Chapter 3.2 J Chapter 3.3 Chapter 3.4
I . . Temporal Forest residual
Application CO, emissions .
PP 2 Total biomass transferability biomass
Zone Zone A Zone B Zone C Zone D
S LiDAR e
Materials | T
Landsat 8
------ Model comparison 7777777
Methods | T ariableselection

Figure 2. Diagram of the PhD Thesis structure that evidences the relation between the studies carried out.
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2.

Study area, materials and methods

This chapter describes the study area, which includes four
different zones within Aragon region, as well as the material
and methods utilized in the research. Firstly, we describe the
field inventory data, the allometric equations used for
computing the different forest wvariables and the pre-
processing performed to the data. Secondly, the remote
sensing information used; the ALS-PNOA data and passive
optical images, are presented, including the pre-processes
applied. Thirdly, we include the selection and regression
methods utilized for modelling different variables at stand
level. Then, we define the methods to analyse the temporal
transferability of multi-temporal ALS data. Furthermore, the
methods utilized to assess the effect of ALS parameters and
environmental conditions in model accuracy are presented.
Finally, the mapping process and its importance in the
generation of information at local or regional scale is

addressed.
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Study area, materials and methods

2.1. Study area

Aleppo pine is the most broadly distributed species from genus Pinus in the Mediterranean basin.
The regions with higher presence are the north of Africa and Spain, which represents ~850,000 ha,
according to Cdmara (2001). The wide altitudinal and latitudinal gradient of this distribution
allows this species to live from sea level up to 1,600 m in the Saharan Atlas (Cabanillas 2010).
Although Aleppo pine is a limestone species, it grows in different types of soils such as siliceous,
quartzite or granite. Furthermore, the species is heliophilous, thermophile, xerophile and
pyrophyte, being adapted to droughts and wildfires.

This PhD Thesis studied the Aleppo pine forest of Aragén region. Aragon is an Autonomous
Community located in the northeast of Spain. This region occupies 47,720.3 km? and represents
9.4% of the Spanish territory. Three provinces; Zaragoza, Huesca, and Teruel, constitute this
Autonomous Community. Aragon limits to the north with France, to the east with Catalufia and

Valencia and to the west part with Castilla-La Mancha, Castilla y Ledn, La Rioja and Navarra.

Three main relief units compose Aragdn, the Pyrenees, the Ebro Basin and the Iberian Ranges. The
Pyrenees are represented by the Axial Pyrenees, the interior mountains, the Intrapyrenean
topographic depression and the exterior mountains (pre-Pyrenees). Axial Pyrenees, constituted by
granites, quartzite, slates and limestone, presents the highest altitudes such as Aneto (3,404 m) or
Maladeta (3,308 m). The interior mountains include calcareous crests adhered to the axial
Pyrenees. The Intrapyrenean topographic depression contains several perpendicular river valleys,
ending in “San Juan de la Peiia” and “Pesia Oroel” conglomeratic escarps. The pre-Pyrenees,

constituted by calcareous rocks, present heights between 1,500 and 2,000 m (Pena & Lozano, 2004).

The “Somontanos” connect the pre-Pyrenees with the left bank of the Ebro Basin. The Ebro Valley
was a sea during Mesozoic and Eocene stages. Nowadays it is a topographic depression, covered
by tertiary materials and alluvial sediments. The erosion processes have generated different
tabular reliefs from 500 up to 800 m in both banks of Ebro River.

The Iberian Ranges is a mountain chain of lower altitude than Pyrenees. The “Sierra del Moncayo”
constitutes the northwest part, “Puertos de Beceite” and “Guidar-Maestrazgo” are located in the
eastern part, while “Javalambre” and “Albarracin” in the southeastern part. Quartzite and
Palaeozoic slate are the main materials present in the higher mountains, while Jurassic and

Cretaceous limestone and dolomites constitute the lower relief structures.

The climate of Aragon is Mediterranean with continental features, characterized by cold winters,
dry summers and irregular and scarce rainfall. The variability in orography modifies the
temperatures and precipitations, generating a wide diversity of climatic ambient from semi-
desertic areas such as Monegros to high mountains in the Pyrenees. According to Cuadrat (2004),
Aragon climate is defined by four main characteristics. The Ebro valley presents low annual
precipitation values, ~300 mm m?, generated by the shadow effect of Pyrenees and Iberian Ranges;

its location in a continental area generates a broad range of temperatures; precipitations are
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irregular and the winds come from the northwest in winter and southeast in summer, being

frequent and heavy.

Aragon includes two Holarctic biogeographical regions: Eurosiberian and Mediterranean. The
Eurosiberian region is occupied by forests and grasslands distributed in three altitudinal strata:
alpine, subalpine, and montane. The Mediterranean region includes the Ebro Valley, the
“Somontanos”, the river valleys located in the right margin of Ebro River and the topographic
depression in which Teruel city is situated. Quercus ilex, Pinus halepensis, Pinus nigra and Juniperus
sabina constitute the species that dominate Mediterranean forests (Longares, 2004). According to
the Spanish Forest Map, the forested area in Aragén represents 1.58 million of ha, of which
259,057.45 ha are occupied by Aleppo pine forests. Concretely, 124,473.12 ha are located in
Zaragoza, 37,817.19 ha in Huesca and 96,767.14 ha in Teruel regions. In the whole, semi-natural
forests represent 211,013.49 ha and afforested forest 48,043.96 ha.

As mentioned before, four study zones were delimited to provide answers to the specific research

objectives (Figure 1). The study zones are described below:

e Zone A is located in “Las Cinco Villas” region, northwest of Aragon. The relief is
characterized by a topographic depression close to the pre-Pyrenees. Elevations range from
430 to 1150 m above sea level and slopes from 0° to 39°. The climate is Mediterranean with
continental features with an annual average precipitation of 525 mm. The Zone A includes
two different test areas: “Luna” wildfire and field inventory 3 (Figure 3). Luna wildfire was
caused by agricultural machinery on 4% July 2015. The fire scorched 14,263 ha, 3,390.4 ha
covered by woodland. Field inventory 3 is located in an unburned area close to the
wildfire, with similar environmental, climatic and forest characteristics. The unburned
Aleppo pine forest is heterogeneous from the structural point of view, being accompanied
by an evergreen understorey with species such as Quercus ilex subsp. rotundifolia, Quercus

coccifera, Juniperus oxycedrus, Buxus sempervirens and Juniperus phoenicea.

e Zone B is located in the Ebro Basin, Northeast Spain. This zone includes two different test
areas: inventory 2 (Figure 3) and inventory 3. Both areas are representative of Aleppo pine
Mediterranean forest, occupying 11,400 ha. The inventory 3 area was described above. The
majority of Inventory 2 plots are located in the military training center “San Gregorio”
(CENAD), located in the north of Zaragoza city. The area presents a hilly topography with
elevations ranging from 300 to 750 m and slopes from 0° to 39°. Climate is Mediterranean
with continental features, while the average annual precipitation is lower than 350 mm.
Most of the pine stands are semi-natural, while the stands located in the south eastern part
were planted approximately forty years ago. The evergreen understorey is characterized by
xerophiles species such as Quercus coccifera, Juniperus oxycedrus, Rosmarinus officinalis and
Thymus vulgaris.
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Legend

D Inventory extension

Inventory 1 2013 (53 plots)
Inventory 2 2014 (43 plots)
Inventory 2 2015 (45 plots)
Inventory 4 2016 (51 plots)

Field plots

Aleppo pine forests
Wildfire
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1°27'0"W 1°25'30"W 1°24'0"W 1°4'20"W 0°57'10"W 0°50'0"W 0°45'0"W 0°42'30"W

Figure 3. Location of forest inventory campaigns. High spatial resolution orthophotography from Spanish
National Plan for Aerial Orthophotography spatial data infrastructure (SDI) included as backdrop.
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e Zone C is located in the Ebro Basin and Iberian Ranges, including a broad part of Aleppo
pine forest in Aragdn region, except from the forested areas close to the pre-Pyrenees and
the stands located in the south of Teruel. This zone includes three different test areas:
inventory 1 (Figure 3), inventory 2 and most of the plots from inventory 4. Inventory 2 was
described previously. Inventory 1 is located in Daroca Municipality in the Iberian Range.
The area includes two forests denominated “Dehesa de los enebrales” and “Valdi y
Carrilanga”, covering 1,102 ha. Both forests were afforested from 1908 to 1979, being
occupied by a monospecific Aleppo pine forest with scarce understory. The area presents a
hilly topography, with elevations ranging from 860 up to 980 m. Inventory 4 includes
several stands from the Middle Ebro Basin up to the Iberian Ranges. The stands were
afforested approximately forty to sixty years ago, keeping a low presence of hardwood
species. The different environmental sample conditions include a great variability of

Aleppo pine forests.

e Zone D represents 197,951.24 ha of the Aleppo pine forested area of Aragon, including all
the species distribution range. The Zone D includes four different test areas: inventories 1
to 4 (Figure 3), which have been previously described. The broad area shows a variability
of geomorphological forms from topographic depressions up to mountains that reach more
than 2,000 m above sea level. Consequently, temperature changes across the altitudinal
gradient and the annual precipitation range from less than 350 mm up to 1,000 mm. This
variability and the presence of semi-natural and afforested stands are characteristic of

Aleppo pine forest at Aragon region.

2.2. Materials and methods

2.2.1. Field inventory data

Field inventories provide an accurate quantification of forest variables within a small fraction of
the study area. Field plot information is the ground-truth evidence, constituting the dependent
variables that are estimated for a broad area. In this sense, field plot data must be representative

for the study area, capturing the maximum variability to minimize extrapolation errors.

Sampling design is a relevant factor to capture forest stand variability. Several sampling types
exist, such as systematic sampling, random sampling or stratified random sampling. Traditional
inventories, performed using field campaigns, require the division of forest stands into
homogeneous strata, considering factors such as tree species, site productivity, forest development
stage, latitude, elevation and stand structure. Thus, performing inventories using ALS data is
easier as this technology provides information about some of those factors at a stand level. This
PhD Thesis applied a stratified random sampling, considering terrain slope, canopy height and
canopy cover variability, according to Neesset & Jkland (2002), in monospecific Aleppo pine
forest. Field data was acquired in 192 plots in four campaigns performed during 2013, 2014, 2015
and 2016 (hereinafter mentioned as first, second, third and fourth campaign, respectively). Field
data were related to ALS data using an area-based approach (Naesset & Jkland, 2002). The
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number of plots allowed the estimation of forest stand variables at local and regional scales. The

specifications of each inventory are described below:

The acquisition of field data from the first campaign was performed from June to July 2013,
in 53 circular plots within the Master Thesis of Jesus Cabrera (Cabrera, 2013). The center
point of each circular plot with 15 m radius was positioned using a Leica VIVA® GS15
CS510 real-time kinematic GNSS with a planimetric accuracy of 0.30 m. We used a diameter
tape, with millimeter precision, for measuring tree diameter at breast height (dbh) in those
trees with a dbh larger than 7.5 cm, which is the standard dbh for inventoried trees in
Spain. A Suunto® hypsometer was used for measuring green crown height and tree height
of up to 4 randomly selected trees within each plot. The selection of the sample trees, from
7.5 cm up to 42.5 cm, considers the diametric classes defined as representative for the study
area in the third national forest inventory. The height for those trees not measured in the
field plots was predicted by using a height-diameter model developed from the sampled
trees (equation 1). The model performance of the height model gave a RMSE of 1.36 m and
R? of 0.63. Normality, homoscedasticity and independence or no auto-correlation in the

residuals were verified for the fitted model.
ht = 0.776 - G*17° - dbh?%° - 1.009 (1)

where ht is tree height (m), dbhi is the diameter at breast height (cm) and G is field plot basal

area (m? ha').

The second and third field campaigns use the same inventory methodology. The second
campaign includes 43 circular plots acquired from July to September 2014 (Montealegre et
al.,, 2016). The third field plot campaign sampled 45 plots from June to July 2015, being used
for objectives 1, 2 and 4. The same GNSS instrument used for the first campaign positioned
the 30 m diameter plots, obtaining a planimetric accuracy of 0.15 and 0.18 m in 2014 and
2015, respectively. A Haglof Sweden® Mantax Precision Blue diameter calliper allowed
measuring the dbh of those trees with a dbh larger than 7.5 cm. We used a Haglof Sweden®
Vertex instrument to measure the green crown height and the height for all trees in the
plot. Furthermore, the percentage of shrub canopy cover and the average height of the
different shrub species that represent the understory were measured (used for objective 2).

The fourth campaign inventoried 51 field plots in April 2016 being carried out by fora
forest technologies within the project RF-64079 (Rural Development Program of Aragon
2014-2020). A Trimble submetric GNSS was used to position the center of each plot with a
submetric accuracy in planimetry. A variable plot radius was selected (5.6 m, 8.5 m, 11.3 m,
and 14.10 m), in order to obtain data from a similar number of trees in each plot, due to the
difference in stand density. A Haglof Sweden® Mantax Precision Blue diameter calliper
allowed measuring those trees with a dbh larger than 7.5 cm. A Haglof Sweden® Vertex
was used for measuring the green crown height and the height of up to 6 trees, the nearest

to the plot center. The sample was completed to achieve 100 dominant stems ha”,
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considering those with larger dbh. The height for those trees not measured in the field was
estimated by using a height-diameter model developed from the sampled trees (equation
2). The model performance of the height model gave a RMSE of 0.80 m and R? of 0.93.

1
_ 25511 2.5511 _ 1 92.5511) , 1-exp(-0.025687-dbh) /25511
ht = (1'3 + (HO 1.3 ) 1—exp(—0.025687-Dy) ) (2)
where ht is tree height (m), dbh is the diameter at breast height (cm), Ho is the Assmann

dominant height (m) and Do is the Assman dominant diameter (cm).

2.2.2. Estimation of forest stand variables

The estimation of forest variables at tree level requires the use of allometric equations. These
equations generally need a destructive sampling, drying and subsequent weighting of a
representative sample. The majority of tree forest species have an allometric equation. However,
the accessibility of shrub allometric equations in Spain is more limited, being available for the
estimation of some specific variables such as biomass (Montero et al., 2013). This PhD Thesis
estimated nine stand variables using allometric equations as a ground-truth. The estimated
variables are: stand density (N), basal area (G), squared mean diameter (Dg), dominant diameter
(Do), dominant height (Ho), timber volume over bark of stem (V), above ground biomass (Wag),
total tree biomass (W) and forest residual biomass (FRB). In addition, the equations determined by
Montero et al. (2013) for different shrub formations defined in the Spanish Forest Map (MFE) were
used to calculate shrub biomass. Finally, total biomass including aboveground tree biomass and

shrub biomass (TW) was computed by summing up total tree biomass and shrub biomass.
Tree equations

The equations 3 to 16 were used to estimate the above mentioned tree variables.

stems

N (stems ha™1) = (3)
iy
G (m? ha™t) = =% 4)
,4-6
Dg (cm) =100 - e (5)
_ T4
0= m (6)
_ T
~ a/100 7)
T he (—10 23293‘5)
= ) : AP . d.
v, 4000()]0 (1 +1.121163 - : ) 0.696362 - d;
h. 1.266261—(0.003553*E)—1.865418‘(1—’%) 2
(1 - —l) d;h;
h;
V (mha™" = 10000 - 2L )
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.e@.qb
Wag (kg ha™) = <252 10,000 9)
W (kg) = 0.0139 - d? - h; (10)
Wy, (kg) = [3.926 - (d; — 27.5)] - Z; (11)

Ifd; <27.5cmthenZ =0;1fd; > 27.5cmthenZ =1

Wi, (kg) = 4.257 + 0.00506 - d? - h; — 0.0722 - d; - h; 12)

14)

(

Wyz4n (kg) = 6.197 + 0.00932 - d? - h; — 0.0686 - d; - h; (13)
W, (kg) = 0.0785 - d? (
(

W (kg) = W + Wyy + Who—7 + Whain 15)

FRB (kg) = W7 + Wpz_7 + Whz4n (16)
where d is the normal diameter in cm; a is the area of the plot expressed in m? )" refers to the
number of trees inside of a plot; ) ¥ refers to the number of k trees being k the thickest trees; hi is the
height of the trees; h: is the total tree height; E is the tree slenderness (h:/di); vi is the volume of each
tree in m3; CF is a correction factor (CF = eSEE”/2) being e the Euler number and SEE the standard
error (0.151637); a is (-2.0939) and b (2.20988) are the specific parameters for Aleppo pine; W is the
biomass weight of the stem fraction, Wi is the biomass weight of the thick branch fraction
(diameter larger than 7 cm), W27 is the biomass weight of medium branch fraction (diameter
between 2 and 7 cm), Wiz is the biomass weight of the thin branch fraction (diameter smaller than

2 cm) with needles, and W is the biomass weight of the roots.
Shrub equations
The shrub equations used for each formation are presented below (equations 17 to 21):

e Shrub hedges, borders, galleries, etc.:
In(W;) = 0.494 x In(CC) (17)

e Quercus coccifera and Pistacia lentiscus:

In(Wy) = —2.892 + 1.505 X In(hy,) + 0.462 x In(CC) (18)
o Leguminosae aulagoideas and related shrubs:

In(W,) = —2.464 + 0.808 x In(h,,) + 0.761 x In(CC) (19)
e Labiatae and Thymus formations:

In(W,) = —1.877 + 0.643 x In(h,,) + 0.661 x In(CC) (20)
e General shrub biomass:

In(W,) = —2.560 + 1.006 x In(h,) + 0.672 X In(C) 1)

where W; is the biomass weight for each species in tons/ha, hn is the average shrub height at plot

level and CC is the percentage of shrub canopy cover at plot level.

Equation 17 was applied for Crataegus monogyna, Rhamnus lycioides and Rosa canina; equation 18

was used for Quercus coccifera; equation 19 was applied for Genista scorpius; equation 20 was used
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for Thymus sp. Subsequently, general equation 21 was used for the rest of inventoried species:
Rosmarinus officinalis, Juniperus oxycedrus, Juniperus sabina, Buxus sempervirens, Genista florida, and
Salsola vermiculata. Finally, equation 21 was applied for Quercus ilex and Aleppo pine with less than

7.5 cm of dbh, due to the impossibility of using available tree allometric equations.

2.2.3. Inventories updating

Modelling forest dynamics is essential for forest management, being a relevant research topic in
forestry from 1930s to the present (Tesch, 1980). According to Vanclay (1994) a stand growth model
is an abstraction of the natural dynamics of a forest stand, which may consider growth, mortality
and other changes in stand composition and structure. Growing models generally include different
equations to predict the growth and yield of a forest stand under a wide variety of conditions
(Vanclay 1994).

The initial purpose of growth models was to estimate timber yield, improving efficiency of timber
production (Shifley et al., 2017). Nowadays, the wide variety of existent models try to explain a
broad variety of forest dynamic processes, as for example the effect of climate change on tree

growth, by using hybrid models.

A simple classification of growth models considers the level of detail. Accordingly, Vanclay (1994)
differentiate between models based in the whole stand, size class models or single-tree models.
Model complexity and purpose is also used for classification. The application of empirical growth
models based on yield tables or regression equations constitutes a traditionally applied approach.
Nowadays, state-space stand-level models (Garcia, 2003), distribution-based models and both,
individual-tree models and complex process-based eco-physiological models (Thornley, 2006),

have dramatically increased flexibility and realism to forest simulations.

This PhD Thesis applied empiric growth models (objectives 2 and 4) and individual-tree growth
models (objective 3) to generate temporally concomitant field data, which was subsequently
related to ALS data in order to estimate forest stand variables. The implemented methodology is

described below.
Empiric growth models

The estimation of tree growth for predicting forest residual biomass and total biomass was
performed by using yield tables from the Spanish National Forest Inventory (NFI). Specifically, we
applied the dbh and height growth values for Aleppo pine between the second NFI (NFI2) and the
third one (NFI3). The prediction of the growth values uses regression curves by least squares and
considers the difference between both inventories (11 years). Furthermore, a linear interpolation
based on these tables allowed obtaining a subtractive value of dbh and height per each diametric
class proposed by the NFI (Table 2).

Table 2. Values of tree diameter at breast height (dbh) and height growth between the NFI2 and the NFI3,
and subtractive values of dbh and height when applying linear interpolated degrowth.
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Field campaign

Diametric PR Height 2013 2014 2015 2016
growth  growth
class (cm) () (m)
dbh Height dbh  Heigh dbh Height dbh Heigh
(mm) (m) (mm) t (m) (mm) (m) (mm) t (m)

<10 24 1.20 -4.36 -0.22 -6.55 -0.33 -8.73 -0.44 -10.91 -0.55
10-15 29 1.40 -5.27 -0.25 -7.91 -0.38 -10.55 -0.51 -13.18 -0.64
15-20 33 1.50 -6.00 -0.27 -9.00 -0.41 -12.00 -0.55 -15.00 -0.68
20-25 30 1.40 -5.45 -0.25 -8.18 -0.39 -10.91 -0.51 -13.64 -0.64
25-30 30 1.40 -5.45 -0.25 -8.18 -0.39 -10.91 -0.51 -13.64 -0.64
30-35 33 1.10 -6.00 -0.20 -9.00 -0.30 -12.00 -0.40 -15.00 -0.50
35-40 32 1.50 -5.82 -0.27 -8.73 -0.41 -11.64 -0.55 -14.55 -0.68
40-45 27 1.60 -491 -0.29 -7.36 -0.44 -9.82 -0.58 -12.27 -0.73
45-50 24 1.90 -4.36 -0.35 -6.55 -0.52 -8.73 -0.69 -10.91 -0.86
50-55 58 1.00 -10.55 -0.18 -15.82 -0.28 -21.09 -0.36 -26.36 -0.45
55-60 10 0.50 -1.82 -0.09 -2.73 -0.14 -3.64 -0.18 -4.55 -0.23

The estimation of shrub growth was performed according to Montero et al. (2013) equations

(equations 22 to 25). The equations were developed for different shrub formations determined in

the Spanish Forest Map (MFE). It should be noted that no growing equations were developed by

Montero et al. (2013) for shrub edges, borders and galleries formation. Consequently, a general

equation for shrub (equation 25) was applied for Crataequs monogyna, Rhamnus lycioides, and Rosa

canind.

e Quercus coccifera and Pistacia lentiscus:

e Leguminosae aulagoideas and related shrubs:

e Labiatae and thymus formations:
In(W,) = —4.446 + 0.753 X In(h,,) + 0.573 X In(CC)
e General shrub biomass:

In(W,) = —4.771 + 0.814 x In(h,,) + 0.676 X In(CC)

In(W,) = —4.955 + 1.150 X In(h,,) + 0.463 X In(CC)

In(W,) = —4.479 + 0.715 x In(h,,) + 0.701 X In(CC)

(22)

(23)

(24)

(25)

where W; is the biomass weight for each species in tons/ha, hn is the average shrub height at plot
level, and CC is the percentage of shrub canopy cover fraction at plot level.

Then, the shrub biomass growing values per year in every plot were calculated summing up the
biomass values for each species obtained from equations 22 to 25. These annual growing values
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were subtracted from the measured ones considering the difference in years between ALS flight
and field data acquisition.

Individual-tree growth models

Individual-tree growth models are powerful tools to update stand variables to the ALS mission
date being more accurate and consistent that empirical growth models. The applied model,
PHRAGON-2017 (Alonso, 2018), is included in the Simanfor simulator platform (Bravo et al.,
2012).

The model is specially designed for Aleppo pine afforestation in Aragoén, enabling tree-level
distance-independent simulation. The model includes a set of equations for diameter over bark
growth, diameter under bark growth, diameter under bark—diameter over bark ratio, generalized
height-diameter relationship, volume over bark (taper equation) and crown ratio. Furthermore, it
includes a 10-year survival model and a classification tree for the regeneration of Pinus, Quercus

and Juniperus.

The explanatory variables that need to be included to compute the model are: dbh, total height,
stand density (basal area, Hart-Becking index), dominant trees (dominant height, dominant
diameter), competition (BALMOD) (Schroder & Gadow, 1999) and site quality (site index). The
model uses the site index curves developed for natural Aleppo pine forests in the Central Ebro
Valley (Rojo-Alboreca et al., 2017) to calculate site index and dominant height evolution.

The model uses two different approaches depending on future or past projections. When
projecting to the future, we need to apply the diameter growth and survival equations to every
single tree in each plot. The site index curve is used to forecast the future stand dominant height,
and hence estimate the total height of each surviving tree. On the other hand, when projecting
stand structure to the past, we need to deploy the diameter under bark growth equation. This
procedure, denominate backdating, allows the use of the current stand features to predict the past
growth of a tree. Therefore, the estimation of past tree diameters over bark requires the diameter
under bark —diameter over bark ratio. The site index dynamic curves allow calculating past
dominant height, considering that curves are age-independent functions. Once the diameter and
dominant height values are included in the model, the rest of stand variables are directly
computed.

2.2.4. ALS-PNOA data

The capture of ALS data in Spain is associated to the “Plan Nacional de Observacion del Territorio”
known by the acronym PNOT. This plan captures different types of geographical information to
characterize the Spanish territory and its evolution over time. PNOT provides valuable
information for sustainable environmental management, forestry, agriculture, infrastructures

planning, emergencies and security. The PNOT plan includes three national programs:

e National plan for aerial orthophotography (PNOA). The main objective of the PNOA is the
acquisition of orthophotography, DTMs generation and ALS data capturing at different
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spatial resolutions and considering different update rhythms. PNOA plan is further
described below.

e Remote sensing national plan (PNT). The PNT started in 2004 and its main aim is the
acquisition of satellite images for the Spanish territory at different spatial resolutions: high,
medium and low. The PNT acquires, processes, and distributes these images to all the
public administration and public universities.

e Spanish information system for land use (SIOSE). The main purpose of SIOSE is the
generation of a geographic database of land use in Spain at 1:25,000 scales. The SIOSE uses
information from PNOA and PNT to derive land use cartography that is updated
periodically.

PNOT follows a decentralized financial model based on the coordination and co-financing of
different public administrations. The main aim of this bottom up model is to avoid duplicities,
minimizing the effort and resources. PNOT follows the Infrastructure for Spatial Information in

Europe (INSPIRE), providing free access to high quality geographical information.

The aim of PNOA plan is the acquisition of digital aerial orthophotography at 25 and 50 cm
resolution, as well as DTMs actualization every 2 or 3 years, depending on the area of interest. The
project is co-financed by the General State Administration and the Autonomous Communities. The
products provided by the PNOA plan are considered basic data within the INSPIRE directive.
These products allow deriving other complex information such as land use, cadastre, forest

management or hydrological cartography.

The ALS-PNOA plan, integrated within the PNOA plan, have as main objective the acquisition of
ALS data for all Spain. The data classified and colorized using the PNOA orthophotography is
publicly available. ALS-PNOA started at 2009 with the aim of generating high resolution DTMs for
flood mapping and providing information for infrastructures planning. Although at the beginning
only the DTMs were available, nowadays the ALS point clouds of the whole Spanish territory are
accessible for all the citizens.

Two ALS-PNOA coverages have been acquired with low point densities. The first one covers all
Spain with a nominal point density of 0.5 points m=2. The second coverage has a higher point
density of 1 point m? and has been only captured in some areas. Thus, the second coverage will
continue during the next years as a 6 years ALS flight updating is considered. Both ALS surveys
have been co-financed by the “Ministerio de Fomento”, the “Ministerio de Agricultura, Alimentacién y
Medio Ambiente”, the “Ministerio de Hacienda y Administraciones Publicas” and the Spanish

“Comunidades Atonomas” (Figure 4).
A wide variety of applications can be developed using this ALS-PNOA data:

e Generation of high resolution DTMs.
e Generation of Surface models for characterizing urban areas, vegetation, electric lines, and
road lines.

e Analysis of flooding areas.
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e Hydrographic models.

e Automatic detection of surface and urban changes.

e Pasture admissibility within the common agricultural policy.
e Visibility analysis.

e Aspect mapping.

e Fuel models cartography.

The data from both coverages are available at the National Center for Geographic Information
(CNIG http://centrodedescargas.cnig.es). The data, distributed in 2x2 km tiles in *.laz format, is
classified and coloured using Red Green Blue (RGB) orthophotography. The first coverage
acquisition of ALS data and orthophotography was not concomitant, but the acquisition of both
products was simultaneous for the second coverage. Furthermore, the ALS data have orthometric
Z values being provided in ETRS89.

Legend
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) 4 O
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Figure 4. Most recent ALS-PNOA flight. Modified from: https://pnoa.ign.es/estado-del-proyecto-lidar.

The *.laz file is a *.las zipped file. The *las file is the public file format for the interchange of 3D
point cloud data (ASPRS, 2019). Although the format was primarily developed for exchanging
LiDAR data, supports the exchange of any 3D data type. The main information of ALS- PNOA
data is the x, y and z coordinates of each point. Furthermore, the files include several attributes
associated to each point. A description of the attributes according to *.las format (ASPRS, 2019) is

presented below:

e Intensity defines the quantity of energy scattered by each laser return. The intensity
presents values from 0 to 255.

e Return number refers to the pulse return number for a given output pulse. The emitted
laser pulses might have up to five returns per pulse, depending on the surface type and
sensor capabilities between others. The first return is assigned as 1, the second return as 2

and so on.
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Number of returns emitted for a given pulse. For example, a point may be return number
three within up to four total returns.

Scan direction refers to the direction in which the scanner mirror was traveling at the time
of the output pulse. The values range from 1 to 0. Positive values indicate that the scanner
is moving to the left side of the in-track direction to the right side while negative values are
the opposite.

Edge of Flight line is a numeric identification to determine whether the point is located in
the edge of the scanning flight line. When the point is the last one a given scan line before it
changes direction or the mirror facet have a value of 1. On the other hand, when the value
is 0 there will be no change of direction.

Classification. When a point cloud is classified, the points are labelled according to the objet
that reach. The codification of ALS point clouds is defined by the ASPRS for *.las formats
1.1, 1.2, 1.3 and 1.4. These are included in Table 3.

Table 3. ASPRS Standard point classification.

Classification Value Meaning
0 Created, Never Classified
1 Unclassified
2 Ground
3 Low Vegetation
4 Medium Vegetation
5 High Vegetation
6 Building
7 Low point (Noise)
8 Model Key-Point (Mass Point)
9 Water
10 Reserved for ASPRS Definition
11 Reserved for ASPRS Definition
12 Overlap points
13-31 Reserved for ASPRS Definition

Scan Angle Rank during the flight. This attribute determine the scan angle value expressed
in degrees. The values range from -90 up to 90. Nadir pulses are codified with the value 0.
Positive values refer to pulses located at the right side of the nadir and negative pulses are
located at the left side of the nadir.

User data. This field may be used at the user’s discretion.

Point Source ID. The value indicates the source from which a point originated. Values

range from 1 up to 65,535 inclusive.
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e GPS time indicates the date and time of GNSS laser point registration when the plane is

flying. The time is expressed in seconds.

Table 4. Technical specifications of LIDAR-PNOA plan for Aragén region from the first and second

coverage.

Characteristic

Description

First coverage Second coverage

Sensor

Geodetic reference system
Cartographic projection
Geoid model

Field of view (FOV)
Scanning frequency

Pulse frequency

Point density

Radiometric resolution for
multiple intensities

Ability to capture multiple returns
for the same pulse

GNSS navigation system
Inertial system (IMU/INS)

Plane velocity when LiDAR data
capturing

Flight height
Maximum flight line length

Horizontal and vertical precision
after processing

Altimetry precision and maximum
error

Altimetry discrepancies between
flight lines

Point cloud format

LAS file classification

Leica ALS-50
ETRS89
Universal Transversal Mercator (UTM) 30 and 31
EGM2008-REDNAP

The maximum allowed FOV is 50°

Minimum of 70 Hz and up to 40 Hz with a FOV of 50°
Minimum of 45 kHz with a FOV of 50° and up to 3,000 m

Leica ALS-80

0.5 points m2 implying a spacing between points <1.41 m
Dynamic range with at least 8 bits

Up to 4 returns per pulse when the vertical distance is
higher than 4 m

Double frequency GNSS with at least 2 Hz
Data register frequency >200Hz and drift <0.1° h!

Variable

Variable
90 km

The horizontal global precision at nadir have a RMSExy <30
cm (1 sigma), while the vertical global position at nadir have
a RMSE: <20cm (1 sigma). Errors up to 3xRMSE in dense
vegetation or steep slopes might occur. The edge of flight
line might present an error up to 2xRMSE

<0.40 m for 95% of the cases. Points cannot have an error
higher than 0.60 m

<0.40 m

* las 2x2 km tiles

Automatically classified
(ground, vegetation,
buildings, overlap)

Non classified
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Data from both ALS-PNOA coverages are utilized in this PhD Thesis. In this sense, more than
4,000 *las files from the first coverage were downloaded from the CNIG webpage. Furthermore,
the Geographic Institute of Aragéon (IGEAR) and CNIG provided 147 tiles from the second
coverage before being included in CNIG platform.

The flight technical specifications, the point cloud characteristics and the file nomenclature is
included in Table 4, Table 5 and Figure 5, subsequently.

Table 5. Characteristics of LIDAR-PNOA data according to the study area.

Characteristics Zone A Zone B Zone C Zone D
October 2010, uly 2010 to Februar
g Qctober 2010 July 2010 to ]20}1,1 (first coverage)y
Acquisition (first coverage) January 2011and  February 2011
date February 2011 (first coverage) September to November
(first coverage) 2016 (second coverage)
Leica ALS50 (first
) ) ) coverage)
Sensor Leica ALS50 Leica ALS50 Leica ALS50 ]
Leica ALS80 (second
coverage)
Average flight 3138 (first coverage),
height (m) 3146 3022 3240 2943 (second coverage)

Average plane

184 (first coverage), ~240
velocity (km/h)

241 241 184
(second coverage)

Number of tiles 42 690 3800 147 (first coverage) and
147 (second coverage)

PNOA_2016_LOTE1_ARA_664-4644_ORT-CLA-COL.las

X: 664,000 e
Y: 4,644,000 : apture year
® : * Geographiczone

' : * XandY coordinates

* Orthometricheights
* (Classified point cloud

Figure 5. Nomenclature of LIDAR-PNOA files.
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2.2.5. ALS pre-processing and metric computation

Quality control of ALS point clouds is required for accurate pre-process the data. The ALS data
provided by the PNOA is not raw data, but users should check the quality of downloaded point
clouds before performing any further analysis. The first ALS processing step considered was the
removal of noise return hits. ALS-PNOA data is classified and noise returns are denoted as class 7.
These points were removed using LAStools software implemented in ArcGIS 10.5.

Overlapping strips might generate horizontal and vertical discrepancies in laser scanning surveys
playing and important role in quality control (Vosselman, 2012). Two approaches could be
considered when dealing with overlapping strips: removing those discrepant strips or using
methods to compensate for discrepancies between two datasets in the overlapping areas (Latypov,
2002). In this PhD the validity of overlapping returns was verified by visualizing the 3D point
clouds, generating reports about ALS characteristics and analysing the generated DEMs. The
analysis performed determined that some tiles from the south of Aragén, named as “ARA_SUR”
present vertical and/or horizontal displacements. These displacements are classified with the

number 12 and, consequently, were removed using the same procedure as noise return removal.

The ALS point clouds in forested environments contain returns from several surface objects, such
as shrubs, trees, electrical wires and buildings that should be separated from ground returns
(Montealegre et al.,, 2015a). The process of separating the ground and non-ground points,
performed prior to DEM generation, is called filtering or classification. This is a key process in
forestry applications, allowing normalizing point clouds to determine aboveground return heights.
There are several filtering algorithms which can be classified in four types (Meng et al., 2010;
Sithole & Vosselman, 2004): interpolation-based, slope-based, segmentation-based and
morphological methods. Most filtering methods provide accurate results in flat and non-complex
areas while steep slopes and complex forest stands increases classification errors (Sithole &
Vosselman, 2004).

Previous research developed by Montealegre et al. (2015a) compared seven filtering methods
implemented in open software in Aleppo pine forested areas with moderate to steep slopes. The
study determined that Multiscale Curvature Classification (MCC) method, developed by Evans &
Hudak (2007), was the most accurate to filter ALS-PNOA point clouds in these Mediterranean
environments. Accordingly, in this PhD MCC algorithm, implemented in MCC-LiDAR software,

was selected for classifying the point clouds.

MCC is an iterative-interpolation-based filter. The algorithm calculates an interpolated surface by
using a thin-plated spline and discards the ALS returns that exceed a threshold curvature. MCC
creates three scale domains defining three processing window sizes. The algorithm iterates in the
three scale domains until the number of remaining returns changes by less than 1%, less than 0.1%,
and less than 0.01%, respectively (Evans & Hudak, 2007). Two parameters must be defined for
running MCC: the scale parameter (s) and the curvature threshold (t). The scale depends on object
sizes and ALS point spacing, while the curvature threshold is related to curvature tolerance for a
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scale domain. In this research, both parameters were determined according to Montealegre et al.
(2015b). The scale was set to 1 m and the curvature threshold to 0.3.

ALS data create a random sampling of the terrain surface, being necessary to apply interpolation
processes to generate a continuous surface (Vosselman & Maas, 2010). The selection of the
appropriate interpolation algorithm and DEM spatial resolution is relevant as may constitute a
source of inaccuracy in vegetation metrics prediction (Aguilar et al., 2006). Several interpolation
methods, such as natural neighbour, Triangulated Irregular Network (TIN) to raster, kriging, point

to raster, are commonly implemented in Geographical Information System (GIS) software.

Montealegre et al. (2015b) compared the suitability of six interpolation routines over a range of
terrain roughness in Aleppo pine forested stands. The analysis determined that the TIN to raster
interpolation method produces the best result when generating a DEM with 1 m resolution.
Consequently, the TIN to raster routine, implemented in ArcGIS 10.5 software, was selected for

interpolating and generating the DEMs in this research.

TIN to raster method includes two procedures. Firstly, the interpolation method build a terrain
surface using Delaunay irregular triangles by connecting ALS returns. The elevation is recorded
for each triangle node, while elevations between nodes can be interpolated to generate a
continuous surface. Secondly, the TIN structure is transformed to a raster structure using natural
neighbour interpolation from previous triangles nodes to generate a value at the center of each

raster cell.

The statistical metrics derived from ALS data were related to field variables to fit regression
models. The computation of ALS metrics requires the clipping of the point cloud to the spatial
extent of each field plot, being performed using the “ClipData” command of FUSION LDV 3.60
open source software (McGaughey, 2009). Furthermore, the height of the point cloud returns were
normalized using the DEM to compute a wide range of statistics using the “Cloudmetrics”
command (Table 6). These statistical metrics are commonly used as independent variables in
forestry (Evans et al., 2009).

The computation of ALS metrics normally requires the application of a threshold value to remove
ground and/or understorey laser hits. In this PhD Thesis, several tests were performed to
determine the more suitable thresholds according to the type of estimated stand variable and
application. A threshold value of 2 m height was selected according to shrub height agreeing with
Nilsson (1996) and Neesset & Jkland (2002) for predicting the analysed forestry metrics except
from total biomass, that required the selection of a different threshold to include understorey laser
hits. The explored thresholds ranging from 0 up to 1 m determined that 0.2 is the most suitable one
being related to the ALS sensor precision in coordinate Z, which has a root mean square error

below 0.2 m.

Table 6 describes the computed ALS metrics structured in three main groups: metrics related with

canopy height, metrics associated to canopy height variability and canopy density metrics. The
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computed metrics might be selected to be used in modelling and all of them present a coherent

relationship with vegetation structure (Evans et al., 2009; McGaughey, 2009).

Table 6. Derived metrics from ALS point clouds, where Xi is the height value of the return, N is the total

number of observations, ri is the return, and p is the pulse.

Metric

Description

Percentiles of the return
heights 1, 5, 10, 20, 25, 30, 40,
50, 60, 70, 75, 80, 90, 95 and
99 (Po1, Pos, P19, etc.)

The percentiles were computed according to the following
methodology:

I is the integer part of (N — 1)P

W-DP =1+ f{f is the fractional part of (N — 1)P

where N is the number of observation and P is the
percentile value divided by 100.

if f =0then Percentile value = x;,4

if f> 0then Percentile value = x;.1 + f(Xj12 — Xi+1)

where xiis the observation value considering that
observations are ranked in ascending order.

Minimum elevation

Xi minimum

Mean elevation

N
i=1%i
N

Mode elevation

xi value more frequent in the plot

Elevation quadratic mean
Canopy height

metrics (CHM)

Elevation cubic mean

L moments (A1 to A4)

N
~ 11

7\3 — _n_Z(i—lcz _ 2i—1C1 rL—lC1 + n—lCZ)x(i)
3 "C34

=1

N
~ 11 o . _ . _ _
A =Z?Z(l 1¢, — 3i71¢, "ic, + 3171¢, ", — 16‘3)x(i)
s

where x), i=1, 2, ..., n, are sample values ranked in ascending order and
m _ (m) _ m!
Ch=|—)=—7—7—=
k)~ kl(m—k)!

is the number of combinations of any k items form m items
and is equal to zero when k > m.

Maximum elevation

Xi maximum
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Standard deviation of point T (o —w?
height distribution N
Variance of point height il G —w)?
distribution (0?) N
Coefficient of variation of o 100
point height distribution H
N 3
Skewness of point height Zi= (i —1)°
distribution (N —1)o3
N 4
kurtosis of point height Ziz1 (% — 1)
distribution (N - 1)o*
Canopy height
Variab'ﬂity Interquartile distance of [Pys(x) — Pys (x)]
metrics point height distribution
(CHVM)
Average Absolute Deviation P D)
of point height distribution N
Az
L moment coefficient of i
variation of point height
distribution (T2) 0< <1
As
L moment skewness of point Az
height distribution (7s) 1< <1
Ay
L moment kurtosis of point A
height distribution (7s) % (5,[32 —1)s1u<1
Percentage of first returns Y1 Ti first returns > heightbreak
above a height-break, above SN 100
the mean or the mode (=1t sirstreturns
Percentage of all returns . .
Canopy above a height-break, above Yi=17; > heightbreak 100
density metrics the mean or the mode N
(CDM) X
. . lu xl minimum
Canopy relief ratio
Xi maximum — Xi minimum
All returns above a height- N i
ic1 i > heightbreak
break, above the mean or the Liz1 Tial rlsmms g 100
mode x 100 Zi:1 Ti all returns
2.2.6. Optical data and spectral indices

Although the PhD Thesis mainly focus on the use of ALS-PNOA data for forestry applications, the
combination with optical data allowed to estimate fire severity and, subsequently, determine the

CO2 emissions.
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Wildfires constitute a socio-environmental hazard in pyrophyte Aleppo pine Mediterranean
ecosystems. Fire severity usually reaches high levels, generating important changes in vegetation
vigour, colour, water content as well as forest composition, structure and density. Optical remote
sensing data have been widely used to characterize fire severity (Garcia-Llamas et al., 2019)

considering infrared spectral regions.

Landsat program is the longest middle resolution remote sensing program and provides coherent
and continuous global data since 1972. Specifically, Landsat 8 was launched in 2013 carrying on
board the Operational Land Imager (OLI) sensor. The mission presents a polar low earth orbit and
16 days of temporal resolution. The spatial resolution of the 9 optical spectrum bands is 30 m,
except from the panchromatic band with 15 m resolution. The most valuable bands to characterize
fire severity are number 5, which corresponds to the near infrared (NIR), and 7, which refers to the
short wave infrared (SWIR). NIR is linked to foliar structure and morphology while SWIR is

related to vegetation and soil water content (Soverel et al., 2010).

In this research, two images were selected to characterize pre and post-fire conditions and estimate
fire severity. The pre-fire image was acquired on June 30 (path 200, row 31) 2015 and the post-fire
image on July 9 (path 199, row 31) 2015. The selection of these images was conditioned by the need
for temporary proximity between images in order to capture the variability of vegetation spectral
response. The images were provided by the United States Geological Survey (USGS) and
downloaded using Earth Explorer platform. Both images present a high processing level. Images
were geometrically and radiometric corrected. Specifically, the Landsat Surface Reflectance Code
(LaSRC) was applied according to Vermote et al. (2016). The algorithm uses a radiative transfer

model, climate data from MODIS and the coastal aerosol band to perform those corrections.

The use of spectral indices, derived from the combination of different spectral bands, provides
relevant information about surface properties (Chuvieco, 2010). The Normalized Burn Ratio (NBR)
index, developed by Key & Benson (2006), relates Landsat band 5, from NIR, with band 7 from
SWIR. NBR values range from -1 to 1. Surfaces with no presence of vegetation or low vegetation
vigour present negative values while photosynthetically active areas show positive values. In this
PhD Thesis, NBR was calculated for pre-fire and post-fire images according to equation 27. Then,
the Differenced or Delta NBR index (ANBR) was computed to provide a quantitative measure of
the burned area (equation 28).

NBR = (pnir — Pswir )/ (PNIR + Pswir) (27)
ANBR = NBRprefire - NBRpostfire (28)

where pnvir (near infrared) and pswik (short wave infrared) refer to bands 5 and 7 Landsat 8 OLI

reflectance, respectively.

The ANBR values were multiplied by 1,000 to provide a valid continuous range of values.
Negative values are associated with fast regrowth from herbaceous, while positive values are

related to different degree of fire severity.
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2.2.7. Wildfire biomass loss and CO:2 emission estimation

Wildfires constitutes a relevant source of carbon monoxide emissions (Pétron et al., 2004) in the
Mediterranean basin, which yearly records an average of 45,000 fires (Oliveira et al., 2012). The
account of carbon dioxide emissions is relevant for understanding carbon cycling and provides
information to develop climate regulation policies (Mieville et al.,, 2010). Thus, different
approaches have been tested to estimate the emissions for wildfire as the one proposed by the

Intergovernmental Panel on Climate Change (IPCC) (equation 29):
Lire =AXBXCxDx107° (29)

where Lsr refers to the quantity of GHG released due to fire (tonnes of GHG), A is the burned area
(ha), B is the mass of “available” fuel including biomass, ground litter and dead wood (tons ha), C
is the combustion efficiency or fraction of combusted biomass (dimensionless), D is the emission

factor (g kg of dry matter burnt).

A similar approach, proposed by De Santis et al. (2010), adapted the IPCC one to estimate fire
GHG emissions, using remote sensing techniques. In this sense, four steps were required: the
delimitation of the burned area; the estimation of pre-fire biomass; the assessment of the fraction of
biomass consumed by the fire or burning efficiency, associated with fire severity and; the use of

conversion factors to estimate GHG emissions.

Traditionally the estimation of pre-fire biomass was performed by using field data and allometric
equations, while post-fire biomass was assessed either by visual examination (Roy et al., 2005) or
field-based weighting (54 et al., 2005). However, the implementation of remote sensing techniques
provided new methodological approaches. In this research, ALS data (used to determine pre-fire
biomass) and passive optical data (applied to estimate fire severity) were combined with the final
objective of estimating biomass losses and, subsequently CO: emissions. The following five steps

were conducted in this approach:

i.  Estimation of Aleppo pine pre-fire biomass using ALS data captured previously to the
occurrence of the wildfire.
ii.  Estimation of fire severity. ANBR index is computed using two Landsat 8 OLI images from
June 30t and July 9t 2015.
iii. ~ Mapping of pre-fire Aleppo pine forest. The Spanish National Forest Map as well as a
canopy height model derived from the ALS data were used to delimit the burned stands.
iv.  Selection of burning efficiency factors and biomass losses quantification. Most approaches
consider that forest biomass is completely consumed by fire (French et al., 2004). However,
more accurate approaches from our point of view consider different burn severity levels,
related to different biomass losses. Thus, in this research three burning efficiency factors
were applied to three different severity levels (De Santis et al., 2010). Key & Benson (2006)
generic severity ranges were reclassified to match the three burning efficiency factors
(Table 7). Low burning efficiency refers to low consumption of leaves and very low

consumption of branches. Moderate burning efficiency denotes intermediate consumption

39



Characterization of Mediterranean Aleppo pine forest using low-density ALS data

of leaves and moderate consumption of small branches. High burning efficiency
corresponds to a complete consumption of leaves and high loss of small branches and

twigs.

Table 7. Severity levels, ANBR generic ranges defined by Key & Benson (2006) and burning efficiency
factors used to estimate biomass losses following De Santis et al. (2010).

Severity level ANBR range Burning efficiency factors
Unburned -100 to +99 0.00

Low severity +100 to +269 0.25
Moderate—low severity +270 to +439 0.42
Moderate-high severity +440 to +659

High severity +660 to +1300 d

v.  Conversion of biomass losses to carbon content and, subsequently, to CO: emissions.
Biomass can be converted to carbon content by applying conversion factors. The most
common factor is 0.5, but, in this PhD Thesis, a value of 0.499 was set for Aleppo pine, in
accordance with Montero et al. (2005). These authors determined several conversion factors
for Mediterranean species based in field work. Secondly, the conversion from carbon to
CO2 was performed according to Trozzi et al. (2002) equation. This equation includes the
variables proposed by Seiler & Crutzen (1980), while modifying the specific factors to better

represent Mediterranean environments (equation 30)

CO, =¢*d*C (30)
where ¢ is the fraction of total carbon emitted as CO, (0.888); 6 is the factor of

conversion from the emissions in ton of carbon to the emissions in ton of CO, (44/12);
and C is the carbon content.

2.2.8. Modelling: variable selection, regression methods and validation
Variable selection

Variable selection includes a variety of methods to reduce the dimensionality problem as well as
deal with large feature sets, improving model performance, reducing time and costs and
generating understandable models (Guyon & Elisseeff, 2003). This PhD Thesis explored the
performance of five selection processes to estimate forest stand variables: Spearman’s rank
correlation, Stepwise selection, Principal component analysis (PCA) and Varimax rotation, Last
absolute shrinkage and selection operator (LASSO) and All subset selection. These methods are

described below.

Spearman’s rank correlation coefficient is generally denoted by the Greek letter p (rho) (Spearman,
1904). This coefficient determines the strength and direction of the relationship between two
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variables being carried out using “cor.spearman” function in R environment. Although other
correlation coefficients as Pearson or Kendall exist, Spearman’s rank coefficient has been widely
used for forestry applications, showing a uniform power for linear and non-linear relationships.
The rho coefficient varies between +1 and -1. The value +1 indicates a perfect positive degree of
association between two variables while the value -1 denotes a perfect negative degree of
association. The weaker the correlation, the closer to 0 is the value. Thus, the correlation value of 0
indicates a null relationship between the analysed variables. In this PhD, the selection of the ALS
variables was made considering a minimum positive and negative rho value, ranging from 0.2 up
to 0.5. Depending on the higher or lower strength of the relationship between the variables the

range was changed to better reduce variable redundancy and multicollinearity.

Stepwise selection, or also called stepwise regression, allows selecting predictive variables in an
automatic procedure (Efroymson, 1960). The method iteratively adds or drops variables at several
steps to determine the best subset of variables, which denotes the best model performance and
lower prediction error. The predictor, that is added or dropped in each step, is based in the Akaike
information criterion (AIC). There exist three ways of performing stepwise regression: forward
selection, backward selection and bidirectional stepwise selection. Forward selection begins with
no variables in the model, iteratively selects the variables that contribute the most and stops
adding predictors when the improvement is no longer statistically significant. Backward selection
begin with all variables in the model, iteratively drops the one that contribute the least and stops
dropping predictors when all the selected variables are statistically significant. Bidirectional
stepwise selection combines forward and backward selections. Firstly, this method begins with
forward selection and then drops those variables no statistically significant using backward

selection. The stepwise selection was carried out using “step” function in R environment.

PCA is a dimension-reduction method that reduces large sets of predictors to a smaller size,
keeping the majority of the information. Although is a classic statistical method that has been
broadly used in many research fields, it is not a common approach in ALS metric selection (Silva et
al., 2016). PCA was computed using R package “Ilattice” and specifically with the function
“prcomp”, which uses the singular value decomposition to examine the covariance and correlations
between individuals. According to the Kaiser Criterion, in his research the generated components
with greater values than 0.1 were retained. Then, a Varimax rotation, which maximizes the sum of
the variance, was applied to better interpret the PCA results (Darlington & Horst, 1966; Kaiser,
1958).

LASSO is a method that performs two processes: regularization and feature selection. The method
was popularized and improved by Tibshirani (1996). This technique applies a shrinking or
regularization process to penalize some of the coefficients to zero by using a penalty term, which
refers to the sum of the absolute coefficients. Those variables that have a non-zero coefficient after
regularization will be selected to be part of the model, minimizing prediction errors and

generating interpretable models. LASSO was computed in R using the “glmnet” package.
All subset selection methods allow a suitable group of metrics being selected, while disregarding
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the rest of the variables (Miller, 2002). Concretely, best subsets regression, being part of all subset
selection methods, test all possible combination of variables and selects the best ones according to
statistical criteria. Several search approaches have been developed for best subset selection. In this
sense, four search approaches were tested: exhaustive, backward, forward and sequential
replacement. Exhaustive approach uses efficient branch-and-bound algorithms to search for the
best subsets of variables. Backward and forward algorithms have been previously described when
using stepwise selection. Sequential replacement (Seqrep) is a synonym of stepwise selection
combining forward and backward selection. The four explored approaches was implemented
using R package “leaps” and specifically “regsubsets” function, which includes a wrapper that
improves leaps functionalities. Furthermore, a maximum number of model variables can be

determined.
Regression methods

The regression analysis constitutes the process of estimating or modelling the relationship between
variables, which can be performed using either parametric or non-parametric regression methods.
Although the application of non-parametric methods have increased popularity (Bollandsas et al.,
2013b; Chirici et al.,, 2008; Liaw & Wiener, 2002), few studies focused on the comparison of
different non-parametric algorithms respect to parametric methods. Furthermore, the majority of
studies were performed using high-density point clouds (Latifi et al., 2010; Gleason & Im, 2012;
Gagliasso et al., 2014; Garcia-Gutiérrez et al., 2015; Gorgens et al., 2015). The effect of using
parametric or non-parametric regression methods on model accuracy for estimating stand
variables with ALS data, as well as, the effect of dataset size on model performance was also
addressed. Specifically, this PhD Thesis explored the performance of eight regression methods to
estimate forest stands variables: a multivariate linear regression model, two machine-learning

algorithms and five regression trees structures. These methods are described below.

Multivariate linear regression (MLR) is a parametric method, widely employed to estimate forest
stand variables using ALS data (Means et al., 1999; Neesset & Qkland, 2002; Watt et al., 2013). This
method has the same structure as simple linear regression, but presents a higher number of
predictors and builds the predictions based on a hyperplane (Mardia et al., 1979). Model
coefficients for the predictors are computed considering the minimum quadratic differences
between the observed and predicted values (equation 31):

Y = Bo+p1 X1 + B2 Xy + -0+ BrXy (31)

where Y refers to the independent variable, 3, is the constant value, f3, is the regression coefficient
for the predictor or independent variable X;,.

The computation of parametric methods requires the verification of the assumptions of linear
regression models. In accordance with Garcia et al. (2012) six assumptions were tested:

e Normality of the residuals. Residuals are normally distributed with an average value of
zero. Normality was tested using Shapiro-Wilk and Kolmogorov-Smirnov statistical tests.
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e Homoscedasticity. Residual variance should be constant for each independent variable. The
homoscedasticity was tested using the Breusch-Pagan statistical test.

e Linearity between the dependent and independent variables is crucial for parametric
regression methods. Linearity was verified using the RESET test.

e Independence. Residuals should be independent between them as random variables.
Durbin-Watson test was used for confirming independence assumption.

e No-collinearity. There is not lineal relationship between the independent variables. The
variance inflation factor (VIF) was computed to test no-collinearity assumption.

e Absence of atypical values. The presence of these values biases model equation. The

Bonferroni and Cook distance test were used to verify the assumption.

Sample size was also considered when modelling. According to Hair et al. (1999) one predictor
variable was included for each 15 to 20 samples to avoid overfitting. Furthermore, logarithmic
transformation of dependent and independent variables were explored in the cases where
statistical hypothesis of linear regression models could not be fulfilled (Garcia et al., 2012; Means et

al., 1999). Finally, the improvement of the goodness of fit of the models was also verified.

Support vector machine (SVM) is a supervised learning model that has associated learning
algorithms to analyse and recognize patterns. SVM can be applied either for classification or
regression analysis. This method considers that input data are separable in space (Mountrakis et al.
2011). SVM builds a hyperplane or a set of hyperplanes in an infinite-dimensional space. The
method tries to find the optimal separation between classes determining those hyperplanes with
maximum separability (Figure 6). The data located in the hyperplane are the most difficult to
classify since they have lower separability between classes; they are called support vectors. A SVM
model requires the definition and optimization of several parameters: type of kernel, cost and
gamma of the kernel function. Two types of kernels were computed in this PhD Thesis: linear and
radial. SVM was implemented by using R package “e1071”. In both SVM models, the parameter
cost was defined in the interval 1-1,000, and the parameter gamma in the interval 0.01-1, applying

the best parameters after tuning the model.
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Figure 6. SVM example (source: https://en.wikipedia.org). x is a p-dimensional real vector and w is the
normal vector to the hyperplane.
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Random forest (RF) is an ensemble learning method that uses decision trees as base classifier. RF is

a non-parametric method that can be either applied for classification or regression.

RF combines a decision tree that depends on the values of a random vector sampled,
independently and with the same distribution for all trees in the forest (Breiman, 2001). The
algorithm adds randomness to bagging and increase the diversity of decision trees by growing
them from different subsets. In each decision tree, RF divides the nodes by using the best variables
from a random sample. RF was implemented through R package “randomForest” (Liaw & Wiener,
2002) and “caret” (Van Essen et al., 2001).

The RF model was adjusted using two parameters: the number of trees to growth (ntrees) and the
number of variables selected randomly at each split (mtry). They were in the intervals 1-3,000 and

1-3, respectively.

Decision trees method partitions the data into branches and then continues subdividing the data
into smaller groups in a process called recursive partitioning. In simpler words, the space is
divided in simpler regions that are more manageable (Quinlan, 1987). There are two types of
decision trees: classification trees and regression trees. Classification trees are associated to
categorical variables while regression trees are linked to continuous target variables. The trees
have different components: the root node of the tree, the branches (segments of the tree that
connect the nodes), the internal nodes (where the predictor space is split) and the terminal nodes
(Figure 7). Five regression trees structures based on “If-Then” rules were computed using the R
package “CORElearn”. The differences between them, described below, refer to the regression

model considered in the leaf nodes.

Branches
Internal Internal
Node Node
Branches /" Branches
Leaf Leaf Leaf Leaf
Node Node Node Node

Figure 7. Components of a decision tree.

Locally weighted linear regression (LWLR), locally weighted regression (LWR), or loess, is a non-
parametric method that uses local functions to make predictions. LWR divides the space and
creates a local model based on neighbouring data for each point of interest. The local model is a
linear regression weighted by a tricubic kernel (Cleveland & Devlin, 1988) centered at x (Figure 8).
Thus, the dependent variable is smooth by a function of the independent variables. The coefficient
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of smoothness is fitted by computing weighted mean square error and considering a distance

function (tricubic kernel).

X

Figure 8. LWR example (source: http://www.cs.cmu.edu/).

Linear model with a minimum length principle (MDL) is based on the rule developed by
(Rissanen, 1978). The decision tree searches for regularities in a set of data that can be used to
compress the data by using fewer symbols, from a finite alphabet, than needed to explain the data
faithfully.

Reduced linear model (RLM) is an implementation of the M5 in “CORElearn” R package. M5" was
developed by Wang & Witten (1996) as a slight modification of the M5 decision tree invented by
Quinlan (1987). The tree model splits the data based on the standard deviation of the class values
that reach a node. Then, a linear model is calculated for each node of the unpruned tree. Finally,
the model is simplified using an exhaustive search to remove those variables that contribute little

to the model in order to minimize the estimated error.

K nearest neighbor (KNN) is a non-parametric and one of the simplest machine learning
algorithms. KNN belongs to the supervised learning category and is a lazy learning method. Lazy
learning methods generalize the data during the testing phase while reducing the training phase
being easily adaptable to changes. KNN is based on the k-NN algorithm developed by Fix &
Hodges (1951), which includes two phases. Firstly, k nearest neighbours are searched using the
complete dataset and considering an established Euclidean distance. Then, the mean of the k-most

similar instances is used for the prediction.

Weighted k nearest neighbors (WKNN) is a refinement or extension of the KNN algorithm. The
algorithm considers that the observations that are particularly close to the new observation should
have a higher weight, which is calculated according to the distance between observations. In this
sense, it gives greater weights to the closer neighbours. The weighted mean of the k nearest
neighbours is used for the prediction (Hechenbichler & Schliep, 2014).

Model accuracy and comparison

Model validation is essential to verify the accuracy and credibleness of a model when working
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with different datasets. The diverse validation methods found in literature are suited to the dataset
size. Leave-one-out cross-validation (LOOCV) and k-fold validation are better suited to smaller to
medium size samples while validation by splitting the sample into training and test sets is
associated to medium to large samples. According to the number of field plots two types of
validations were computed in this PhD Thesis: LOOCV was used for small samples while
validation by splitting the sample was used when the sample was bigger.

LOOCYV is one of the most common techniques used with small dataset size in order to not further
reduce the sample (Andersen et al., 2005). This cross-validation method drops one sample from the
dataset —one field plot- in each iteration, predicting the values using all the other samples from the
dataset. The number of iterations is equal to the number of samples in the dataset. An average
value of model performance, generated for the coefficients of each iteration, is computed being
expressed as RMSE, %RMSE, Bias or R? statistics. The comparison between the initial and the

validated model denotes credibility of the model when the statistical values are similar.

Validation by splitting the sample is generally computed for medium to large datasets sizes. In this
research, the original sample was split into a training set of 75% of the cases and a test set of 25% of
the cases. The model uses the training set to test model variables and parameters and the
performance of the model is evaluated with a different data set, the test dataset. The existence of
similar values in the models generated with the training and test datasets generates a credible and
robust model. The presence of differences between training and test might be caused by overfitting

in the training phase of modelling.

In this PhD Thesis, following the recommendation from Garcia-Gutiérrez et al. (2015), LOOCV or
validation by splitting the sample was executed 100 times to increase results robustness in those

methods with higher randomness.

Several statistics of goodness of fit can be computed to describe model performance. In this
research root mean square error (RMSE) (equation 32), relative RMSE respect to the mean
(%RMSE) (equation 33), bias (equation 34) and R? after validation (equation 35) were calculated.
The comparison between models was performed using RMSE, %RMSE and bias in all the

regression methods, while R? was not applied with non-parametric models.

n O\ 2
RMSE = /m% (32)

%RMSE = RM;E x 100 (33)

BiaS — Z?:l(ii_j}i) (34)
2 _ I, 0-9)?

R? = o 100 (35)

where y; is the observed value for plot i; J; is the predicted value for sample plot i; n is the number

of plots and y is mean observed value for all plots.
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The use of the abovementioned statistics allowed us to compare the performance between the
generated models, but it did not established whether the models were equivalent or there were
statistically significant differences between them. Several statistical tests are design to determine
these assumptions, being associated to the type of model (parametric or non-parametric). In this
sense, Friedman non-parametric test was selected to determine whether models were equivalents
and, subsequently, Nemenyi post-hoc test was used to determine whether the differences between
the models were statistically significant. These methods were chosen, as proposed by Stojanova et
al. (2010), being suitable to compare non-parametric models with a multiple relationship (one to
many). The application of both tests was carried out using the RMSE model values for each dataset

sample.

Friedman test allows testing differences between groups when the dependent variable is
continuous, as the case of stand variables. It is considered an alternative to ANOVA test for
parametric models. This method ranks each row —field plot- together and considers the values of
ranks by columns —-models-. The null hypothesis determines that models are equivalent, while the

alternative hypothesis denotes difference between models.

In those cases of rejection of null-hypothesis in Friedman test, implying that the models are not
equivalent, the Nemenyi (1963) post-hoc test was used. This pair-wise test is applied after a
multiple comparison test such as Friedman test. This method determines whether the differences

between the models were statistically significant, with a significance level of 0.05.

2.2.9. Temporal transferability

Two approaches exist in ALS literature for modelling forest stand variables using multi-temporal
ALS data: direct and indirect approaches. The direct approach fits one model for one point in time
and estimates the forest variable in another point in time (Cao et al., 2016; Zhao et al., 2018). The
main hypothesis of direct approach is that models can be imputed across time, in the same way
they can be imputed across space. On the other hand, the indirect approach estimates the forestry
variables in different dates by adjusting different models in each point in time (Neesset &
Gobakken, 2005).

The main benefit of direct approach is that reduces modelling time and fieldwork cost, allowing
model temporal transferability. The generation of models requires the selection of variables and
the subsequent model parametrization, constituting relevant tasks for the prediction of forest
variables. The model that is going to be temporally transferred is generated by relating ALS data
with ground-truth data for one point in time, while second fieldwork campaign might be reduced
or even not needed when the time between the ALS surveys is not large (Noordermeer et al., 2018).
As stated by Fekety et al. (2015), integrating temporally disparate inventory data using multi-
temporal ALS acquisitions could reduce inventory costs. This approach benefits not only forest
managers but also enterprises devoted to forest inventories. Furthermore, this methodology could
serve as an alternative to design the temporal gap between ALS flights to predict accurately forest

variables over time.
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The indirect approach requires higher cost of modelling and data capturing. Thus, we found
different results of the evaluation of the two approaches in the literature (Neesset & Gobakken,
2005; Noordermeer et al., 2018; Zhao et al., 2018). Some authors get slightly better performance of
the direct approach in the prediction of biomass and carbon fluxes (Bollandsas et al., 2013; Cao et
al., 2016; Skowronski et al., 2014) while Meyer et al. (2013) and Zhao et al. (2018) achieved better
results with the indirect approach.

This PhD Thesis explores the benefits of the two mentioned approaches in the prediction of seven
forestry attributes at regional scale: stand density, basal area, squared mean diameter, dominant
diameter, tree dominant height, timber volume and total tree biomass. We performed a
comparison of the direct and indirect approaches to assess temporal transferability. Firstly,
following the indirect approach, two different models were fitted for the available ALS-PNOA
data (2011 and 2016), estimating the stand attributes for each point in time, using different ALS-
metrics and model parameters. In this approach inventory data was updated using single-tree-
growth models to generate concomitant information to the ALS-PNOA years (see Section 2.2.3).
Secondly, the direct approach was tested. The models, fitted for one point in time, were
extrapolated to the other point in time using the same variables and model parameters. The
process was performed two times: the 2011 models were extrapolated to 2016, and inversely the
2016 models were extrapolated to 2011. The modification of the original methodology tested the

validity of multi-temporal ALS data to perform future or retrospective analyses.

2.2.10. Variable influence assessment

ALS sensors have different configurations that determine the final data characteristics and quality
of the point clouds. These configurations are normally different from one flight to another, varying
according to the specific sensor capabilities, and might have an effect in model accuracy. In this
sense, the effect of three ALS characteristics (point density, scan angle, canopy penetration pulse)
and two environmental conditions (slope and shrub presence) on the prediction of forest residual
biomass have been addressed.

The effect of point density has been explored in the prediction of different forest inventory
attributes such as height, basal area or volume (Roussel et al., 2017; Gobakken & Naesset, 2008).
However, less studies have considered point density effect on biomass prediction (Garcia et al.,
2017; Singh et al., 2015; Ruiz et al., 2014). The effect of scan angle on tree height prediction has been
analysed by Disney et al. (2010), Holmgren (2004), Liu et al. (2018) and Montaghi (2013). Disney et
al. (2010) proposed to minimize the use of data collected at scan angles greater than ~15°.
According to Holmgren (2004) and Liu et al. (2018), the prediction of canopy closure is affected by
the scan angle, being necessary to avoid off-nadir angles from 23 to 38°. Similar results were
concluded by Montaghi (2013) in the prediction of forestry metrics using an area based approach,

determining that scan angles higher than 20° had a great effect in forest parameters predictions.

The structural characteristics and ALS flight settings modify canopy pulse penetration (CPP),
decreasing DTM accuracy (Cowen et al., 2000; Hollaus et al., 2006; Hyyppa et al., 2000). The higher

48



Study area, materials and methods

the density of the forest, the lower CPP rates are found (Hollaus et al., 2006). Secondary effects of
densely covered areas would be a decrease in CPP in lower strata (Chasmer et al., 2006b; Wasser et
al., 2013) and the decrease of DTM accuracy (Cowen et al., 2000; Hollaus et al., 2006; Hyyppad et al.,
2000). In contrast, leaf off conditions in deciduous forest improves CPP rates (Hill et al., 2009;
Wasser et al., 2013).

The presence of steep slopes reduces the accuracy in tree height prediction (Breidenbach et al.,
2008; Clark et al., 2004; Orka et al., 2018), as well as in tree diameter, basal area, number of stems
and volume (Jrka et al., 2018). Furthermore, decreases the ability to detect tree tops (Khosravipour
et al., 2015). Although ALS predictions are affected by the increase of slope, the detected effect was
not severe. Slope effect might be partially explained by the lower accuracy of DTMs in these areas,
considering that filters have more difficulties on determining ground points on steep slopes
(Montealegre et al., 2015a).

The effect of shrub presence has not been previously analysed. The hypothesis that the presence of
shrub might affect the prediction of forest residual biomass is associated to the lower CPP in those

areas and, consequently, a lower number of ground returns, which may affect DTM generation.

Two methodological approaches were tested to analyse the effect of the five abovementioned
variables in forest residual biomass prediction. Firstly, a graphical assessment using boxplots,
including the average mean prediction error per defined class and variable was applied. In
addition, several statistical tests, described below, were applied to determine whether the

differences between model performances were statistically significant.
The defined classes for each analysed variable are the following:

e DPoint density. Plots were classified into two classes: up to 1 point m?2 and higher than 1
point m? according to Montealegre et al. (2015b). Jakubowski et al. (2013) and Garcia et al.
(2017) also concluded that this threshold allows to have relatively high accuracies in forest
parameters modelling.

e Scan angle. Three scan angle classes were tested. The first class was set close to nadir with
average scan angle of up to 5°. The second class was defined as plots with an average scan
angle between 5 and 15°. The third class included those plots with an average scan angle
higher than 15°. The breakpoint between the second and third classes was defined by the
maximum average scan angle established by the PNOA mission in order to reach the
minimum nominal point density specified by the project.

e Canopy pulse penetration. The influence of four categories were analysed: 0%-25%, 25%-
50%, 50%-75% and 75%-100% following Montealegre et al. (2015b). The proportion of the
pulses that penetrate canopy and reach the ground was calculated using a ground tolerance
of 2 m.

e Terrain slope. The effect of the terrain slope was assessed using two categories: smooth
slopes of up to 15% and steep slopes higher than 15%.

e Shrub presence was binary categorized in plots with and without understory.
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The mean predicted error (MPE) was selected to analyse the differences between the established
classes. MPE was obtained for each field plot and, afterwards, the average mean per class was
computed (equation 36). Furthermore the percentage of mean predicted error (%MPE) respect to

the observed mean value was computed according to equation 37.

MPE — Zi:1(13:i_37i) (36)
%MPE = % x 100 (37)

where y; is the observed value for plot i; J; is the predicted value for sample plot i; n is the number

of plots and y is mean observed value for all plots.

Previous to significance analysis, normality and homogeneity test were computed. After
considering logarithmic and square root transformation we concluded that variables were not
normally distributed. In this sense, non-parametric Mann-Whitney and median tests were applied
for analysing differences between two categories. Kruskal Wallis test was applied for those

analyses with more than two classes.

The Mann-Whitney test is considered the main non-parametric alternative to the independent
sample t-test. This test is designated to compare two populations. The null hypothesis of the test
establishes that both samples come from different populations, while the alternative to the null

hypothesis indicates that both samples come from the same population.

The median test is a non-parametric one used to determine whether two or more samples differ in
their central tendency or median value, consequently it can be inferred whether the samples are
from the same population or not. The null hypothesis establishes that both samples come from the

same population.

Kruskal Wallis test is considered the main non-parametric alternative to the One Way ANOVA
test. This method is a rank-based test that determines whether the medians of two or more groups
are different. The null hypothesis considers that the samples are from the same population, while
the alternative hypothesis establishes that at least one of the samples come from a different

population.

2.2.11. Mapping of forest variables

The mapping of forest stand variables have been traditionally performed by linking tree metrics to
the estimated stand variable using allometric equations and, subsequently, extrapolating these
estimates at stand-level or regional scale (Boudreau et al., 2008). The use of remote sensing tools
provides a greater overview of large areas and with higher temporal resolution (Castro et al.,
2003). The use of optical data and, specially, the characterization of disturbance history with
temporal series, have been proposed for estimating forestry variables (Cohen et al., 1996; Coops &
Waring, 2001). However, the information captured by passive optical sensors tends to saturate

under closed canopy conditions and in dense forests (Lu, 2006). Although active SAR remote
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sensing improved the accuracy on forestry predictions (Tanase et al., 2014), there are still
difficulties in heterogeneous and dense forests (Hyde et al., 2006).

ALS data have been proven as the most suitable technique for mapping 3D structure (Zhao et al.,
2018). However, the use of ALS data at regional scales is still limited by the acquisition costs, the
absence of global coverage and the huge data volumes that need to be processed. The use of ALS
data for sampling some areas or by creating strips and the subsequent fusion with passive optical
data have been explored for estimating forest stand variables at regional scales (e.g.: Matasci et al.,
2018; Pflugmacher et al. 2014). Recently, the increase of ALS data at regional scale or country level,
as the case of Spain, has opened new opportunities. In this sense, although computational effort is
required, the improvement in hardware and software has allowed processing time reduction. In
this sense, this PhD Thesis explored the use of ALS data at regional scales, providing cartographic

information to forest managers.

In this research, the generation of cartography implied the prediction of a dependent variable for
the whole study area by applying a regression model previously generated with the above
mentioned methodology. Pixel size is one of the most relevant factors to be considered in
mapping. The determination of pixel size should consider field plot size and ALS point density,
but might be modified to account for specific requirement of forest managers. Commonly, pixel
size is similar to field plot size. An increase in pixel size might decrease mapping accuracy when
the number of ALS returns per pixel is low. Furthermore, independent variables that are included
in regression models should be converted to raster format. In this sense, FUSION software,
specifically designated to work with ALS data for forestry purposes, was used to generate the
raster files using “Gridmetrics” and, subsequently “CSVGrid” commands. The generation of the
raster for the dependent variable was performed in an R environment following three steps:
running the best selected model; reading the independent variables in raster format; spatializing

the results.
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3.

Research contributions

The papers that constitute the PhD Thesis body are entirely
included in this chapter as required by compendium PhD
Thesis type. The papers provide different forest applications
using ALS-PNOA data and field surveys: the estimation of
CO: emissions generated by wildfires, several biomass
fractions and inventory variables. Furthermore, the papers
compare several selection and regression methods within
different  conditions, analysing the effect of ALS
characteristics and environmental variables in modelling

error and assessing temporal model transferability.

53






Research contributions

3.1. Comparison of regression models to estimate biomass losses
and CO: emissions using low density airborne laser scanning

data in a burnt Aleppo pine forest

Comparacion de modelos de regresion para estimar las pérdidas de biomasa y emisiones de CO:
utilizando datos de escaner laser aeroportado de baja densidad en bosques de Pino carrasco

afectados por el fuego
RESUMEN

El conocimiento de la pérdida de biomasa forestal producida por un incendio puede ser de
utilidad para la estimacion de las emisiones de los gases de efecto invernadero a la atmosfera. Este
estudio se centra en la estimacién de la pérdida de biomasa y las emisiones de CO: por la
combustion de masas forestales de Pino carrasco en un incendio ocurrido en el municipio de Luna
(Espafa). La disponibilidad de datos de escaner laser aeroportado (ALS) de baja densidad permitié
estimar la biomasa arbdrea pre-fuego. Se realiz6é una comparacion de nueve modelos de regresion
con objeto de relacionar la biomasa, estimada en 46 parcelas de campo, con distintas métricas
extraidas de los datos ALS. El método de regresion linear multivariante seleccionado como
optimo, incluy6 entre las variables independientes el porcentaje de primeros retornos sobre 2 m y
el percentil 40 de la altura de los retornos. El modelo se valido utilizando una técnica de validacion
cruzada “leave-one-out-cross-valiation” (RMSE: 6.1 ton ha'). Las pérdidas de biomasa se estimaron
utilizando una aproximacion en tres fases: (i) la severidad del incendio fue obtenida utilizando el
indice de diferencia normalizado (ANBR), (ii) los pinares de Pino carrasco se delimitaron
utilizando el Mapa Forestal Nacional y datos ALS y, (iii) tres factores de eficiencia de combustion
se aplicaron considerando los niveles de severidad. La biomasa post-fuego se transformé en
emisiones de CO2 (426.754,8 ton). Este estudio evidencia la utilidad de los datos ALS de baja
densidad para estimar de forma precisa la biomasa pre-fuego y evaluar las emisiones de COzen

masas forestales mediterraneas de Pino carrasco.
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ABSTRACT ARTICLE HISTORY

The knowledge of the forest biomass reduction produced by a wildfire can assist in the Received 31 January 2017
estimation of greenhouse gases to the atmosphere. This study focuses on the estimation of Revised 22 May 2017
biomass losses and CO» emissians by combustion of Aleppo pine forest in a wildfire occurred Accepted 24 May 2017

in the municipality of Luna (Spain}). The availability of low point density airborne laser

scanning (ALS) data allowed the estimation of pre-fire aboveground forest biomass. A Kf;“:&t:;mund tree
comparison of nine regression models was performed in order to relate the hiomass, biomass losses; CO,
estimated in 46 field plots, to several independent variables extracted from the ALS data. emissions; Aleppo pine; burn
The multivariate linear regression selected model, including the percentage of first returns severity

above 2 m and 40th percentile of the return heights, was validated using a leave-one-out
cross-validation technique (6.1 ton/ha root mean square error). Biomass losses were esti-
rmated in a three-phase approach: (i) wildfire severity was obtained using the difference
normalized burn ratio (ANBR), (ii) Aleppo pine forest was delimited using the National
Forest Map and ALS data and (iii} burning efficiency factors were applied considering severity
levels. Post-fire biomass was then transformed into CO, emissions (426,754.8 ton). This study
evidences the usefulness of low-density ALS data to accurately estimate pre-fire biomass, in
order to assess €O, emissions in a Mediterranean Aleppo pine forest.

Introduction 2006) particularly in summer months (Sebastian-
Lépez, Salvador-Civil, Gonzalo-Jiménez, &
SanMiguel-Ayanz, 2008), In Spain, fire statistic regis-
ters show a reduction in the number of fire events
during the last decade (2001-2010), as well as in the
total burned area (Rodrigues, Tbarra, Echeverria,
Perez-Cabello, & de la Riva, 2014; San-Miguel-
Ayanz et al., 2012). However, the occurrence of
large fires (>500 ha) has increased. In 2015, 39% of
the total area affected by fires was burned in a large
fire (MAGRAMA, 2016a). Moreover, if fire recur-
rence is high, regeneration process might fail for
even species with high resilience such as Aleppo
pine (Pirius halepensis Mill) (Pausas et al., 2008),
influencing carbon sequestration. Under this context,
scientists, fire managers and decision-makers require
the most accurate information available related to fire
emissions and its impact on the environment and
population. The account of carbon dioxide (CQO,)
emissions is essential for climate regulation policies
and the evaluation of the effects of these policies
(Mieville et al, 2010), as well as for understanding
the services that forest provide to societies (Lal, 2008;
Pan et al., 2011).

Wildfires are a socio-environmental hazard in
Mediterranean ecosystems, acting as a source of
greenhouse gases (GHGs) emissions to the atmo-
sphere (Akagi et al, 2013; Andreae et al, 1988;
Seiler & Crutzen, 1980; Van Der Werf et al., 2010;
Wiedinmyer et al., 2011). Consequently, fires are able
to alter the carbon cycle behaviour at regional or even
global scales (Narayan, Fernandes, Van Brusselen, &
Schuck, 2007), as well as to decrease the effect of
carbon sequestration by forest ecosystems (Van Der
Werf et al,, 2006; Wiedinmyer & Neff, 2007). In the
Mediterranean basin, an average of 45,000 fires is
recorded vyearly (Oliveira, Oehler, San-Miguel-
Avyanz, Camia, & Pereira, 2012), increasing the albedo
and determining the current landscape (Pausas,
Llovet, Rodrigo, & Vallejo, 2008). Although these
values and the resulting emissions are variable in
time and space, biomass burning contributed signifi-
cantly in the total direct carbon monoxide (CO)
emissions (Pétron et al, 2004). These natural or
anthropogenic disturbances might be enhanced by
climate change, increasing fire risk {(Moriondo et al,,
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GHG emissions from fires estimation require (i) the
delimitation of the burned area, (ii) the estimation of pre-
fire biomass, (iii) the assessment of the fraction of bio-
mass consumed by fire, also defined as burning efficiency
(De Santis, Asner, Vaughan, & Knapp, 2010) and (iv) the
use of conversion factors to estimate GHG emissions.
However, little research has been conducted on quantify-
ing pre-fire biomass and biomass consumed by fire.
According to De Santis et al. (2010), biomass consump-
tion was traditionally estimated using a two-step metho-
dology which includes (i) the estimation of pre-fire
biomass by applying allometric regression equations
using destructive sampling or biomass values per species
and (ii) the post-fire biomass estimated by field-based
weighting (Prasad et al., 2001; S4, Pereira, & Silva, 2005;
Ward et al., 1996) or by visual examination (Roy, Jin,
Lewis, & Justice, 2005). An alternative approach is based
on the use of remote sensing imagery for pre-fire bio-
mass estimation. Despite the wide acceptance of the use
of optical and radar remote sensing to estimate forest
attributes such as biomass (Chuvieco, 2009; Leboeuf,
Fournier, Luther, Beaudoin, & Guindon, 2012; Le
Toan, Beaudoin, Riom, & Guyon, 1992; Tanase, de la
Riva, Santoro, Pérez-Cabello, & Kasischke, 2011), air-
borne laser scanning {ALS) is considered one of the
best techniques for forest structural parameters estima-
tion (Lefsky, Cohen, Parker, & Harding, 2002; Maltamo,
Nasset, & Vauhkonen, 2014; Vosselman & Maas, 2010).

In this sense, some studies have used low-density
ALS data to estimate forest parameters such as tree
height, crown diameter, basal area, stem density,
volume (Guerra-Hernandez, Tomé, & Gonzdlez-
Ferreiro, 2016a; Hayashi, Weiskittel, & Sader, 2014;
Holopainen et al, 2010; Mehtitalo, Virolainen,
Tuomela, & Packalen, 2015; Montealegre, Lamelas,
de la Riva, Garcia-Martin, & Escribano, 2016;
Nasset, 2002; Nesset & @kland, 2002; Popescu,
Randolph, & Ross, 2003) as well as biomass (Garcia-
Gutiérrez, Martinez-Alvarez, Troncoso, & Riquelme,
2015; Guerra-Herndndez et al., 2016b; Hall, Burke,
Box, Kaufmann, & Stoker, 2005; Montagnoli et al,
2015; Shendryk, Margareta, Leif, Natascha, 2014). In
addition, some of them have compared different
point densities (Gonzdlez-Ferreiro et al., 2013;
Singh, Gang, James, & Ross, 2015). However, few
studies have been focused on comparing different
algorithms to estimate forest parameters and they
were all applied to high-density point clouds
(Gagliasso, Hummel, & Temesgen, 2014; Garcia-
Gutiérrez et al., 2015; Gleason & Im, 2012; Gérgens,
Montaghi, & Rodriguez, 2015; Latifi, Nothdurft, &
Koch, 2010).

The main objective of this study is to estimate the
CO; emissions derived from the consumption of the
aboveground tree biomass (AGB), which refers to the
total biomass of the trees considering stem, branches
and needles, in a heterogeneous Aleppo pine forest,
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located in Aragén Region (Spain). To achieve this
goal, a discrete, multiple-return, low point density
ALS data and field plots representative of pine stands
were used to fit and validate the AGB models. A
secondary objective was the comparison of different
regression models, including machine learning.

Besides, the majority of previous approaches to
CO; estimation assume that biomass is completely
consumed. However, during wildfires in conifer
stands in some cases only the needles and the small
fine twigs of the pine crowns are consumed (Call &
Albini, 1997; Mitsopoulos & Dimitrakopoulos, 2007;
Scott & Reinhardt, 2001). Consequently, different
combustion factors were applied to avoid assuming
that biomass was completely consumed by the fire
(French, Goovaerts, & Kasischke, 2004). The fire
severity levels were extracted from the difference
normalized burn ratio (ANBR) spectral index applied
to Landsat 8 OLI images.

Materials
Study area

The study area, burned on 4 July 2015, is located in
Luna municipality, northeast of Spain (42°12'N, 0°
45'W). Aleppo pine has a high potential of ignition
and represents almost 50% of the forested area in
Aragén and is well adapted to these Mediterranean
environmental conditions. The fire scorched in the
area of 14,263 ha, of which 3390.4 ha was woodland.
Those forested areas were covered in a 62.3% by
monospecific Aleppo pine. As can be observed in
Figure 1, for forest inventory purposes, the field cam-
paign to estimate AGB was conducted in a close
unburned area (Figure 1(b)). The proximity between
both sites (see Figure 1{a) and (b)) and the similarity
on environmental characteristics such as slope, cli-
mate and vegetation enable to extrapolate the AGB
model to the burned area (Figure 1(a)). This similar-
ity was previously evaluated by comparing some vari-
ables derived from the ALS metrics such as slope,
canopy cover and tree height.

These heterogeneous pine forests from the struc-
tural point of view appear fragmented into stands of
variable size, accompanied by an evergreen under-
storey with species, such as: Quercus ilex subsp.
rotundifolia, Quercus coccifera, Juniperus oxycedrus,
Buxus sempervirens and Juniperus phoenicea.

Climate of the region is Mediterranean with con-
tinental features. Annual precipitation is medium-low
and irregular, averaging 525 mm and mostly occur-
ring in autumn and spring. Winter has a monthly
mean temperature less than 10°C, whereas summers
have temperatures of ~20°C. The study area is char-
acterized by a hilly topography, with elevations ran-
ging from 430 to 1150 m above sea level and slopes
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Figure 1. Study area. Aleppo pine forest stands, inside the perimeter of the Luna wildfire (a); location of the 46 forest inventory
plots (b). High spatial resclution crthophotography (PNOA-2012) (IGN, 2017a) is used as backdrop.

from 0° to 39°. The lithology of the study area corre-
sponds to Miocene shales and sandstones, alternating
with conglomerates.

Field plot data

Field data were acquired in 46 circular plots, 15 m
radius at the unburned area during June and July
2015 (Figure 1(b)). The location of the field plots
was selected, within the limits of the Aleppo pine
stands at the unburned area, using a stratified ran-
dom sampling technique, in order to achieve a repre-
sentative sample of the wvariability of the terrain
(Neesset & Dkland, 2002), forest structure and tree
density (Montealegre et al., 2016). Thereby, terrain
slopes, tree height and canopy cover of the study area
were derived from ALS point cloud to define homo-
geneous areas.

The centre of the selected plots (Figure 1(b)) was
located in the field using a Leica VIVA GS15 CS10
GNSS real-time kinematic Global Positioning System.
The average accuracy of the planimetric coordinates
was 0.18 m. Tree breast height diameter (dbh) was
measured at 1.3 m, using a Mantax Precision Blue
diameter caliper (Haglof Sweden®). It should be noted
that only the trees with a dbh >7.5 cin were measured
in each plot. The AGB was calculated for each plot
according to Montero, Ruiz-Peinado, and Mufioz
(2005) allometric equation and extrapolated to per
hectare biomass value (kg of dry biomass per ha)
considering the plot area (Equation (1)).

CFxe*«dbh®

Biomass(kg/ha) = "
plot

«10,000, (1)

where CF is a correction factor (CF = ¢’ /2) being e
the Euler number and SEE the standard error

(0.151637); dbh is breast height diameter in cm; a
(—2.0939) and b {2.20988) are the specific parameters
for Aleppo pine; and Ap is the area of each plot
(706.8 m?).

These data act as ground truth to adjust and validate
the AGB predictive model, which would be extrapolated
to the burned area (Figure 1(a)) to estimate pre-fire
biomass. The extrapolation of the AGB model was car-
ried out in a Geographical Information System (GIS)
environment using the selected Light Detection and
Ranging (LiDAR) metrics and the coefficients of the
model.

Remote sensing data

The ALS data were captured for the burned and
unburned area in several surveys carried out 4 years
before the fire ignition between January and February
2011, using a small-footprint oscillating-mirror air-
borne Leica ALS60 discrete-return sensor. The
Spanish National Plan for Aerial Orthophotography
(PNOA) provided these data with a nominal density
of 0.5 point/m? (IGN, 2017b). Data were delivered by
the National Geographic Information Centre (CNIG)
in 2 x 2 km tiles of raw data points in LAS binary
files format v. 1.2. The x, ¥ and z coordinates were
provided in UTM Zone 30 ETRS 1985 geodetic refer-
ence system and orthometric heights. The point cloud
was captured with up to four returns measured per
pulse. The ALS60 sensor was operating in 1.064 pum
wavelength, 0.22 mrad beam divergence and £29 scan
angle degrees from nadir. The ALS point cloud den-
sity was 1.5 point/m?, considering all returns with a
vertical accuracy better than 0.2 m for the area
burned on 4 July 2015 and for the unburned one.
The temporal lag between ALS acquisition data at the
unburned area, captured in 2011, and fieldwork
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campaign, performed in June and July 2015, was
considered appropriate, as no significant changes
took place in the study area in that period.

Pre-fire and post-fire Landsat 8 OLI land surface
reflectance images, acquired on June 30 (path 200, row
31) and July 9 (path 199, row 31) 2015, were selected for
ANBR index calculation for the burned area and down-
loaded from USGS (2016). These products are generated
using Landsat Surface Reflectance Code (LaSRC) algo-
rithm (Vermote, Justice, Claverie, &Franch, 2016).

Methods

The two-phase approach methodology includes the
pre-fire biomass estimation through the comparison
of different models and the estimation of biomass
losses by applying three burning efficiency factors to
assess the CO; emissions to the atmosphere (Figure 2).

Pre-fire AGB estimation

This section describes the process followed for ALS
data processing, as well as the generation of pre-fire
AGB model.

ALS data processing

The first processing step was noise point removal,
which included verification of the overlapping returns.
Thereafter, ALS point clouds were filtered using the
multiscale curvature classification algorithm (Evans &
Hudak, 2007) to extract the ground points. This algo-
rithm, implemented in the MCC 2.1 command-line
tool, is suitable for this environment according to

[ Pre-fire Biomass estimation ]

Model for biomass
estimation

Models
comparison

ALS data
processing

[ Best biomass model for area B (Figure 1) ]

[ Extrapolation to area A pre-fire ]

ﬂomass losses and CD; emissions into the atmosphm

1. Burn severity dNBR index
2. Pre-fire Aleppa pine forest mapping
3. Burning efficiency factors

Past-fire biomass
- Carbon content
- Equation for computing GHG emissions

M
\ %

Figure 2. Methodology for biomass losses and CO; emissions
estimation.
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Montealegre, Lamelas, and de la Riva (2015a). Then, a
digital elevation model (DEM) with a 1 m size grid was
generated using the Point-TIN-Raster interpolation
method (Renslow, 2013), following Montealegre,
Lamelas, & de la Riva., (2015b). The normalized heights
were obtained by the subtraction of the ground eleva-
tion value of the DEM from each point height. The
normalized ALS tiles were clipped to the spatial extent
of each field plot (Figure 1(b)). Furthermore, a wide
range of statistical metrics commonly used as indepen-
dent variables in forestry were calculated (Evans,
Hudak, Faux, & Smith, 2009) using FUSION LDV
3.30 open source software (McGaughey, 2008). It
should be noted that ALS-derived variables were gen-
erated after applying a threshold value of 2 m height so
as to remove ground and understorey laser hits accord-
ing to Nilsson (1996) and Naesset and Okland (2002).

Model for estimating pre-fire AGB

With the aim of comparing the predictive perfor-
mance of different regression methods for the estima-
tion of AGB, eight regression methods were analysed:
a multivariate linear regression (MLR) model, two
machine learning algorithms and five regression trees
structures. These methods are briefly described below.

MLR has been widely employed to estimate forest
parameters by relating dependent variables, from field-
work campaign, and independent variables, extracted
from the ALS point cloud (Garcia, Godino, & Mauro,
2012; Gonzalez-Ferreiro, Dieguez-Aranda, & Miranda,
2012; Lim, Treitz, Wulder, St-Onge, & Flood, 2003;
Means et al, 1999; Nasset & ©Okland, 2002; Watt
et al,, 2013). As a first step following Montealegre
et al. (2016) the Spearman’s rank correlation coefficient
(p) was calculated in R software, in order to select the
ALS variables that show the strongest correlation coef-
ficient with field plot biomass data. The selection of the
ALS metrics was made within a minimum p value of
+0.5. Then, the selected variables were included in a
forward stepwise regression, in order to avoid overfit-
ting by selecting the smallest possible number of pre-
dictor variables. The fitted model was selected
according to measures of goodness of fit. Moreover, it
was verified if the fitted model meets the basic assump-
tions of linear regression models according to Garcia
et al. (2012). Logarithmic transformation of dependent
and independent variables was explored in the cases
where statistical hypothesis of linear regression models
could not be fulfilled (Garcia et al., 2012; Means et al.,
1999), as well as to verify whether the measures of
goodness of fit of the models improve.

Support vector machine (SVM) is a supervised
learning model which has associated learning algo-
rithms that analyse and recognize patterns. This
method assumes that input data are separable in
space (Mountrakis, Jungho, & Caesar, 2011). SVM
tries to find among multidimensional hyperplanes
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the optimal separation between classes, where the
separability is a maximum. The data located in the
hyperplane are the most difficult to classify since they
have lower separability and they are called support
vectors. SVM was implemented by using R package
“el071” and models with linear and radial kernels
were computed. In both SVM models, the parameter
cost was defined in the interval 1-1000, and the
parameter gamma in the interval 0.01-1, applying
the best parameters after tuning the model.

Random forest (RF) is an ensemble learning
method that uses decision trees as base classifier. RF
combines a decision tree that depends on the values of
a random vector sampled independently and with the
same distribution for all trees in the forest (Breiman,
2001). The algorithm adds randomness to bagging and
increases the diversity of decision trees by growing
them from different subsets. In each decision tree, RF
divides the nodes by using the best variables from a
random sample. RF was implemented through R pack-
age “randomForest” (Liaw & Wiener, 2002) and
“caret” (Van Essen et al., 2001). The RF model was
adjusted using two parameters: the number of trees to
growth (ntrees) and the number of variables selected
randomly at each split (mtry). They were in the inter-
vals 1-1000 and 1-2, respectively.

The regression tree structures are nonparametric
regression techniques based on “If-Then” rules. In
this study three linear models and two non-linear
local models are computed. The R package
“CORElearn” has been used to perform the different
regression trees. It should be added that the differ-
ences between them refer to the regression model
considered in the leaf nodes.

Locally weighted linear regression (LWLR), or
loess, is a method which fits a regression surface to
data by smoothing the dependent variable as a func-
tion of the independent variables (Cleveland &
Devlin, 1988). The coefficient of smoothness is fitted
by computing weighted mean square error and con-
sidering a distance function.

Linear model with a minimum length principle
(MDL) is based on the rule developed by Rissanen
(1978) which considers that regularities in a set of
data can be used to compress the data by using fewer
symbols, from a finite alphabet, than needed to
explain the data faithfully.

Reduced linear model {RLM) is a linear model com-
puted by the least square method and, after that, simpli-
fied using an exhaustive search to remove those variables
that contribute little to the model in order to minimize
the estimated error, as in regression tree models like the
so-called M5 in Waikato Environment for Knowledge
Analysis (Weka) software (Quinlan, 1992}.

K nearest neighbour (KNN) is a lazy learning
method based on the KNN algorithm (Fix & Hodges,
1951), which includes two phases. First, the KNNs are

searched using the complete dataset and considering an
established distance. Then, the mean of the k-most
similar instances is used for the prediction.

Weighted k nearest neighbours (WKNNs) is a
refinement of the KINN algorithm, which gives greater
weight to the closer neighbours according to their
distance to the observations. In this the
weighted mean of the KNNs is used for the prediction,

sense,

Model validation and comparison
The algorithms were computed after applying a pre-
processing phase which is based on the normalization
of the data in values ranging from 0 to 1. The scaling
of the data avoids weights saturation (Goérgens et al.,
2015) and may improve the performance of the mod-
els. In order to avoid overfitting of the model by
selecting the smallest possible number of predictor
variables, a forward stepwise regression was used.

Considering that fieldwork is a time-consuming
task and increases the costs of the study, it was not
possible to measure a high number of field plots. In
this sense, the 46 measured plots, although may seem
a low number, are enough to meet the statistical
requirements. Accordingly, the models were validated
using a leave-one-out cross-validation (LOOCV)
technique (Maltamo et al., 2014}, in order to do not
further reduce the sample (Andersen, McGaughey, &
Reutebuch, 2005). For those methods with random-
LOOCV was executed 100 times so as to
increase the robustness {Garcia-
Gutiérrez et al., 2015).

The comparison between models was performed

ness,
in the results

by analysing the results in terms of root mean square
error (RMSE) and bias. Furthermore, Friedman non-
parametric test was applied in order to compare the
performance of the different models (Friedman,
1940). The test was carried out separately for each
RMSE measure of each fold of the cross-validation
(Stojanova, Pande, Valentin, Andrej, & Sado, 2010). In
those cases where the null hypothesis of Friedman
test was rejected, which implies that the models were
not equivalent, the Nemenyi (1963) post-hoc test was
used to determine whether the differences between
the models were statistically significant, with a sig-
nificance level of 0.05.

Estimates of biomass losses and conversion to
CO, emissions into the atmosphere

The estimation of biomass losses was performed in three
phases: (i} wildfire severity estimation, (ii) pre-fire
Aleppo pine forest location mapping and (iii) selection
of burning efficiency factors related to pre-fire vegetation
(De Santis et al., 2010; Oliva & Chuvieco, 2011).

First, wildfire severity was estimated according to
FIREMON methodology (Key & Benson, 2006). NBR
was calculated for pre-fire and post-fire images
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(Equation (2)). Then, the ANBR was estimated by the
subtraction of NBR post-fire from NBR pre-fire
(Equation (3)). Subsequently, the burned area was
delimited using this index in a GIS environment.

NBR = (PNIR - PSWIR)/(PNIR + PSWIR)'- (2)

ANBR = NBRprefire — NBRpostfire, (3)

where pyp (near infrared) and pgyp (short-wave
infrared) refer to bands 5 and 7 Landsat 8 OLI reflec-
tance, respectively.

In a second phase, the location of pre-fire Aleppo
pine woodland was delimited using the Spanish
National Forest Map (MAGRAMA, 2016b), and the
canopy height model derived from the ALS data
captured previous to fire. In order to improve the
accuracy in forest location, stands less than 2 m high
were excluded from the analysis.

Third, a thorough bibliographic search of burning
efficiency values for Mediterranean conifer forests
was conducted (Deeming, Burgan, & Cohen, 1977;
Miranda et al., 2005). However, few approaches were
suitable to our Mediterranean conifer forests and
most of them assume that forest biomass is consumed
completely (French et al., 2004). The goal of this
study was to obtain spatialized coefficients related to
different burn severity levels. Thus, following De
Santis et al. (2010) methodology, three burning effi-
ciency factors, related to pre-fire vegetation, were
applied considering low, moderate and high severity
levels. The four generic severity ranges proposed by
Key and Benson (2006) {Table 1) were reclassified in
three ranges so as to match with the three burning
efficiency factors. In this regard, the low burning
efficiency value denotes low consumption of the
leaves and very low woody branches consumption;
the moderate burning efficiency value indicates inter-
mediate consumption of the leaves and moderate
consumption of small branches; and the high burning
efficiency value suggests a complete consumption of
the leaves and high loss of small branches and twigs.

The conversion of biomass losses to CO» emis-
sions requires the estimation of the biomass carbon
content and the application of an emission factor.
The carbon content was computed using a conver-
sion factor of 0.499 set by Montero et al. (2005} for
Aleppo pine. With respect to the emission factors,
several conversion factors have been proposed so as

Table 1. Severity levels, ANBR generic ranges defined by Key
and Benson {(2006), and burning efficiency factors used to
estimate biomass losses following De Santis et al. (2010).
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to estimate different GHG emissions to the atmo-
sphere. In this sense, the account of CO, emissions
to the atmosphere generated from forest biomass
obtained according to Trozzi,
Vaccaro, & Piscitello {2002) equation, which includes
the same parameters as the equations established by
IPCC (2006), Levine (2003) and Seiler and Crutzen
(1980) (Equation (4)).

combustion was

CO; = exdxC, (4

where ¢ is the fraction of total carbon emitted as CO,
(0.888); & is the factor of conversion from the emis-
sions in ton of carbon to the emissions in ton of CO,
(44/12); and C is the carbon content,

Results

A summary of the field plot characteristics is pre-
sented in Table 2. Inventoried trees present a variety
of diameters, from 14.2 to 28.1 cm, and diverse
heights, ranging from 7.2 to 17.2 m. This accounted
for the variability of biomass in the study area.

All models included two ALS-derived variables:
the percentage of first returns above 2 m (#-test: 8.3)
and the 40th percentile of the return heights (¢-test:
4.4), both variables showing a direct and coherent
relation with AGB. The higher value of the variables,
the higher biomass amount.

The regression models to estimate the AGB are
summarized in Table 3. The MLR and the SVM
with radial kernel (cost = 570 and gamma = 0.03)
models presented the lowest RMSE with 6.1 and 7.3
ton/ha, respectively. LWLR regression tree performs
slightly better than SVM with linear kernel (cost =210
and gamma = 0.01), with RMSE of 8.3 and 8.5 ton/ha,
respectively. Furthermore, the remaining regression
trees as well as RF machine learning (ntrees = 500
and mtry = 1) show a lower accuracy. It should be
added that most of the models present values of bias
close to zero, except from SVM linear kernel, WKNN
and KNN models that show a slight overestimation
with values close to 1.

The performance comparison between the models,
by using Friedman test, indicates that the models are
not equivalent with a p-value of 0.000. However, the
application of post-hoc Nemenyi test shows that only
WKNN {p-value = 0.0) and KNN (p-value = 0.0)
models presents differences statistically significant,
with 95% of probability.

Table 2. Summary of the field plots characteristics (n = 46;
inventoried trees — 1870).

Severity level ANBR range Burning efficiency factors Min. Max. Range  Mean sSD

Unburned —100 to +99 0.00 Slope (degrees) 25 29.8 27.2 12.8 6.4
Low severity +100 to +269 0.25 Tree height (m) 7.2 17.2 10.0 9.6 1.8
Moderate—low severity +270 to +439 042 Tree density (tree/ha) 282.9 1202.5 919.6 575.8 237.8
Moderate-high severity  +440 to +659 dbh {(cm) 14.2 28.1 13.9 18.7 28
High severity +660 to +1300 0.57 AGB (ton/ha) 244 1309 106.4 554 204
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Table 3, Summary of the models and the validation results
for the estimated variable in terms of RMSE, relative RMSE (%
RMSE) and bias.

Cross-validation
RMSE 9%RMSE Bias R*

Fitting phase
RMSE %RMSE Bias

Predictive model

The implementation of the MLR model {(Equation
(5)) in a GIS allowed estimating pre-fire AGB, which
accounts 546,486.7 ton.

PrefireAGB = 1.007%10689.32

M et D0 82 M 008 OBt o i s s
SVM linear kernel 8.0 143 1.1 85 154 14 08

RF 4.7 8.5 0.2 9.3 16.7 0.5 0.8 *2(0.0713540&\ percentile of height) (5)
LWLR 5.8 105 -02 8.3 15.0 02 08 )

g’tﬂ‘ ?; 1;3 :gfll g:g :2? 73_’? 8:2 The Aleppo pine forest was burned with a high sever-
WKNN 107 193 09 127 230 11 06 ity in most part of the area, as can be observed in Figure 4
KNN 114 20.6 1.2 129 23.2 11 0.6

Figure 3 shows the scatter plots of the observed
AGB against the model predictions for the different
regression models. MLR and SVM with radial ker-
nel show consistent results and high coefficient of
determination (0.88 and 0.87, respectively). SVM
with linear kernel and LWLR also present good
coefficient of determination (0.84 and 0.83, respec-
tively). Lower coetficients of determination as well
as less stable results are evidenced in the scatter-
plots for the remaining regression tress, especially
WEKNN and KNN.

MLR

=]
k=]
-
=}
=3

SVM radial kernel

(a). The biomass losses range from 4 ton/ha to more than
12 ton/ha (Figure 4(b)). As can be observed in Table 4,
high severity areas represent ~60% of Aleppo pine
burned area, accounting ~70% of biomass losses.
Finally, the combustion of Aleppo pine forest in Luna
wildfire emitted 426,754.8 tons of CQ, into the
atmosphere.

Discussion

The use of GHG emissions equations is widely
accepted for accounting forest biomass combustion
by a wildfire (IPCC, 2006; Levine, 2003; Seiler &
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Figure 3. Scatterplot of predicted values vs. observed values for the AGB using different regression methods.
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Figure 4. Burn severity estimated in Aleppo pine forest burned in Luna wildfire using ANBR index {a}. Biomass losses
estimation applying combustion factors {b). High spatial resolution orthophotography (PNOA-2012) (IGN, 2017a) is used as

backdrop.

Table 4. Summary of results obtained for the burned area
concerning to Aleppo pine forest affected by fire, pre-fire
AGB, hiomass losses, carbon content and CO, emissions.

Aleppo Pre-fire  Biomass Carban CO,
Burn pine area AGB losses content  emissions
severity (ha) {ton) {ton) (tan) {ton)
Unburned 26.8 20,744.3 0.0 0.0 0.0
Low 117.0 36,022.2 9005.5 4483.7 14,631.7
Medium 594.5 169,908.7 71,361.6 356094 115944.4
High 1034.2 319,811.4 182,2925 ©0,963.9 296,178.6
Total 1772.6 546,486.7 262,659.7 131,067.2 426,754.8

Crutzen, 1980; Trozzi et al., 2002). Moreover, several
conversion factors as well as emission factors, from
global to regional scales, have been proposed to accu-
rately estimate emissions to the atmosphere.
However, one of the main uncertainties related to
the use of these equations is the account of pre-fire
biomass and biomass losses. In this sense, LiDAR
technology has been proposed as the best technique
to accurately estimate forest structural parameters,
such as biomass, and artificial intelligence methods
have been applied and compared to generate this
variable. Nevertheless, little research has focused on
comparing the performance of several regression
models, including machine learning algorithms and
regression trees, regarding traditional MLR models to
estimate forest parameters.

This study proposes the use of low point density ALS
data to improve the estimation of pre-fire AGB by
comparing a set of state-of-the-art methods and tradi-
tional linear regression methods in a Mediterranean
Aleppo pine forest, considering that biomass estimation
is the key information to compute burning emissions.

The results demonstrate that low-density ALS data
can be used to accurately estimate pre-fire biomass.
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The two ALS-derived variables included in the models
were analogous to those proposed by other authors
(i-e. Guerra-Herndndez et al., 2016b; Montagnoli et al.,
2015). These variables concern the canopy cover dis-
tribution and the wvertical distribution of the point
cloud. The comparison between regression models
shows that the MLR model has the lowest RMSE (6.1
ton/ha) and bias (0.0), matching with the values
obtained by other authors (Gonzalez-Ferreiro et al.,
2012; Montealegre, Lamelas, de la Riva, Garcia-
Martin, & Escribano, 2015c). Consequently, MLR
slightly outperforms other nonparametric methods
supporting Gorgens et al. (2015) findings. However,
no statistically significant differences between MLR
and SVM with kernel radial were found. This suggests
that the results partly agree with Gleason and Im
(2012), Gagliasso et al. (2014) and Garcia-Gutiérrez
et al. (2015), who obtained lower estimation errors
with nonparametric techniques, although the later
authors included a relatively high number of indepen-
dent variables in the models. In this sense, the use of a
large number of variables tends to increase the perfor-
mance of the models. Nevertheless, the selection of a
reduced number of biologically representative wvari-
ables, especially when computing non-linear regres-
sion models, might generate more understandable
models for forest management purposes. This also
might explain that MLR models outperform other
nonparametric models, considering the number of
variables included in Goérgens et al. (2015) models. It
is to notice that, as in the case of several previous
studies (Garcia, Riafio, Chuvieco, & Danson, 2010;
Neesset & Gobakken, 2008; Nasset & @Dkland, 2002),
it has been necessary to perform a logarithmic
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transformation of the dependent variable in order to
meet the assumptions of the linear regression model.
The three-phase approach performed is considered a
suitable option for estimating biomass losses, which
account for 262,659.7 ton. This methodology solves
the lack of post-fire forest structure information derived
from ALS data and constitutes an alternative to field
estimation of burning efficiency, which is laborious,
expensive and requires a detailed knowledge of the
pre-fire scenario (De Santis et al, 2010). The use of
conversion and  emission factors for  the
Mediterranean basin, included in Trozzi et al. (2002)
equation, enables to accurately estimate CO, emission
at a regional scale, summing up a total of 426,754.8 ton.
When comparing nonparametric methods and
linear regression models, discrepancies appear. Cur
findings show that not always the use of nonpara-
metric methods ensures the best biomass estima-
tions. In this sense, the generation of several
models such as MLR, SVM with radial kernel,
LWLR or SVM with linear kernel might be taken
into account. Furthermore, the use of variable selec-
tion processes should be considered, in order to
determine a limited number of variables which are
biologically representative. Consequently, the use of
new artificial intelligence models and nonparametric
models, which have several advantages for example
no need of normality, should be used within the
forestry and environmental purposes of obtaining
robust and understandable models. The improved
estimation of CO; emissions from biomass burning,
by including ALS data as relevant information for
computing biomass, is considered to better under-
stand the interactions between fire disturbances and
the emissions to the atmosphere. Nevertheless, it is
to notice that our model does not consider the
emissions generated by combustion of litter, shrubs
and young trees, implying an underestimation of the
total CO, emissions during wildfire. It was not pos-
sible to estimate these fractions of biomass. In fact,
the few studies developed to estimate shrub biomass
were performed using high-density ALS data or full
waveform LiDAR (Estornell, Ruiz, Veldquez-Marti,
& Hermosilla, 2012; E. Greaves et al., 2016;
Swatantran, Dubayah, Roberts, Hofton, & Bryan
Blair, 2011). Moreover, the majority of them were
developed in areas without tree cover due to the
difficulty of the pulse to penetrate the canopy
(Vosselman & Maas, 2010). In this sense, further
research is needed on the estimation of shrub bio-
mass using low point density ALS data in order to
improve GHG emissions to the atmosphere.
Considering that the findings are site-dependent,
the comparison of different biologically representa-
tive models for biomass estimation at regional scales,
as well as alternative variable selection processes, may
be considered. In this sense, the use of multi-

temporal ALS or multi-temporal series of remote
sensing data might be useful to better understand
the effect of wildfire disturbances to the atmosphere.
It would also be desirable to focus on the account of
CO, emissions or other GHG gasses generated by
combustion of other Mediterranean species.

Conclusions

This study verifies the usefulness of low-density ALS
data to accurately estimate pre-fire AGB in a mono-
specific Aleppo pine forest, which is relevant infor-
mation to compute biomass losses caused by fire and
CQO, emissions. The comparison of the effectiveness
of a set of state-of-the-art artificial intelligence meth-
ods and traditional linear regression methods is espe-
cially interesting to Iimprove forest parameters
modelling. The best model for pre-fire AGB estima-
tion was the MLR, which included two ALS wvariables:
the percentage of first returns above 2 m and 40th
percentile of height, presenting an RMSE of 6.1 ton/
ha and a bias of 0.0. No statistically significant differ-
ences between MLR and SVM with kernel radial,
which is the second best model, were found. The
three-phase approach used for biomass losses estima-
tion and the subsequent transformation into CO,
enable to quantify the emissions to the atmosphere
by the combustion of Mediterranean Aleppo pine
forest in Luna wildfire, summing up a total of
426,754.8 ton.
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3.2. Estimation of total biomass in Aleppo pine forest stands
applying parametric and nonparametric methods to low-

density airborne laser scanning data

Estimacién de biomasa total en bosques de pino carrasco aplicando métodos paramétricos y no

parametros mediante datos de escaner laser aeroportado de baja densidad
RESUMEN

La cuantificacion de la biomasa total es de utilidad para la evaluacion de las politicas de regulacion
climaticas desde escalas locales a escalas globales. Esta investigacion estima la biomasa total,
incluyendo la biomasa arborea y arbustiva, en bosques de Pino carrasco localizados en la region de
Aragon (Espafia), utilizando datos de escaner laser aeroportado (ALS) y trabajo de campo. La
comparacion de cinco métodos de seleccion y cinco modelos de regresion se realizd con objeto de
relacionar la biomasa total, estimada en 83 parcelas de campo mediante ecuaciones alométricas,
con diversas variables extraidas de la nube de puntos ALS. Para el calculo de las variables ALS se
utiliz6 un umbral de 0.2 m. La muestra se dividié en entrenamiento y validacion componiéndose
de 62 y 21 parcelas de campo, respectivamente. El modelo con menor error cuadratico medio
después de la validacion (15,14 tons ha') fue el modelo de regresion linear multivariante. Dicho
modelo incluyé tres variables ALS: el percentil 25 de la altura de retornos, la varianza y el
porcentaje de primeros retornos sobre la media. El estudio confirma la utilidad de los datos ALS
de baja densidad para estimar con exactitud la biomasa total, y por consiguiente mejorar la
cuantificacién de biomasa disponible y contenido de carbono en Pinares mediterraneos de Pino

carrasco.
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Abstract: The account of total biomass can assist with the evaluation of climate regulation policies
from local to global scales. This study estimates total biomass (TB), including tree and shrub biomass
fractions, in Pinus halepensis Miller forest stands located in the Aragon Region (Spain) using Airborne
Laser Scanning (ALS) data and fieldwork. A comparison of five selection methods and five regression
models was performed to relate the TB, estimated in 83 field plots through allometric equations,
to several independent variables extracted from ALS point cloud. A height threshold was used to
include returns above 0.2 m when calculating ALS variables. The sample was divided into training
and test sets composed of 62 and 21 plots, respectively. The model with the lower root mean square
error (15.14 tons/ha} after validation was the multiple linear regression model including three ALS
variables: the 25th percentile of the return heights, the variance, and the percentage of first returns
abowve the mean. This study confirms the usefulness of low-density ALS data to accurately estimate
total biomass, and thus better assess the availability of biomass and carbon content in a Mediterranean
Aleppo pine forest.

Keywords: ALS; total biomass; shrub fraction; regression models; Aleppo pine

1. Introduction

Forest ecosystems and their associated understory act as important carbon sinks, providing
habitats for wildlife [1,2] and promoting economic and social services to societies [3,4].
The sequestration of carbon and C(O», by forest biomass and soils plays a major role in managing
greenhouse gas emissions [5] providing a low-cost opportunity in climate policies [6]. The estimation
of tree and shrub biomass in the Mediterranean Basin also contributes to better understanding
fire behavior, which constitutes one of the most relevant disturbances as well as being a source
of greenhouse gas emission to the atmosphere [7-11]. The inclusion of understory vegetation in
carbon sequestration has been traditionally ignored [12] since it represents lower amounts of biomass
compared with tree aboveground biomass (AGB). However, considering the global scale this amount
constitutes an important pool for carbon sequestration [12,13].

Remote sensing technologies have demonstrated effectiveness for estimating forest resources such
as biomass [14,15]. Particularly, Airborne Laser Scanning (ALS) is currently considered one of the best
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tools due to its capability to provide 3-D information of vegetation structure. Vertical forest structure
has been estimated with ALS data for several applications, such as forest inventory [16-18], forest
structural heterogeneity [19-22], fuel type mapping [23,24] fuel modelling [23-26] or tree damage
detection after natural disasters [27-29] for several height strata. However, few studies have focused
on shrub biomass characterization with ALS data [30-33]. Some studies have used low density ALS
data to estimate forest biomass [25,34-38], but little research has been performed including shrub
vegetation because of the inherent difficulty in the estimation related to its low height and uniform
surface [30]. Several studies state that ALS data tends to underestimate shrub vegetation [39-42].
Besides, when shrub and tree vegetation cover is high [43] and density of ALS data is low, the accuracy
of digital elevation models (DEM) used to normalize return heights decreases [30]. The performed
studies use an approach that combines ALS data and harvesting field measurements for biomass
estimation [30,33]. In this sense, the lack of more studies to characterize shrub vegetation might
have been associated with the necessary destructive sampling to generate forest structure equations,
the assumption of simple geometric shapes [44,45], and the additional difficulty to estimate biomass at
a regional scale using low-density ALS data. However, the presence of shrub biomass in the understory
or the existence of shrubland areas constitutes an important land use in the Mediterranean basin.
In this sense, the availability of shrub allometric equations for the main Spanish shrub species [46]
have opened new opportunities. These equations allow the estimation of shrub biomass from simple
field measurements, such as height and percentage cover per species or group of species. Thus,
an area-based approach could be used to estimate biomass, using larger field plots (15 m radius) than
traditional ones (1.5 m radius). This approach seems to be less affected by low-density ALS data, as has
been proven in accurafely estimating forest structure parameters in heterogeneous forests [47].

Few studies have compared different selection methods for ALS modelling [48,49]. In this sense,
LASSO selection and the varimax rotation for Principal component analysis (PCA) selection are
proposed as novel selection processes for biomass estimation. Some studies have compared different
regression models to estimate forest parameters using high point cloud density [16,34,50-52], but only
Lietal. [33] have compared two regression models to estimate shrub biomass.

The main objective of this study is to estimate the total biomass (TB) in heterogeneous Pinus
halepensis Miller (hereinafter Aleppo pine} forest stands located in the Aragon Region (Spain). In this
manuscript, TB refers to the dry weight of the plant material from trees, including roots, stems,
bark, branches, and leaves from the ground to the apex, as well as the aboveground plant material
from shrubs. The values of TB are expressed per unit area in terms of density, i.e., tons of TB per
hectare (tons/ha). Specifically, we aim to (1) examine the relationship between biomass calculated at
the field plot using allometric equations and ALS-derived variables; and (2) compare five variable
selection methods and five different regression models, including regression trees and machine learning
algorithms. This paper is organized in five sections. Section 2 describes the processing of ALS and
tield data, the selection methods, the regression models applied, as well as, the model comparison
and validation methods used. Section 3 presents the results including the best TB model. Section 4
describes the discussion of the results and the paper’s conclusions are included in Section 5.

2. Materials and Methods

2.1. Study Area

The Aleppo pine forests under study are located in the Ebro Basin (Figure 1), in Northeast
Spain. This species represents almost 50% of the forested tree area in Aragén and is well adapted to
Mediterranean environmental conditions. The two selected areas (Figure 1) are representative of the
Aleppo pine forest in Central Ebro Valley, occupying 11,400 ha,

Climate of the region is Mediterranean with continental features. The average annual temperature
is =213 °C, ranging from winter mean temperatures lower than 6 °C, to summer mean temperatures of
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=21 °C. Annual precipitation is medium-low and irregular, averaging 455 mm and mostly occurring
in autumn and spring [53].

Aleppo pine forests are characterized by a hilly topography, with elevations ranging from 300 to
1150 m above sea level and slopes from 0° to 39°. The lithology of the study area varies from Miocene
shales and sandstones, alternating with conglomerates in area A (Figure 1A) to Miocene carbonate and
marl sediments in area B (Figure 1B).
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Figure 1. Study area. Land cover types and location of 83 forest inventory plots. High spatial resolution
orthophotography of the Spanish National Plan for Aerial Orthophotography [54] is used as backdrop.
Coordinate System: ETRS89 UTM Zone 30 N.

Most of these pine stands are semi-natural, although some stands located in the south-eastern
part of the area B (Figure 1B) were planted approximately forty years ago. The evergreen understory
includes species such as Quercus ilex subsp. rotundifolia, Quercus coccifera, funiperus oxycedrus, Buxus
sempervirens, funiperus phoenicea, Rosmarinus officinalis, and Thymus vulgaris.
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2.2, ALS Data

The ALS data were collected by the Spanish National Plan for Aerial Orthophotography (PNOA)
and captured in several surveys carried out between January and February 2011. An airborne Leica
ALS60 discrete-return sensor with a small-footprint oscillating-mirror was used. The sensor was
operated at a wavelength of 1.064 um and a scan angle of £29° from nadir. Data were provided by the
National Geographic Information Centre {CNIG) in 2 X 2 km tiles of raw data points in LAS binary
files format v. 1.2. The geodetic reference system for x, y, and z coordinates was ETRS 1989 UTM
Zone 30 N and heights were orthometrically corrected. The point cloud was captured with up to four
returns measured per pulse. The point cloud density was 1.5 point/m?, considering all returns with a
vertical accuracy better than 0.2 m.

2.3. Field Plot Data and Conversion of Biomass Measurements to ALS Campaign Year

Field data were acquired in 83 circular plots, 15 m radius, at the two study areas (Figure 1).
The sampling data fulfil the statistical requirements [55] and consider the size of the study area and
the variability of pine forest in terms of canopy cover (CC), canopy height, and terrain slope [56].
The 45 field plots located in area A were collected from June to July 2015 and the 38 field plots located in
area B were collected from July to September 2014. A stratified random sampling technique was selected
to establish the location of the field plots, considering a representative sample of the tree density, forest
structure [47], and terrain variability [57]. To perform this procedure, tree height (h), CC and terrain
slopes of the study area were derived from ALS point cloud to define homogeneous areas.

The center of the designated circular plots was located in the field using a Leica VIVA® GS15
(510 GNSS real-time kinematic Global Positioning System. The average accuracy of the planimetric
coordinates was 0.16 m. The green crown height and h parameter were measured using a Haglof
Sweden® Vertex instrument and the tree diameter at breast height (dbh) was measured at 1.3 m, using
a Haglof Sweden® Mantax Precision Blue diameter calliper. Trees with a dbh larger than 7.5 cm were
measured in each plot, and trees with a dbh lower than 7.5 cm were only counted. The percentage
of canopy cover was estimated, as well as the average height of the different shrub species and the
understory coverage.

The temporal lag between ALS acquisition data and field work campaign was 3 and 4 years in
area B and area A, respectively. Although no significant changes took place in the study area in that
period, field plot data were transformed to match the ALS campaign year. For this purpose, the values
of dbh and height growth per diametric class provided by the National Forest Inventory (NFI) were
used. These refer to the difference of years between the second NFI (NFI2) and the third one (NFI3),
which is eleven years. A linear interpolation based on stand tables was made to estimate the variation
between field data and ALS data acquisition (Table 1}.

Table 1. Values of tree diameter at breast height (dbh) and height growth between the second National
Forest Inventory (NFI2) and the third one (NFI3) (11 vears) and subtractive values of dbh and height
when applying linear interpolated degrowth to match Airborne Laser Scanning (ALS) year.

Area A Area B
Diametric Class (cm) dbh Growth (mm) Height Growth (m) - -
dbh (mm)  Height (m)  dbh{mm)  Height (m)

<10 24 1.20 —6.55 —0.33 —873 —0.44
10-15 29 140 —7.91 —0.38 -10.55 —0.51
15-20 33 1.50 —9.00 —0.41 —12.00 —0.55
20-25 30 1.40 —8.18 —0.38 —10.91 —0.51
25-30 30 1.40 —8.18 —0.38 —-10.91 —(.51
30-35 33 1.10 —=9.00 —0.30 —=12.00 —0.40
3540 32 1.50 —8.73 —0.41 —11.64 —0.55
4045 27 1.60 —7.36 —0.44 —9.82 —0.58
45-50 24 1.90 6.55 0.52 873 0.69
5055 58 1.00 —15.82 —0.27 —21.09 —0.36
5560 10 0.50 —2.73 —0.14 —3.64 —0.18
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Total tree biomass fractions were calculated using the Pinus halepensis allometric equations
according to Ruiz-Peinado et al. [58] (Equations (1)—(5)):

We(kg) = 0.0139 x dbh?® x h )
Wyr(kg) = 3.926 x (dbh —27.5) x Z;

Ifdbh <275cmthenZ = 0; f dhb > 275 cmthenZ =1 (2)
Wia_7(kg) = 4.257 + 0.00506 x dbh? x h — 0.0722 x dbh x h (3)
Wiz4n(kg) = 6.197 + 0.00932 x dbh? x h — 0.0686 x dbh x h (4)

W (kg) = 0.0785 x dbh? (5)

where W is the biomass weight of the stem fraction, Wy; is the biomass weight of the thick branch
fraction (diameter larger than 7 cm), Wy,;_7 is the biomass weight of medium branch fraction (diameter
between 2 and 7 cm), Wi, is the biomass weight of the thin branch fraction (diameter smaller than
2 em) with needles, and W is the biomass weight of the roots.

Subsequently, the biomass fractions were summed up to calculate the total tree biomass of each
individual tree. Then, these biomass values were added to obtain per plot biomass values that were
later expressed in tons per hectare.

Shrub biomass was calculated at plot level using Montero et al. [46] equations for the different
shrub formations of the study area according to the Spanish Forest Map (MFE) categories [59]
(Equations (6)—(10)):

Shrub hedges, borders, galleries, etc.:

In(W) = 0.494 x In(CC) (6)
Quercus coccifera and Pistacia lentiscus:
In(W) = —2.892 + 1.505 x In(hm ) 4 0.462 x In{CC) @)
Leguminosae aulagoideas and related shrubs:
In(W) = —2.464 + 0.808 x In(hy ) + 0.761 x In{CC) (8)
Labiatae and thymus formations:
In(W) = —1.877 + 0.643 x In(hp ) + 0.661 x In{CC) (9)
General shrub biomass:
In(W) = —2.560 + 1.006 x In(hm) + 0.672 x In{C) 10y

where W is the biomass weight for each species in tons/ha, hy, is the average shrub height at plot level
and CC is the percentage of shrub canopy cover at plot level.

Equation (6} was applied for Crataegus monogina, Rhamnus lycioides and Rosa canina; Equation (7)
was used for Quercus coccifera; Equation (8) was applied for Genista scorpius; Equation (9) was
used for Thymus sp. Subsequently, general Equation (10) was used for all the other inventoried
species: Rosmarinus officinalis, Juniperus oxycedrus, Juniperus sabina, Buxus sempervirens, Genista florida,
and Salsola vermiculata. It should be noted that Equation (10) was also applied for Quercuis ilex and Pinus

halepensis with less than 7.5 cm of dbh, as it is not possible to use available tree allometric equations.

Shrub biomass in every plot was calculated summing up the biomass values for each type of species.
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The estimation of shrub biomass to match ALS year was carried out by applying shrub biomass
growing equations according to Montero et al. [46] (Equations (11)—(14)). It should be noted that
no growing equations were developed by Montero et al. [46] for shrub edges, borders, and gallerie
formation. Consequently, the General shrub growing biomass (Equation (14)) was applied for Crataegus
monogina, Rhamnus lycioides, and Rosa canina.

Quercus coccifera and Pistacia lentiscus:

In{W) = —4.955 + 1.150 x In(hy ) + 0.463 x In{CC) (11
Leguminosae aulagoideas and related shrubs:

In{W) = —4.479 + 0.715 x In(hy,) + 0.701 x In{CC) (12)
Labiatae and thymus formations:

In(W) = —4.446 + 0.753 % In(hm ) + 0.573 x In{CC) (13)
General shrub biomass:

In(W) = —4.771 + 0.814 » In(hy,) + 0.676 x In{CC) (14)

where W is the biomass weight for each species in tons/ha, hy, is the average shrub height at plot
level, and CC is the percentage of shrub cancpy cover fraction at plot level. Then, the shrub biomass
growing values per year in every plot were calculated summing up the biomass values for each species
obtained from Equations (10)—(13). These annual growing values were subtracted from the measured
ones considering the difference in years between ALS flight and field data acquisition.

Finally, TB density was calculated for each plot by adding up the tree biomass and the above
ground shrub biomass expressed in tons of dry biomass per hectare.

2.4. ALS Data Processing

The noise point class was removed and ground points were classified according to
Montealegre et al. [60] using the multiscale curvature classification algorithm [61]. This algorithm is
implemented in MCC 2.1 command-line tool as a C++ application. The Point-TIN-Raster interpolation
method [61], implemented in ArcGIS 10.5 software, was applied to generate a digital elevation model
(DEM) with 1 m size grid [60]. Point heights were normalized with the DEM and ALS tiles were
clipped to the spatial extent of each field plot. Furthermore, a full suite of statistical metrics commonly
used as independent variables in forestry was calculated [62] using FUSION LDV 3.60 open source
software [63] including variables related to height distribution: percentiles, mean elevation, kurtosis,
skewness, etc.; and variables related to the percentage of canopy cover. According to Nilsson [64] and
Naesset and @kland [57], a threshold value of 0.2 m height was applied to remove ground laser hits
while considering the understory. The threshold is related to the ALS sensor precision in coordinate Z,
which has a root mean square error (RMSE) below 0.2 m.

2.5. Selection of ALS Variables

Five selection processes were analyzed to select the ALS independent variables: (1) Spearman’s
rank correlation; (2) Stepwise selection; (3) Principal component analysis (PCA) and Varimax rotation;
(4) LASSO selection; and (5) All subset selection. These methods are briefly described below.

Spearman’s rank correlation coefficient (p) was computed using R to determine the strength and
direction of the relationship between field plot biomass data and ALS data. The selection of the ALS
variables was made considering a minimum positive and negative p value of 0.5.
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Stepwise selection method is based on dropping or adding variables at several steps. Backward,
forward and bidirectional stepwise selection procedures were applied using R.

PCA allows the number of variables for regression purposes to be reduced. Although it has
been widely used in many research fields, it is not a common approach for ALS metric selection [49].
PCA was computed using R package “lattice”. The obtained components with eigenvalues greater than
0.1 were retained according to the Kaiser Criterion [65]. A Varimax rotation, which maximizes the sum
of the variance, was applied to better interpret the PCA results [66,67]. The three most representative
metrics for all the PCs were selected.

LASSO (Last absolute shrinkage and selection operator) is a technique based on regularization
methods. It generates interpretable models by minimizing the residual sum of squares regarding the
sum of the absolute value of the coefficients that are less than a constant [68]. LASSC was computed in
R using the “glmnet” package.

All subset selection methods allow a suitable group of metrics to be selected on which the models
can focus their attention, while disregarding the rest of the variables. A wide variety of search
approaches have been developed for subset selection. In this regard, four search approaches were
implemented using R package “leaps”: exhaustive, backward, forward, and sequential replacement
(Seqrep} [69]. The maximum size of subsets was set to three.

A maximum number of three predictor variables were selected using the different selection
methods to avoid overfitting [70] and to generate more understandable models for forest
management [38].

2.6. Parametric and Nonparametric Models for Estimating TB

The performance of five regression methods was compared to estimate TB, including a parametric
model, the multiple linear regression model (MLR), and four nonparametric models: Support vector
machine (5VM), Random forest (RF), Locally weighted linear regression (LWLR) and Linear model with
a minimum length principle (MDL). Parametric models summarize data using a finite set of parameters
while in nonparametric methods the number of parameters is potentially infinite. These methods are
described below.

MLR is one of the most broadly applied methods for the estimation of forest structure variables
using ALS data [38,57,71-75]. MLR is a linear approach for modeling the relationship between a scalar
dependent variable and two or more explanatory variables. The selected variables, considering
the different selection methods, were included in the models. The basic assumptions of linear
regression models were verified for the fitted model: normality of the residuals, homoscedasticity
and independence or no auto-correlation in the residuals [76] in order to make comparisons between
suitable models. Dependent and independent variables were transformed logarithmically in those
cases where statistical assumptions of linear regression were not fulfilled [71,74,77] to verify whether
the measures of goodness of fit of the models improved.

SVM is a supervised learning model which has associated learning algorithms that analyze
and recognize patterns. This method tries to discover among multidimensional hyperplanes the
optimal separation between classes, where the separability is a maximum, assuming that input data
are separable in space [38,77]. Data located in the hyperplane are called support vectors, being the
most difficult to classify since they have a lower separability. SVM, with linear and radial kernels,
were computed using R package “e1071”. The models were tuned applying a cost parameter within
the interval 1-1000 and a gamma parameter in the interval 0.01-1.

RF is an ensemble learning method that adds randomness to bagging, increasing decision tree
diversity by growing them from distinct subsets. RF combines a decision iree, considering the values
of an independent random vector sample, with the same distribution for all trees in the forest [78].
RF divides the nodes of each decision tree using the best variables from a random sample. RF was
computed using R “randomForest” [79] and “caret” packages [80]. The model was tuned by applying
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a number of trees to growth (ntrees) within the interval 1-1000 and a number of variables selected
between 1 and 2.

Two regression tree structures based on “If Then” rules were computed using the R package
“CORElearn”. Those nonparametric techniques differ between them in the regression model applied in
the leaf nodes. The first one, the LWLR, or loess, is a method which smoothes the dependent variable as
a function of the independent ones to fit a regression surface to data [51]. The coefficient of smoothness
is defined by computing the weighted mean square error considering a distance function. The second
one, the MDL, considers that regularities in a set of data can be used to compress the data by using
fewer symbols from a finite alphabet to explain the data faithfully. This method is based on the rule
developed by Rissanen [82].

2.7. Model Comparison and Validation

Two types of models were compared: (i) models that include the same independent variables as
the MLR one; and (ii) models that use two or three ALS variables, being different from those included
in the first comparison.

The original sample was split into a training set of 75% of the cases (62 plots) and a test set of
25% of the cases (21 plots). Validation was performed for all the models, being executed 100 times for
those methods with associated randomness as SVM, RE, LWLR, and MDL to increase robustness in the
results [34]. In addition, data were normalized in values ranging from 0 to 1 in order to avoid weights
saturation according to Gérgens [52].

The model performance was compared in terms of root mean square error (RMSE), relative RMSE
(%RMSE) and bias. Furthermore, the Friedman nonparametric test was applied using the RMSE of
each plot in order to determine differences between models [83]. The Nemenyi post-hoc test was
applied to determine whether differences were statistically significant, with a significance level of
0.05 [84]. This test was used only for those cases in which the null-hypothesis of the Friedman test was
rejected, implying non-equivalence between models.

3. Results

Table 2 shows a summary of the field plot characteristics. The heights of the inventoried trees
range from 3.3 to 16.8 m and they present a variety of diameters, from 8.0 to 27.5 cm. The shrubhs
present heights ranging from 0.3 to 2.0 m and a CC from 1% to 40%. The average tree biomass fraction
is the most important fraction representing almost 75% of TB, and shrub biomass represents in average
around 25% of TB.

Table 2. Summary of the field plot characteristics (n = 83). CC is canopy cover; TB is total biomass.

Min. Max. Range Mean Standard Deviation
Slope (degrees) 0.70 29.80 29.10 26.10 6.85
Tree height (m) 3.32 16.77 13.44 8.04 227
Tree dbh (cm) 8.02 27.54 19.53 16.42 411
Tree biomass (tons/ha) 1.27 251.41 250.14 59.58 37.15
Shrub height (m) 0.30 2.06 1.76 1.07 0.44
Shrub CC (%) 1.00 40.00 39.00 11.52 6.09
Shrub biomass (tons/ha) 0.70 47.77 47.07 19.23 12.91
TB (tons/ha) 7.66 253.14 24548 78.81 42.34

The ALS metrics selected by the five selection processes are presented in Table 3. Considering
the maximum number of selected variables established, the selection methods included generally one
metric related to the canopy height (CHM), one metric associated with the canopy height variability
(CHVM), and another expressing the canopy density (CDM). However, sequential replacement all
subsets regression, forward all subsets regression, and PCA selected only two metrics.
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Regarding CHM, low height percentiles were selected in some cases, but elevation mean and
higher percentiles were chosen for the remaining methods. The most selected CHVM was variance.
The percentage of first returns above mean and the percentage of all returns above a height break were
the CDM metrics with the strongest correlation with TB. All selected metrics showed a logical relation
with the dependent variable.

Table 3. ALS selected metrics using different variable selection methods, when applying a threshold
value of 0.2 m to the point cloud data. Seqrep is sequential replacement; P refers to the percentile e.g,.,
P05 is the bth percentile; Elev. is Elevation; ret. is returns; Elev. AAD is average absolute deviation.

Metri
Selection Method etries
CHM CHVM CDM

Spearman’s rank correlation Elew. mean Elev. variance (All ret. above mean)/(Total first ret.) = 100
Backward Elev. mean Elev. variance {All ret. above mean)/(Total first ret.) > 100

Stepwise Forward 20 Elev. variance % First ret. above mean
Bidircctional LClev. mean Llev. variance (All ret. above mean) /(Total first ret.) x 100

PCA P99 % All ret. above 0.2 m
LASSO sclection P40 Flev. standard % First rct. above 0.2 m
deviation

Seqrep P05, Elev. mean % First ret. above mean

All subsets Exhaustive P25 Elev. variance % First ret. above mean

regression Backward Peo Elev. AAD % First ret. above mean

Forward r70 % First rct. above mean

The regression models to estimate TB are summarized in Table 4. The MLR and SVM with radial
kernel or linear kernel present the lowest RMSE. LWLR, MDL, and RF show lower accuracies. Although
most of the models present values of bias close to zero, some of them show a slight overestimation
with values close to 1. The selected MLR model including the 25th percentile of height, elevation
variance, and the percentage of first returns above mean, present the lowest RMSE with 15.14 tons/ha,
a %RMSE of 19.21, and a relative R? after validation of 0.87. SVM with radial kernel including the 5th
percentile of height, elevation mean, and percentage of first returns above mean is the second best
model. SVM with linear kernel, including the same ALS metrics as the MLR method, presents also
similar errors.

Table 4. Summary of the models and validation results in terms of RMSE (tons/ha), %RMSE, and bias
(tons/ha). SVM 1. refers to Support Vector Machine with radial kernel; SVM 1. refers to Support Vector
Machine with linear kernel; ret. is returns.

Fitting Phase Cross-Validation
ALS Metrics Model RMSE %RMSE Bias RMSE % RMSE Bias R?
MLR 14.53 18.44 0.00 1514 19.21 .01 0.87
SVMr. 1394 17.68 —0.36 16,39 20,79 0.00 0.86
i L SVM L 14.56 18.48 —0.74 15.56 19.74 —0.83 .86
Elev. Variance + P25 + % first ret. above mean g 10.01 1270 039 1964 2493 075 080
IWLR 12,11 15.37 0.20 19.59 24,86 1.35 0.78
M. 14.01 17.77 0.03 17.98 22.81 0.37 0.82
P05 + Flev. mean + % first ret. above mean SVM 1. 13.88 17.61 —0.28 15.50 19.66 —0.26 0.86
Flev. mean + Flev, vriance + (All ref, above )
mmenn)/ ftatal firet ret. abave 0.2 m) RF 9,64 12.23 035 1914 2428 039 0.80
P40 + Elev. Std.dev + % first ret. above 0.2 m LWLR 11.38 14.44 —(.45 19.38 24539 —0.54 (.80

Figure 2 shows the independent variables included in the selected MLR model associated with
the vertical distribution of ALS returns in three selected field plots representative of the variability of
TB of the Aleppo pine forest under study. The TB of smaller pines with low shrub presence (Figure 2A)
is lower than in taller pines with higher presence of understory (Figure 2C). Thereby, the TB presents
a direct relationship with these variables (Figure 2B). The higher the variance, the higher the TB as
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the dispersion of the data increases. Similarly, the increase of the percentage of first returns above the
mean implies an increase in TB content. The 25th percentile presents an inverse correlation with the
TB. A lower value of the 25th percentile implies a higher presence of shrubs in the understory.

A) B) Q)
ALS derived metrics ALS derived metrics ALS derived metrics
25th percentile: 3.51 m 25th percentile: 1.90 m 25th percentile: 1.23 m
Elev.variance: 3.08 m Elev.variance: 6.07 m Elev.variance: 8.55 m
% first returns above mean: 48.19 % first returns above mean: 46.90 % first returns above mean: 51.69
s 100 00 -4
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Field plot data Field plot data Field plot data
Shrub height: 1.44 m Shrub height: 1.50 m Shrub height: 1.50 m
Tree biomass: 43.96 tons/ha Tree biomass.: 50.70 tons/ha Tree biomass: 60.08 tons/ha
Shrub biomass: 7.45 tons/ha Shrub biomass: 25.88 tons/ha Shrub biomass: 47.31 tons/ha
Total biomass: 51.42 tons/ha Total biomass: 76.58 tons/ha Total biomass: 107.39 tons/ha

Figure 2. Airborne Laser Scanning (ALS) metrics associated with the vertical distribution of peint
cloud returns in three selected field plots representative of the study area: {A) smaller pines with low
presence of shrubs (area B); (B) average height pines with an intermediate presence of understory
(arca A); (C) taller pines with high presence of shrubs (arca A). The red square represents the average
of the shrub height in each plot.

Figure 3 presents the scatter plots of observed and predicted TB for the models that include the
same variables as the best selected MLR ones. It should be noted that, in this model, logarithmic
transformation of the dependent or the independent variables was not required to meet the linear
regression assumptions. MLR, SVM with linear kernel and SVM with radial kernel show high
coefficients of determination (0.87, 0.86, and 0.86, respectively), while MDL (0.82), RE (0.80),
and LWLR (0.78)} present slightly lower coefficients of determination, 0.80 and .78, respectively.
The implementation of the MLR model (Equation (15)) in ArcGIS allowed the estimation of TB.

TB = —14195.1 + 4753.9 x Elevation variance + 8992.0 x P25 + 699.6 x % first returns above mean (15)

The performance comparison between models by using the Friedman test shows that the models
are not equivalent with a p-value of 0.00. Thereby, the required application of the post-hoc Nemenyi
test indicates that no statistically significant differences exist between models, with 95% of probability.

Figure 4 shows the TB mapping for the study area. The north part of the study area (Figure 4A)
shows a heterogeneous Aleppo pine forest with higher TB values (above 150 tons/ha), which denote
mature forested areas with the presence of shrubs and taller trees. In contrast, the southern part
(Figure 4B) shows some homogeneous areas with lower TB values (bellow 10 tons/ha). These areas
have been affected more recently by several wildfires, contrasting with the pines of area A or some
north stands of area B that have higher ages, presenting TB values ranging from approximately
30 tons/ha to more than 120 tons/ha.
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Figure 3. Scatterplot of predicted vs. observed values of total biomass (TB) (tons/ha) using different
regression methods.
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Figure 4. Maps of TB. High spatial resolution orthophotography from Spanish National I’lan for Aerial
Orthophotography (PNOA) [54] is used as backdrop. Coordinate System: ETRS89 UTM Zone 30 N.
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4. Discussion

The results demonstrate that low density ALS data can be used to accurately estimate TB.
Regarding the selection method, all subsets regression and selection based on Spearman’s rank was
the most powerful technique for ALS metrics selection. LASSO selection was also a good technique.
However, the use of Stepwise selection and PCA showed a restricted power in identifying the best
subsets. These findings agree with Garcia-Gutierrez et al. [48], who found that Stepwise selection
was the technique with less power, but all subsets regression obtained good results. Although PCA
was used by 5ilva et al. [49] for stem volume modeling, it has been outperformed by other selection
techniques for TB estimation.

The selection of a reduced number of biologically representative variables increases the
understanding of models for forest management purposes. In this sense, the use of automatic methods
for variable selection is considerably less time-demanding when modeling. The three ALS-derived
variables included in the best model were coherent and analogous to those derived for characterizing
forest vertical diversity [22] and aboveground biomass [15,36]. Variables derived from digital surface
models (DSM) were not computed in this study. Nevertheless, they have been proposed in other
studies because they seem more suitable for tree damage detection [29] or estimation of vertical
diversity [19] when not using an area based approach (ABA).These variables concern the variability of
different strata of the point cloud and canopy cover distribution.

The comparison between regression models shows that the MLR model had the lowest RMSE
(15.14 tons/ha) and bias (0.01), matching with the values obtained by other authors for aboveground
biomass estimation [73,85]. Thus, according to Gorgens et al. [52] and Domingo et al. [358], MLR slightly
outperforms other nonparametric methods. Although MLR was the best model, no statistically
significant differences were found with other methods. These results partly agree with other
approaches [34,36,48], which obtained lower estimation errors with nonparametric techniques. The use
of selection methods is useful to better determine the best subset of variables and the comparison of
models, such as MLR, SVM with radial kernel, SVM with linear kernel, and LTWLR.

TB estimation by using trees and shrub allometric equations and low-density ALS data is
considered to better account for biomass and carbon reservoirs in Mediterranean forest ecosystems,
The comparison of different models for TB estimation including other tree species or biomass estimation
in shrubland areas may be considered. In this sense, 35% of the forested land in Spain, which
includes grasslands, shrubland, and trees, is covered by shrubs [33]. Furthermore, shrub species in the
understory, with an average presence of 24%, constitute an important part of TB in Mediterranean
Aleppo pine forest. This pattern is also commeon in the understory of other Mediterranean forests as for
example Pinus and Quercus ilex. Shrubland areas are also especially important due to the abandonment
of crops and wildfire disturbances [13], that might even increase the presence of these species in
the near future. Consequently, further research is needed on the estimation of TB using tree and
shrub allometric equations and low densily ALS data in shrubland and burned areas to compare
with previous higher point density studies. Moreover, the use of ALS technology with higher density,
the use of terrestrial LIDAR, or the fusion with high spatial resolution images derived by unmanned
aerial vehicles might be useful to better account for forest biomass.

5. Conclusions

Allometric equations are one of the available methods for estimating forest structural parameters.
This method has been widely applied to accurately estimate tree height, crown diameter, basal area,
stem density, volume or aboveground biomass at plot level and to relate it to ALS data to estimate it
at stand level [36,47,56,57,86]. Nevertheless, little research has focused on the estimation of biomass
with ALS data including shrub fraction. The lack of knowledge of shrub vegetation associated with
the traditionally necessary destructive sampling to generate forest structure equations might have
been one of the drawbacks of including those species for biomass and carbon account. In this sense,
the development of new allometric equations for shrub species, defined to estimate biomass from
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simple field measurements and the generalization of ALS data have opened new opportunities for
TB estimation.

This study assesses the usefulness of low point density ALS data to accurately estimate biomass,
including tree and shrub fraction, in an Aleppo pine forest. The comparison of the effectiveness of
five variable selection methods increased modeling efficiency. All subsets regression and manual
selection based on Spearman’s rank were the most powerful techniques. LASSO selection was also
a good technique but, Stepwise selection and PCA showed less power to identify the best subsets.
The comparison of parametric and nonparametric regression methods showed that the best model
for TB estimation was the MLR. This model included three ALS metrics: the 25th percentile of the
return heights, the variance, and the percentage of first returns above the mean, presenting an RMSE of
15.14 tons/ha and a bias of 0.01. No statistically significant differences between the generated models
were found. The results allow TB mapping at the regional scale providing useful information for
forest management purposes, with values ranging from below 10 tons/ha to areas above 150 tons/ha.
This study moves a step forward to compute TB by using allometric tree and shrub equations and
ALS data to better account for forest biomass as assets to manage greenhouse gases from a local to a
global scale.
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3.3. Quantifying forest residual biomass in Pinus halepensis

Miller stands using Airborne Laser Scanning data

Cuantificacion de biomasa residual forestal en masas de Pinus halepensis Miller. utilizando datos de

escaner laser aeroportado de baja densidad
RESUMEN

La estimacion de biomasa residual forestal es de gran interés en la evaluacion del potencial de las
energias renovables o verdes. Este estudio relaciona la biomasa residual forestal de Pino carrasco,
estimada en 192 parcelas de campo, con diversas variables independientes obtenidas de datos de
escaner laser aeroportado (ALS) en Aragén (Espafia). Con objeto de estimar la biomasa residual
forestal se compararon cinco métodos de seleccion y cuatro modelos de regresién no paramétricos.
La muestra fue dividida en entrenamiento y validacion, estando compuesta de 144 y 48 parcelas de
campo, respectivamente. Los mejores modelos se obtuvieron utilizando el método support vector
machine con kernel radial. El modelo incluyd tres métricas ALS: el percentil 70 de los retornos de
la nube de puntos, la varianza y el porcentaje de primeros retornos sobre la media. El error
cuadratico medio tras la validacién fue de 8,85 ton ha'. La influencia de la densidad de puntos, el
angulo de escaneo, la capacidad de penetracion del pulso en el dosel vegetal, asi como la pendiente
y la presencia de arbustos en la precision del modelo fue evaluada mediante enfoques graficos y la
aplicacion de test estadisticos. Densidades de puntos mayores a 1 punto m?, angulos de escaneo
menores a 15° una penetracion del pulso en el dosel vegetal superior a 25% y la presencia de
pendientes menores al 30% gener6 una menor variabilidad en el error medio, a la par que
incremento la precisién del modelo en 0,56, 1,94, 1,44, y 5,47 ton ha, respectivamente. La presencia
de arbustos generd una mayor variabilidad en el error medio pero la pérdida de exactitud en el
modelo fue leve (0,10 ton ha'). No se encontraron diferencias estadisticamente significativas entre
las categorias establecidas para las variables analizadas, exceptuando para el caso de la
penetracion del pulso en el dosel vegetal. La cartografia de biomasa residual forestal para masas
de Pino carrasco utilizando el mejor modelo, determiné que en las masas analizadas se
contabilizan 3.627.021,25 ton, lo que equivale a 1.584,91 miles de toneladas de petroleo (ktoe).
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The estimation of forest residual biomass is of interest to assess the availability of green
energy resources. This study relates the Pinus halepensis Miller forest residual biomass
(FRB), estimated in 192 field plots, to several independent variables extracted from
Airborne Laser Scanner (ALS) data in Aragoén region (Spain). Five selection approaches
and four non-parametric regression methods were compared to estimate FRB. The
sample was divided into training and validation sets, composed of 144 and 48 plots,
respectively. The best-fitted model was obtained using the Support Vector Machine
method with the radial kernel. The model included three ALS metrics: the 70th percen-
tile, the variance of the return heights, and the percentage of first returns above mean
height. The root-mean-square error (RMSE) after validation was 8.85 tons ha '. The
influence of point density, scan angle, canopy pulse penetration, terrain slope, and shrub
presence in model performance was assessed using graphical and statistical approaches.
Point densities higher than 1 point m 2, scan angles lower than 15°, canopy pulse
penetration over 25%, and terrain slopes under 30% generated a smaller variability in
mean predictive error (MPE) values, thus increasing model accuracy in 0.56, 1.94, 1.44,
and 5.47 tons ha™', respectively. Shrub vegetation caused greater variability in MPE
values but slightly decreased model accuracy (0.10 tons ha ). No statistically significant
differences were found between the categories in the influencing variables, except for
canopy pulse penetration. The mapping of Pinus halepensis Miller FRB using the best-
fitted model summed up a total of 3,627,021.25 tons, which equals to 1,584.91 thousand
tonnes of oil (ktoe).

Keywords: forest residual biomass; bioenergy; Mediterranean forest; ALS-PNOA;
model performance

1. Introduction

The use of bioenergy sources and the reduction of CO, emissions to the atmosphere is
one of the climate and energy targets of the European Energy Roadmap for 2050
(Hamelin et al. 2019). Forest ecosystems provide alternative sources of bioenergy
derived from logging residues in timber exploitation. Most countries leave branches
and treetops in the forest (Hauglin et al. 2012). These biomass fractions, defined as forest
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residual biomass (FRB), can be used as a source of energy in heating systems and in the
generation of electricity by replacing fossil fuels in power plants (Richardson et al.
2002). FRB refers to foliage, branches and unmerchantable stem tops generated in timber
exploitation or forest management (Velazquez Marti 2006). Harvesting logging residues
is already operational in some countries such as Finland (Heinimo 2018). The treatments
traditionally applied to these residues in Spain, generated mainly in forest management
procedures, include stacking within the forest, controlled burning, and, less commonly,
splintering to improve their incorporation into the soil (Velazquez Marti 2006). However,
several initiatives such as the Interreg Europe, Wood E3 or BIOmasud support a change
in these protocols to harvest these resources as a source of energy.

FRB uses have important environmental and socio-economic benefits. It is
a renewable energy and its management can reduce fire risk in forested Mediterranean
ecosystems. These environments, characterized by dry summers, a rugged topography,
and heterogeneous formations from the structural point of view, are affected by wildfires.
FRB is related with canopy bulk density and canopy fuel weight (Andersen, McGaughey,
and Reutebuch 2005), two critical fuel metrics whose control through thinning or burning
procedures may reduce active crown fire potential (Roccaforte, Fulé, and Covington
2008). Wildfires are a socio-environmental hazard in Mediterranean ecosystems, being
Pinus halepensis Miller. (hereinafter P. halepensis) forests the most affected in Spain
with 32,482 ha burned per year between 2001 and 2010 (Anuario de Estadistica Forestal,
2013). Furthermore, the exploitation of FRB has socio-economic benefits as it increases
rural development (Garcia-Martin et al. 2012), constituting new business possibilities for
forestland owners (Hauglin et al. 2012).

The use of remote sensing techniques (Gleason and Im 2011) such as multispectral
(Garcia-Martin et al. 2008), radar (Austin, Mackey, and Van Niel 2003), or Airborne Laser
Scanning (ALS) sensors have been widely used for estimating biomass. ALS is an active
remote sensing system that sends laser beams to the earth. Light Detection and Ranging
(LiDAR) sensors capture the radiation scattered by the objects through a photodiode and
measure the distance to the object through a telemeter generating a georeferenced three-
dimensional point cloud. ALS provides a reliable three-dimensional representation of the
earth’s surface, being considered the best technology for mapping vegetation structure (Zhao
et al. 2018). Several studies have used small-footprint LIDAR systems to estimate biomass
using an area-based approach or at a single-tree level (Dalponte et al. 2018; Domingo et al.
2018). The use of LiDAR technology for estimating logging residues has been addressed
using a single-tree approach in boreal forests (Hauglin et al. 2013, 2014; Kankare et al. 2013)
and in the pine forest of eastern Texas (Popescu 2007). The area-based approach has also
been explored in boreal forests (Hauglin et al. 2012; Straub and Koch 2011) and in western
China (He et al. 2013). Most of the studies utilized high point density LIDAR data, except for
the ones performed by Hauglin et al. (2012), He et al. (2013) and Popescu (2007). However,
to the best of our knowledge, neither of these studies has been conducted in Mediterranean
ecosystems, which are characterized by a high heterogeneity.

ALS data characteristics, such as flight altitude (Yu et al. 2004), footprint size
(Roussel et al. 2017), scan angle (Liu et al. 2018a), point density (Gobakken and
Naesset 2008), or pulse frequency (Naesset 2009), as well as environmental conditions
such as slope, have been analyzed as sources of error in the estimation of forest
attributes. The influence of point density in the estimation of different forest inventory
attributes was analyzed in several studies (Roussel et al. 2017; Gobakken and Erik 2008).
Fewer studies have considered point density effect on biomass estimation (Garcia et al.
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2017; Singh et al. 2015; Ruiz et al. 2014). All of them concluded that a reduction in point
density does not introduce significant errors in above ground biomass. Accordingly,
a reduction in point density is a viable solution to reduce the cost at regional scales.
The effect of the scan angle in the estimation of forestry attributes such as tree height has
been also analyzed (Disney et al. 2010; Holmgren, Nilsson, and Olsson 2003; Lovell
et al. 2005). Holmgren, Nilsson, and Olsson (2003) studied the effect of the scan angle
on canopy closure and Liu et al. (2018a) on gap fraction estimations. Furthermore,
Montaghi (2013) analyzed the effect on ALS metrics and found that scan angles higher
than 20° have a great effect in forest parameters estimations. Canopy pulse penetration
(CPP) varies with canopy structural characteristics and ALS flight configuration (Gaveau
and Hill 2003; Hopkinson 2006), affecting Digital Terrain Models (DTM) accuracy
(Hollaus et al. 2006; Hyyppéd et al. 2000; Cowen et al. 2000). Leaf off conditions in
deciduous forest improves CPP (Wasser et al. 2013; Hill and Broughton 2009) while
lower rates of CPP are found in dense conifer forests (Hollaus et al. 2006) and in the
bottom parts of the canopy or lower strata (Wasser et al. 2013; Chasmer, Hopkinson, and
Treitz 2006). Furthermore, the effect of slope has been studied when estimating tree
height (Breidenbach et al. 2008; Clark, Clark, and Roberts 2004; Orka et al. 2018),
treetop detection (Khosravipour et al. 2015), tree diameter, basal area, number of stems
and volume (@rka et al. 2018). In this sense, although ALS estimations were affected by
the increase of slope, the effects were not severe. However, the influence of the sensor
scan angle, the terrain slope, and the presence of shrubs species in the understory has
been less analyzed when estimating biomass using ALS data.

Accordingly, the main goal of this study is to estimate the FRB of P, halepensis forests
at a regional scale in the Aragon region (northeast Spain) using ALS point clouds and field
data. Specifically, we aim to (1) asses the relationship between FRB and ALS-derived
independent variables using an area-based approach; (2) compare five variable selection
methods (Spearman’s rank correlation, Stepwise selection, Principal component analysis,
Least absolute shrinkage and selection operator, and All subset selection) and five regres-
sion methods (Support Vector Machine with radial and linear kernels, Random Forest,
locally weighted linear regression, and regression tree based on a minimum length
principle); (3) analyze the influence of point density, scan angle, canopy pulse penetration,
terrain slope, and shrub presence in model performance; (4) map and quantify FRB using
the most accurate model.

2. Materials and methods

Figure 1 describes the methodological process followed for field data and ALS processing,
FRB estimation and the analysis of the influence of ALS and environmental characteristics in
model accuracy.

2.1. Study area

The P, halepensis forests under study are located in the Aragdn region (Figure 2) in Spain.
This area is characterized by a hilly topography, with elevations ranging from 300 to
1150 m above sea level and slopes from up to 39°. These forests represent the 18.7% of
the forested area in Aragdén region, including semi-natural and reforested stands. The
lithology of the study area wvaries from Miocene carbonate and marl sediments to
Mesozoic and Eocene limestone platforms. The climate of the region is the Mediterranean
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Figure 1. Methodological steps.

with continental features. Precipitation is irregular and mostly occurs during the spring and
autumn. The average annual precipitation ranges from areas with less than 350 mm to areas
that may reach 1,000 mm. The average temperature varies from 5°C in the winter to 22°C in
the summer.

Some of the pine stands were afforested 60 to 40 years ago and usually present
a lower presence of understory, less structural complexity and poor biodiversity
(Granados et al. 2016) compared with the natural stands. The understory includes
Mediterranean evergreen species, such as Quercus ilex subsp. ballota, Quercus coccifera,
Juniperus oxycedrus, Buxus sempervirens, Juniperus phoenicea, Rosmarinus officinalis
and Thymus vulgaris.

2.2. ALS data and processing

The ALS data were acquired by the PNOA project between January and February 2011
using a Leica ALS60 discrete-return sensor operating at a wavelength of 1,064 nm.
Average flying altitude was 3,000 m above sea level, with a maximum scan angle up to
29° from nadir. Point clouds with up to four returns per pulse were provided in 2 x 2 km
tiles in LAS format and ETRS 1989 UTM coordinates.

The first processing step was the removal of noise points and the overlapping class,
in the case of the existence of vertical (z) and horizontal (x, y) displacements between
lines of flights. In this sense, overlapping returns were removed from 1637 tiles. Then,
3,800 tiles that cover the study area were filtered using the multiscale curvature classi-
fication algorithm (Evans and Hudak 2007). This filter is suitable for this environment
according to Montealegre, Lamelas, and de la Riva. (2015a), being implemented in
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Legend
Zone1l 2013 (53 plots)
Zone2 2014 (43 plots)
Zone3 2015 (45 plots)
Zone4 2016 (51 plots)
Aleppo pine forests

FRB mapped areas
Contour lines

42°12'30°N

41°52'0°N

0°50'0"W 0°45'0"W 0°42'30"W

1°4'20"W
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0°57'10"W

Figure 2. Study area and location of 192 forest inventory plots, including two images of
representative plots, and location of FRB mapping areas in Figure 5 (A to E). High spatial
resolution orthophotography from Spanish national plan for aerial orthophotography (PNOA)
Spanish spatial data infrastructure (IDEE) service is used as a backdrop. Coordinate system:
ETRS89 UTM Zone 30 N.
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Multiscale Curvature Classification (MCC) 2.1 command-line tool. Ground points were
interpolated with the Point-TIN-Raster method, implemented in ArcGIS 10.5 software to
obtain a digital elevation model (DEM) with 1 m resolution (Montealegre, Lamelas, and
de la Riva. 2015b).

Point clouds were clipped with the geometry of each field plot and the return heights were
normalized with the DEM using FUSION LDV 3.60 open source software (McGaughey
2009). Furthermore, FUSION was used to generate a full suite of statistical metrics related to
height distribution and canopy cover. Canopy height variables include minimum, maximum,
mean, mode (Elev.min, Elevmax, Elev.mean, Elev.mode), percentiles at different intervals
(P01, P05, P10, P20, P30, P40, P50, P60, P70, P75, P80, P90, P95, P99), elevation quadratic
mean (Elev. SORT mean SQ), Elevation cubic mean (Elev. CUR mean CUBE) and L moments
(Elev. L1, Elev. L2, Elev. L3). Canopy height variability variables include standard deviation
(Elev. SD), variance (Elev.variance), coefficient of variation (£lev. CV), interquartile distance
(Elev.iQ), skewness (Elev.skewness) and kurtosis (Elev.kurtosis). Following Neasset and
Okland (2002,) a threshold value of 2 m height was applied to remove ground and understory
returns before generating the ALS-derived variables. Canopy density metrics include canopy
relief ratio (CRR), percentage of first or all returns above a threshold, the mean or the mode
(e.g.: % first ret. Above 2.00) as well as the ratio of all returns respect to the number of total
returns (e.g.: (Al ret. Above 2.00)/(total first ret.) by 100).

2.3. Field plot data and FRB calculation

Field data were acquired in 192 plots from four campaigns performed during 2013, 2014,
2015, and 2016 (Figure 2), hereinafter first, second, third, and fourth campaign, respectively.
The sampling considered the variability of P halepensis forests in terms of terrain slope,
canopy height, and canopy cover.

Field data from the first campaign were acquired from June to July 2013 in 53
circular plots with 15 m radius. The center of each plot was positioned using a Leica
VIVA® GS15 CS10 real-time kinematic Global Navigation Satellite System (GNSS)
with a planimetric accuracy of 0.30 m. A diameter tape, with millimeter precision, was
used for measuring tree diameter at breast height (dbh) for those trees with a dbh larger
than 7.5 cm, which is the standard dbh for inventoried trees in Spain. A Suunto®
hypsometer, with centimeter precision, was used for measuring green crown height and
tree height of up to 4 randomly selected trees within each plot. The selection of the
sample trees, from 7.5 cm up to 42.5 cm, was performed following the diametric classes
defined as representative for the study area in the third national forest inventory. The
height for those trees not measured in the field plots was predicted by using a height-
diameter model developed from the sampled trees.

Field data from the second campaign were acquired from July to September 2014 in 43
circular plots and data from the third field campaign were gathered from June to July 2015
in 45 plots. In both cases, the 30 m diameter plots were positioned using the same GNSS
instrument as in the first campaign obtaining a planimetric accuracy of 0.15 m in 2014 and
0.18 m in 2015. A Hagléf Sweden® Mantax Precision Blue diameter caliper, with
a millimetric precision, was used for measuring the dbh of those trees with a dbh larger
than 7.5 cm. A Haglof Sweden® Vertex instrument, with a centimetric precision, was used
to measure the green crown height and the height for all trees in the plot.

The 51 field plots from the fourth campaign were collected in April 2016. A Trimble
submetric GNSS was used to position the center of each plot with a submetric accuracy
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in planimetry. In this case, the radius was variable (5.6 m, 8.5 m, 11.3 m, and 14.10 m),
depending on stand density, in order to obtain data from a similar number of trees in each
plot. A Haglof Sweden® Mantax Precision Blue diameter caliper was used for measuring
those trees with a dbh larger than 7.5 cm. A Hagléf Sweden® Vertex was used for
measuring the green crown height and the height of up to six trees, the nearest to the plot
center. The sample was completed to achieve 100 dominant stems ha ' considering those
with larger dbh. The height for those trees not measured in the field plots was predicted
by using a height-diameter model developed from the sampled trees.

Given the difference in time between the point cloud acquisition, in 2011, and the
field campaigns, the field measurements were updated using the Spanish National Forest
Inventory (NFI). The yield tables of dbh and height growth values for P. halepensis
between the second NFI (NFI2) and the third one (NFI3) (11 years) were used. A linear
interpolation based on these tables was made to obtain a subtractive value of dbh and
height per each diametric class proposed by the NFI (Table 1).

FRB was calculated for each inventoried tree using the P. halepensis allometric
equations proposed by Ruiz-Peinado, Del Rio, and Montero (2011). These authors
propose different equations for the thick branch fraction, with a diameter larger than
7 c¢m, the medium branch fraction, with diameter between 2 and 7 c¢m, and the thin
branch fraction, with a diameter smaller than 2 cm, including needles. The sum of the
biomass in the different fractions gave the biomass at tree level. Then, FRB of each tree
was summed up to obtain the FRB at plot level expressed in tons per hectare.

2.4. FRB modeling

In order to select the most suitable independent variables for FRB modeling, five different
approaches, with a total of 10 variants, described in Domingo et al. (2018) were applied
(Figure 1): (1) Spearman’s rank correlation coefficient determine the strength and direction
of the relationship between field plot forest residual biomass and ALS metrics. A minimum
positive and negative rho value of 0.5 and a subsequent manual variable selection were
performed in R; (ii) Stepwise selection, which considers dropping or adding variables at
several steps, was performed using backward, forward and bidirectional approaches; (iii)
Principal component analysis (PCA) is a technique used to reduce the number of variables
in multiple regression analysis. In this case, the PCAs with eigenvalues greater than 0.1
were retained, considering Kaiser Criterion, and a Varimax rotation was applied to max-
imize the sum of the variances and to better interpret the results; (iv) Least absolute
shrinkage and selection operator (LASSO) allows to generate interpretable models by
minimizing the residual sum of squares. This technique was computed in R with the
“glmnet” package; and (v) All subset selection provides a suitable group of metrics on
which the models should focus their attention. Previous selection of the number of metrics
is required. In this study, exhaustive, backward, forward, and sequential replacement
approaches were used.

The selection of ALS metrics was restricted to a combination of up to four independent
variables, with the aim of generating more parsimonious models for forest management
and reducing variable multicollinearity.

Five different regression methods were compared to estimate FRB. The multivariate
linear regression model (MLR) was initially tested, but the normality of the residuals,
homoscedasticity and independence, and no auto-correlation of the residuals were not
fulfilled even transforming the dependent and independent variables. Consequently, this

99



Characterization of Mediterranean Aleppo pine forest using low-density ALS data

D, Domingo et al.

8

£T0- Cep- 810- Foe- - eLT- 60°0- 40 b 050 01 09-¢¢

SY0- 9e9T- 9t°0- 60'17- 8T0- (AN 810- £e’01- 00t 8¢ ge—0s
98" 16°01— 690 EL8- - 69— SE0- G- 06'1 ¥ 05-Sp
£L'0- LT~ 850~ 86— et 9t~ 680~ 6% 09°1 LT Sy0v
80— 9 S o1 IF0- LL8~ LTO- 4 0% 0¢'l [k 06
080~ 00°¢l~ 0y'0- 0TI 0L0- 00'6— 0T0~ 0079 01'1 33 ce-0¢
F9°0- yoel- 16°0- 1lo'0t- 6L'0— 88— STO- Sp'e— o1 0t 0e—<C
¥9°0- 122N 160~ 16°01- 680~ 818 §T0- Spe- o'l Ot Tt
890 00° ¢t S 00°CE- ¥ 0- 00°6— LT0~ 009 0¢'1 33 0C¢l1
oo gIEl- 160~ SC0I- 8O- 16'L— AU LTS~ or'l 62 SI-01
£8°0- 1601~ A £L8- £e0- §C9- (A 9¢ Y- 0zl £ o>

(w) w8y (ww) ygp (w) ey (ww) ggp (w) wyaey (ww) gqp (W) wysey (wun) ygp (W) ymois ey (wu) yaeid ygp (wa) ssep suawel(

9102 $10¢ #10C €107

ugredwes prar]

HM0ISep paerodion Teom SurAdde
UdlAM JYTRY puR Ygp JO SANRA DANIRIQNS PUB ‘CTIN I PR ZIIN o3 uoamjaq Imoid jydoy pue (Yap) wSroy 1Sealq Je 19jAWEIp 331 JO senjeA [ JJQRL

100



Research contributions

GlScience & Remote Sensing 9

parametric method was not considered for further analysis. Two variants of the non-
parametric supervised learning Support Vector Machine (SVM) model were computed by
applying linear and radial kernels. Following previous studies (Domingo et al. 2018),
a cost parameter within the interval 1-1,000 and a gamma parameter within the interval
0.01-1 were tested. Random Forest (RF) method was implemented using the R packages
“randomForest” and “caret,” including “corr.bias” parameter. The number of trees to
growth was fitted between 1 and 3,000 and the number of variables to divide the nodes
between 1 and 3. Finally, two non-parametric regression tree structures, based on “If
Then” rules, were computed: locally weighted linear regression (LWLR) and linear
model with a minimum length principle (MDL).

Model validation was performed by splitting the original sample into a training set of
75% of the plots (144 cases) and a test set of 25% of the plots (48 cases). The robustness of
random models was assessed executing 100 times this process (Garcia-Gutiérrez et al.
2015). For each computed model, the root-mean-square error (RMSE) (equation 1), relative
RMSE respect to the mean (%RMSE) (equation 2), and bias were calculated. Friedman
non-parametric test was used to determine whether there were differences between the
computed models, considering the RMSE values (Stojanova et al. 2010). Post-hoc Nemenyi
test was applied in order to determine whether differences were statistically significant at
the level of 0.05 (Nemenyi 1963). This test was applied only when the null-hypothesis of
the Friedman test was rejected, as implies non-equivalence between models.

RMSE — \/ZT_I ();i_j”i)z (1)

RMSE

%RMSE = x 100 (2)

where y; 1s the observed FRB value for plot i; j; is the predicted FRB for sample plot i; »
is the number of plots and ¥ is mean FRB for all plots.

2.5. Influence of ALS characteristics and environmental conditions in model
accuracy

The effect of three ALS characteristics (point density, scan angle, and canopy pulse
penetration) and two environmental variables (terrain slope and presence of shrubs) in
model performance were tested. In this sense, the mean predicted errors (MPE) obtained
for each field plot were grouped according to the established categories for each of the
above-mentioned variables as described below (Table 2).

MPE — 2o i =) (3)
n
MPE
%MPE = = % 100 4)
y

where y; is the observed FRB value for plot i; ; is the predicted FRB for sample plot i; »
is the number of plots and y is mean FRB for all plots.
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Table 2. Number of plots per category established for the ALS characteristics and environ-
mental conditions.

ALS characteristics N° of plots Environmental conditions N° of plots
Point density (points m-2) Slope (%)

<1 150 <15 65
> 1 42 > 15 127
Scan Angle (°) Shrub presence

<5 108 Yes 86
5-15 73 No 106
> 15 11

Canopy pulse penetration (%)

<25 77

25-50 90

50-75 21

> 75 4

Following Montealegre, Lamelas, and de la Riva. (2015b), plots were categorized into
two classes of point density: up to 1 point m 2 and higher than 1 point m 2. This threshold
allows to have relatively high accuracies when modeling forest parameters according to
Jakubowski, Guo, and Kelly (2013) and Garcia et al. (2017). Three categories of scan angle
were determined: plots with an average scan angle of up to 5°, plots with an average scan
angle between 5° and 15° and plots with an average scan angle higher than 15°. The first
class was set close to the nadir. The breakpoint between second and third classes was
defined by the maximum average scan angle established by the PNOA mission in order to
reach the minimum nominal point density specified by the project. Following Montealegre,
Lamelas, and de la Riva. (2015b), the influence of canopy pulse penetration was analyzed
determining four categories: 0%-25%, 25%-50%, 50%-75%, and 75%-100%. The propor-
tion of pulses that penetrate the canopy and reach the ground was calculated using a ground
tolerance of 2 m. The effect of the terrain slope was assessed using two categories: plots
with smooth slopes of up to 15%, and steep slopes higher than 15%. Finally, shrub presence
was determined as plots with and without understory.

A graphical assessment using boxplots, including the average mean MPE per classes,
was applied. In addition, normality and homogeneity tests, considering logarithmic and
square root transformation, were analyzed. For those variables with non-normal distributions
and two categories, Mann—Whitney and median tests were applied. Kruskal Wallis test was
applied for those with more than two classes.

3. Results
3.1. Field plot computation

In the case of the first campaign, equation 5 is applied for the estimation of tree height for
those trees not measured in the fieldwork. Model performance of the ht model reported an
RMSE of 1.36 m and R? of 0.63. Normality of the residuals, homoscedasticity, and
independence or no autocorrelation in the residuals were verified for the fitted model.

ht = 0.776 - G*'7° . dbh;**%° . 1.009 (5)
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where At is tree height (m), db#h; is the diameter at breast height (cm) and G is field plot
basal area (m? ha™').

Equation 6 shows the model used for the estimation of tree height for those trees not
measured in the fieldwork in the fourth campaign. Model performance of the ht model
reported an RMSE of 0.80 m and R? of 0.93.

(6)

1/12.5511
ht — (1_32.5511 + (Hoz.ssu _ 1_32.5511) 1 - exp(—0.025687 - dbh)) /

1 — exp(—0.025687 - D)

where At is tree height (m), dbh is the diameter at breast height (cm), H, is the Assmann
dominant height (m) and D, is the Assman dominant diameter (cm).

Table 3 shows a summary of the field plot characteristics. Tree height of the
inventoried plots range from 3.66 to 19.10 m with an average value of 10.06 m, and
dbh values range from 8.64 up to 43.22 cm. The average FRB is 33.55 tons ha ', but the
variability within plots is notorious with a range value of 134.23. In addition, the high
range and the standard deviation values confirm the variability of the sample that
characterizes P. halepensis forest in the Aragdn region.

3.2. Variable selection and FRB modeling

Two selection methods determined the most suitable ALS metrics for the analyzed
regression models (Table 4). Spearman rank correlation with subsequent manual
variable selection was the most powerful method when computing SVM with radial
kernel, RF and LWLR, while all subset selection exhaustive determined the best
models when using SVM with linear kernel and MDL regression methods. As men-
tioned before, the maximum number of selected variables was set to four. In this
sense, the generated models range from two variables, when computing RF, to four
variables, when using SVM with linear kernel or MDL. The selection methods
frequently include one or two metrics associated with canopy height, one metric
related to canopy height variability and another one related to canopy density.
Regarding canopy height metrics, higher percentiles were frequently selected as P70
of height and Elev. L2. Variance was the most selected canopy height variability
metric. In addition, the percentage of first returns above mean height, and the
percentage of returns above mean height over the total first returns showed the
strongest correlation with FRB.

The best regression methods to estimate FRB are summarized in Table 4. SVM with
radial kernel presents the lowest RMSE, followed by MDL method. In comparison with
those methods, SVM with linear kernel, RF, and LWLR shows lower accuracies. Most of
the models show values of bias close to zero, but RF shows a slight overestimation with

Table 3. Summary of the field plot characteristics for 2011.

Min. Max. Range Mean Standard deviation
Terrain slope (degrees) 1.10 64.65 63.56 23.65 16.98
Tree height (m) 3.66 19.10 15.44 10.06 3.14
Tree dbh (cm) 8.64 43.22 34.58 20.74 7.89
FRB (tons ha ") 1.23 135.46 134.23 33.55 20.89
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values close to 1. The selected SVM with radial kernel includes three ALS metrics: the
70™ percentile of height, the variance of the height of the returns and the percentage of
the first returns above mean height. The validation shows an RMSE of 8.85 tons ha
with a % RMSE of 26.38, and a relative R® of 0.82.

The scatter plots of FRB observed and predicted values for the different regression
methods are presented in Figure 3. According to Friedman test, the models are not
equivalent to a p-value of 0.00. In addition, the post-hoc Nemenyi test indicates that no
statistically significant differences exist between the RMSE values obtained from the
different regression models, with 95% of probability.

3.3. Assessment of the influence of ALS characteristics and environmental
conditions in model accuracy

The influence of ALS and environmental variables in model performance is graphically
summarized in Table 5 and Figure 4. All the analyzed variables show a coherent
relationship with MPE values. It can be observed that the increase in point density
reduces MPE, ranging from an average of 5.21 tons ha ', for those plots with a point
density lower than 1 point m > to 4.65 tons ha ', for those ones with a density higher
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Figure 3. Scatterplot of predicted vs. observed values of FRB (tons ha ') using four different
regression methods.
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Table 5. Summary of MPE values per category established for the ALS characteristics and
environmental conditions.

MPE

Classes Median Mean Standard deviation
Density (points m %) <1 3.11 5.21 5.95
>] 341 4.65 4.22
Scan Angle (%) <5 2.97 4.58 4.51
5-15 3.19 5.62 6.99
>15 6.18 6.52 5.05
CPP (%) <25 5.04 6.69 7.43
25-50 3.21 4.40 3.44
50-75 2.06 2.93 4.32
>75 1.24 1.22 0.95
Slope (%) <15 2.95 4.14 3.71
>15 3.35 5.58 6.33
Shrub presence Absence 3.45 5.04 4.40
Presence 3.02 5.15 6.85

than 1 point m 2 (Table 2). Similarly, the increment of scan angle produces higher errors
when modeling, with values of 4.58 tons ha !, for those plots close to nadir, and values
of up to 6.52 tons ha !, for those ones with a scan angle higher than 15°. The decrease in
CPP generates an increase in the MPE values of the models, ranging from 1.22 tons ha
in plots with CPP higher than 75% to 6.69 tons ha ' in plots with CPP lower than 25%.
The plots with slopes higher than 15% show higher MPE, with an average value of 5.58
tons ha~'. Finally, the presence of shrub slightly decreases model accuracy when
modeling FRB, ranging from 5.15 tons ha™', in plots without understory, up to 5.40
tons ha " for those with shrub presence. A general observed pattern is a greater disper-
sion in MPE values, decreasing model performance, with lower point densities, higher
scan angles, lower CPP, steep slopes and shrub presence. However, plots with scan angle
higher than 15° do not follow this pattern. This fact may be explained by the relative low
amount of plots that reach these conditions.

The assessment of differences between classes, performed using Mann-Withney and
median tests, shows no statistically significant differences between classes, with a 95%
of probability, in the case of point density, terrain slope, and shrub presence. Similar
results present the analysis of the scan angle using the Kruskal Wallis test. However,
statistically significant differences were found between CPP classes when applying
ANOVA test with a p value of 0.01.

3.4. Mapping and quantification of FRB

The SVM r. model, which includes the P70, Elev. variance and the % first ret. above mean,
was selected to estimate the FRB in the study area. This model was parametrized with
a gamma value of 0.21 and a cost value of 10. Figure 5 shows the FRB mapping for the
complete study area and five representative areas of the P. halepensis forest in this region:
one in the foothills of the Pyrenees (Figure 5 A), two more located in the central Ebro valley
(Figure 5 B,C) and two in the Iberian System (Figure 5 D,E). Selected areas present values of
FRB ranging from less than 10 tons ha ' up to more than 100 tons ha ' in some specific
patches, confirming the heterogeneity of the Mediterranean P. halepensis torest. Generally,
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Figure 4. Boxplots of point density, scan angle, CPP, slope, and shrub presence classes related to
MPE values. Solid lines depict the median MPE per class and dashed lines depict the mean MPE
per class.

lower values of FRB tend to concentrate in the forested areas of the Ebro Valley, character-
ized by a dry climate and poor soils. In contrast, higher values of FRB are normally
associated with mature forested areas with better climatic conditions, which are close to
mountain ranges. Aspect also plays an important role at local scales increasing FRB values in
those oriented to the north, with better climatic conditions and soils. The area mapped
considers a polygon mask that covers the forested P. halepensis areas from the Forest Map
of Spain (FMS) in scale 1:50,000. The isolated patches of up to 20 ha were excluded from
mapping. In addition, the model did not consider those areas mapped as other land covers,
e.g.: croplands, denoting good model performance, in the FMS. Furthermore, the borders of
some small FMS polygons have not been included in the FRB map as pixel size was set to
25 m. Accordingly, 197,951.24 ha were mapped, representing 87.66% of the P. halepensis
forested area estimated for the Aragon region by Cabanillas (2010). FRB summed up a total
of 3,627,021.25 tons of FRB, which equals to 1,584.91 thousand tonnes of oil (ktoe).
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Figure 5. P. halepensis FRB in Aragén region. Several subsets of P. halepensis forest are shown
to better visualize FRB results. Subsets location is included in Figure 2. High spatial resolution
orthophotography from Spanish national plan for aerial orthophotography IDEE service is used as
backdrop.

4. Discussion
4.1. Variable selection and FRB modeling

Results reveal that low-density ALS data can be used to accurately estimate FRB at
a regional scale in Mediterranean environments characterized by a high heterogeneity.
The use of an appropriate selection method reduces variable collinearity, increasing
model understanding. In this sense, Kristensen et al. (2015) proposed Spearman rank
as a good tool for determining the relationships between ALS and field metrics. In
accordance with these authors, this method, with subsequent manual selection,
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determined the best independent variables when computing SVM with radial kernel, RF
and LWLR. All subset selection exhaustively determined the best models when using
SVM with linear kernel and MDL regression methods. These results agree with Hansen
et al. (2015) who also used similar best subset regression procedures to estimate biomass
with ALS data. Furthermore, our results agree with Garcia-Gutiérrez et al. (2015), who
found that Stepwise was the powerless technique. In agreement with Nezesset (2002) and
Cao et al. (2016), PCA may be considered as a first attempt to reduce collinearity, but an
additional selection approach should be considered before modeling.

The comparison between non-parametric regression methods shows that SVM with
radial kernel outperforms the analyzed approaches, presenting the lowest RMSE (8.85
tons ha ') and bias (0.26) and matching with the values obtained by Jakubowski, Guo, and
Kelly (2013) and Garcia-Gutiérrez et al. (2015). The better performance of SVM with radial
kernel respect to Random forest and LWLR may be caused by overfitting of RF and LWLR
in the training phase. In the case of SVM with linear kernel, the decrease in performance
might be influenced by the dispersion in the distribution of values. Moreover, no significant
differences were found between the models, agreeing with Garcia-Gutiérrez et al. (2015) and
Lee et al. (2018). Comparison between regression methods should be considered, especially
when working with big datasets in heterogeneous forest stands as the Mediterranean ones.
The generated models, specifically the regression model and the type of ALS selected
metrics, might be applied when working at larger areas in Mediterranean Pine forests.
However, the generalization of the generated models for other forest types (e.g.: deciduous)
or coniferous forest in other environments may require further testing. The use of SVM when
working with large field datasets is recommended. In this sense, the application of the
proposed selection methods to identify the most suitable ALS metrics is advisable.

4.2. Influence of ALS characteristics and environmental conditions in model
accuracy

A decrease in point density increases the MPE up to 0.56 tons ha ' in agreement with Garcia
et al. (2017), Singh et al. (2015) and Ruiz et al. (2014). Furthermore, the accuracy remained
relatively high when using low-point densities. No statistically significant differences were
found between groups (Jakubowski, Guo, and Kelly 2013). Our results confirm the conclu-
sions from previous studies based on low-density ALS-PNOA data (Domingo et al. 2018).
This public information is an accurate alternative to estimate forestry variables when higher
point density data are not available. An increment in scan angle, from angles close to nadir
(<5°) to angles higher than 15°, increases 1.94 tons ha ' models MPE. These results agree
with Disney et al. (2010) who proposed to minimize the use of data collected at scan angles
greater than ~15°. Liu et al. (2018) also proposed to avoid off-nadir angles from 23° to 38°.
However, no statistically significant differences were found between those ranges agreeing
with Montaghi (2013), who found that the estimation of forestry metrics using an area-
based approach were relatively unaffected by scan angles up to 20°. In agreement with
Hollaus et al. (2006) a CPP decrease generates an increase in the MPE of the models of up to
5.47 tons ha~', when comparing plots with a penetration higher than 75% to plots with
penetration lower than 25%. Secondary effects of densely covered areas are a decrease in
CPP in lower strata (Chasmer, Hopkinson, and Treitz 2006; Wasser et al. 2013) as well as
a decrease in DTM accuracy (Cowen et al. 2000; Hollaus et al. 2006; Hyypp4 et al. 2000).
Steep slopes reduce model accuracy, but not significant changes were found, which agrees
with Breidenbach et al. (2008), Clark, Clark, and Roberts (2004), and @rka et al. (2018).
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Slope effect might be partially explained by the lower accuracy of DTMs in these areas,
considering that filters have more difficulties on determining ground points on steep slopes
(Montealegre, Lamelas, and de la Riva. 2015a). Consequently, the filtering errors could be
transferred to the estimation of forest parameters. The shrub presence slightly decreases FRB
model accuracy, increasing the MPE of the models in 0.11 tons ha '. This fact may have an
effect on DTM accuracy. However, these findings should be further analyzed before general-
izing them for the estimation of other forestry variables.

4.3. Future research

Overall, the use of low-point density ALS data allows generating accurate maps of FRB
potential and quantifying bioenergy forest resources in P. halepensis forest at a regional
scale. Furthermore, it provides information for forest managers related to the canopy bulk
density and canopy fuel weight spatial distribution. These are two fuel metrics critical to
assess wildfire risk in pyrophytes forest frequently affected by fires.

Future research should focus on developing more automatic selection methods, using
Spearman’s rank correlation, and different types of ALS metrics, in order to decrease
modeling time. Furthermore, the use of multi-temporal ALS data has great potential for
the analysis of changes in FRB. In this sense, the combination with multi-temporal passive
remote sensing series could assist in the characterization of the evolution of this resource
over the last decades. Finally, the capture of point clouds with Unmanned Aerial Vehicles
would be of interest to provide 3D point clouds at lower expenses for small to medium areas.

5. Conclusions

This study assesses the usefulness of low-point density ALS data to accurately estimate FRB
at a regional scale in a Mediterranean environment. Furthermore, it analyses the influence of
environmental and ALS variables in model performance. Spearman’s rank coefficient has
been the most powerful selection method to generate representative and meaningful models
at a large regional scale, followed by All subsets regression exhaustive method. The SVM
with radial kernel method produced the most accurate model for FRB, which included three
ALS metrics: the P70, the Elev. variance, and the % first ret. above mean. In general, no
statistically significant differences were found between the generated models in terms of
RMSE. The use of machine-learning regression methods may boost model performance
when working in heterogeneous forest environments with a high number of field plots.
Except for canopy pulse penetration, no statistically significant differences were found for
the analyzed ALS characteristics and environmental variables. Point densities lower than 1
point m 2, high scan angles, lower CPP, steep slopes and shrub presence tend to decrease
model performance in 0.56, 1.94, 5.47, 1.44 and 0.10 tons ha ', respectively. The large-scale
mapping of 197,951.24 ha representing 87.66% of the P. halepensis forested area in Aragdn
region sums up a total of 3,627,021.25 tons of FRB, being equal to 1,584.91 ktoe.
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3.4. Temporal Transferability of Pine Forest Attributes Modelling

Using Low-Density Airborne Laser Scanning Data

Transferibilidad temporal de modelos de variables forestales utilizando datos de escaner laser

aeroportado de baja densidad
RESUMEN

Este estudio evalta la transferibilidad temporal de modelos generados utilizando datos de escaner
laser aeroportado (ALS) y adquiridos en dos fechas diferentes. La estimacion de siete variables
forestales (densidad de pies, area basal, didmetro cuadratico medio, didmetro dominante, altura
dominante, volumen maderable y biomasa arbdrea) se realizé utilizando un enfoque basado en
areas en masas forestales mediterraneas de Pino carrasco. Los datos ALS de baja densidad se
adquirieron en 2011 y en 2016, mientras que las 147 parcelas de campo se muestrearon en 2013,
2014 y 2016. La generacion de datos de campo para las fechas de los vuelos ALS se realizo
mediante la aplicacion de modelos de crecimiento de arbol individual. Cinco métodos de seleccion
y cinco modelos de regresion fueron comparados para relacionar las observaciones tomadas en
campo respecto a las métricas ALS. La seleccion de los mejores modelos de regresion ajustados
para cada variable forestal, y separadamente para los afios 2011 y 2016, se realizé utilizando un
enfoque indirecto. El ajuste de los modelos y la transferibilidad temporal de los mismos se analizd
extrapolando los mejores modelos ajustados para 2011 a 2016, e inversamente de 2016 a 2011. El
modelo de regresion no paramétrico support vector machine con kernel radial mostr6 los mejores
resultados. La diferencia en el error cuadratico medio en porcentaje de los modelos ajustados y
extrapolados fue de 2,13% para los modelos de 2011 y 1,58% para los de 2016.
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Abstract: This study assesses model temporal transferability using airborne laser scanning (ALS) data
acquired over two different dates. Seven forest attributes (i.e. stand density, basal area, squared mean
diameter, dominant diameter, tree dominant height, timber volume, and total tree biomass) were
estimated using an area-based approach in Mediterranean Aleppo pine forests. Low-density ALS
data were acquired in 2011 and 2016 while 147 forest inventory plots were measured in 2013, 2014,
and 2016. Single-tree growth models were used to generate concomitant field data for 2011 and 2016.
A comparison of five selection techniques and five regression methods were performed to regress
field observations against ALS metrics. The selection of the best regression models fitted for each
stand attribute, and separately for both 2011 and 2016, was performed following an indirect approach.
Model performance and temporal transferability were analyzed by extrapolating the best fitted
models from 2011 to 2016 and inversely from 2016 to 2011 using the direct approach. Non-parametric
support vector machine with radial kernel was the best regression method with average relative %
root mean square error differences of 2.13% for 2011 models and 1.58% for 2016 ones.

Keywords: model temporal transferability; ALS; forest inventory; backdating; Mediterranean forest

1. Introduction

Forest ecosystems provide economic and social benetits to humankind [1,2] requiring accurate
tools to monitor their dynamics over time [3]. Over the last decades, optical remote sensing techniques
have been used for monitoring forest changes at regional scales with the support of field surveys (e.g., [4,5]).
However, airborne laser scanning (ALS) is better adapted to characterize forest structure [6] and
estimate forest inventory parameters, providing accurate information to perform forest management
and planning [3]. Furthermore, costs of ALS-based inventories are comparable to those associated
with traditional ground-based ones [7,8]. Despite the great potential of this technology, multi-temporal
ALS data have been utilized less, as the availability of two or more surveys in the same area has been
limited by acquisition costs as well as by the need of temporal-concomitant field data (e.g., [3,6,9,10]).
Recently, organizations, companies, and countries have made an effort to gather multi-temporal
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datasets in different years (e.g., [11-13]) allowing the estimation of biophysical properties in forested
areas over time. As a result, height growth has been estimated using the single tree or the area-based
approach [14-20]. Biomass and carbon dynamics has also been analyzed [3,9,21-27], while less studies
have estimated volume [17,18,21], basal area [17], and site index [14,28]. Multi-temporal data has also
been used for quantifying fire-induced changes to forest structure [29], gaps presence [20,30,31] or
detecting defoliation [32]. However, to the best of our knowledge, some relevant forest inventory
attributes, such as stand density, squared mean diameter, and dominant diameter, have not been
estimated using multi-temporal ALS data.

The use of low-density ALS data has been successfully used for estimating forestry attributes
in different forest ecosystems (e.g., [33-35]), being also the case in Mediterranean forests of Spain
(e.g., [36-38]). The analysis of the influence of point density on model predictions have been
analyzed by several authors (e.g., [39-41]), who established that point density has little or no effect on
predictions as statistical metrics remain stable [42]. Furthermore, Garcia et al. [43], Singh et al. [44],
and Ruiz et al. [45] pointed out that low-density datasets were a viable solution at regional scales.
Furthermore, the use of multi-temporal, low-point density data has only been explored in boreal
ecosystems [17,28] and in temperate forests [24,27] but not in other ecosystems, such as Mediterranean
ones, which are characterized by a higher heterogeneity in terms of forest structure.

Direct and indirect approaches have been proposed to model forest attributes using
multi-temporal ALS data over time [26]. The direct approach adjusts one model for one point in
time and estimates the inventory attribute for another point in time [3,2]. Previously, the model
to be extrapolated was generated through regression methods that related a suite of ALS-metrics
with ground-truth data. This approach allowed the temporal transferability of models reducing
modeling time and fieldwork, as it was not needed to revisit them when the time between the ALS
surveys was not large [28]. In contrast, the indirect approach fits two different models and estimates
the variables for each point in time [3,5,17,24,25,27]. Several examples of the evaluation of these
two approaches can be found in the literature. For example, when estimating biomass and carbon
fluxes, Zhao et al. [3] and Meyer et al. [25] achieved better results with the indirect approach while
Cao et al. [9], Skowronski et al. [24], and Bollandsis et al. [26] found slightly better performance of the
direct approach.

These aforementioned modeling strategies sometimes face a challenge when lacking temporally-
concomitant field data to calibrate forest stand models [3]. To this end, forest growth models can serve
as useful tools to calibrate forest stand variables in a specific point in time. Thus, empirical growth
models have received particular attention since the beginning due to their usefulness. Nowadays
state-space stand-level models [46], distribution-based models, and both individual-tree models and
complex process-based eco-physiological models [47] have dramatically increased flexibility and
realism to forest simulations. In this sense, individual-tree growth models are powerful tools to update
stand variables to the Light Detection and Ranging (LiDAR) mission date. For example, the use
of diameter at breast height (dbh} and the height growth values from general yield tables of the
Spanish National Forest Inventory have been applied for estimating total tree biomass in Aleppo pine
forests [36]. However, specific single-tree growth models calibrated with tree rings are more accurate,
particularly for improving model consistency when working at regional scale.

Thus, the aim of this study is to assess temporal transferability of several forest attributes models
by comparing direct and indirect approaches using low-density ALS datasets collected in 2011 and
2016. Seven forestry attributes (i.e. stand density, basal area, squared mean diameter, dominant
diameter, tree dominant height, timber volume, and total tree biomass) are estimated at regional scale
in the Mediterranean Aleppo pine forest. First, an indirect approach fits two different models for 2011
and 2016 and estimates stand attributes for each point in time using different ALS-metrics and model
parameters. Secondly, a direct approach extrapolates the models fitted previously, using the same
variables and model parameters, to the other points in time.
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Furthermore, the following secondary objectives were addressed: updating field inventory data
collected in three different dates to the point clouds acquisition dates using single-tree growth models;
comparing five selection methods and five regression methods in forest attributes modeling.

2. Materials and Methods

2.1. Study Aren

The Aleppo pine (Pinus halepensis Mill.) forests under study are located in the Aragon region
(Figure 1), Northeast Spain. This species represents 18.7% of the forested area, including semi-natural
and reforested stands [48] and is well adapted to Mediterranean environmental conditions.

42’0|’0"N

41°0'0"N

Field plots
® 2013 campaign (n = 53)
® 2014 campaign (n = 43)

s 2016 campaign (n= 51)

Figure 1. Study area with the location of forest inventory plots. High spatial resolution orthophotography
from Spanish National Plan for Aerial Orthophotography spatial data infrastructure (SDI) service is
used as a backdrop.

In this area, the annual precipitation ranges from 350 mm to 1000 mm [49]. The average annual
temperature is 14 °C, with cold winters and hot and dry summers. Aleppo pine forests are characterized
by a hilly topography, with elevations ranging from 300 to 1150 m above sea level and slopes from 0°
to 39°. The lithology of the study area varies from Miocene carbonate and marl sediments to limestone
platforms and Mesozoic and Eocene limestone.
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Some pine stands are natural, but most stands were planted approximately forty to sixty years ago.
The evergreen understory includes species such as Quercus ilex subsp. rotundifolia, Quercus coccifera,
Juniperus oxycedrus, Buxus sempervirens, funiperus phoenicea, Rosmarinus officinalis, and Thymus vulgaris,
among many others. Reforested areas usually present a low presence of hardwood species and
poor diversity [50,51], while natural stands are structurally complex with a developed and diverse
understory [52].

2.2, Forest Inventory Data

Forest inventory data was acquired through 147 plots from three field campaigns performed
during June to July 2013, July to September 2014, and April 2016 (Figure 1), from now on cited as first,
second, and third campaign, respectively. The sampling data fulfilled the statistical requirements [53],
considered the size of the study area, and the variability of the pine forest in terms of terrain slope,
canopy height, and canopy cover (CC) [54].

Field data from the first campaign were acquired in 53 circular plots with a 15 m radius. A Leica
VIVA®GS515 CS10 GNS5S real-time kinematic global positioning system (GPS) was used to collect the
center of each plot. Tree dbh, for those trees with a dbh larger than 7.5 cm, was measured at 1.3 m
height using a diameter tape. Green crown height and height of up to 4 randomly selected sample trees
within each plot were measured using a Suunto®hypsometer. Thus, diametric class was considered
when selecting the sample trees.

Field data from the second campaign were collected in 43 circular plots with a 15 m radius.
The center of the plots was referenced using the same Global Navigation Satellite System (GNSS)
receiver as in the first campaign. Tree dbh was measured with the same criteria as the first campaign
using a Haglof Sweden@Mantax Precision Blue caliper. The green crown height and the total height of
all trees in the plot were measured using a Haglof Sweden®Vertex instrument.

Field data from the third campaign were acquired in 51 circular plots. The center of the designated
circular plots was measured using a Trimble@GNSS receiver, Field plots with a 5.6 m (3 plots), 8.5 m
(23 plots), 11.3 m (17 plots), and 14.10 m (7 plots) radius were collected. Tree dbh was measured at
1.3 m using the same caliper as in the second campaign. The green crown height and the height of
up to the 6 nearest trees to the plot center were measured using a Hagldf Sweden®Vertex instrument.
The sample was completed to achieve 100 dominant stems ha ! considering those with larger dbh.

The height for those trees not measured in the field plots was predicted using a height-diameter
model developed from the sampled trees from all the field plots of the third campaign. Normality of
the residuals, homoscedasticity, and independence or no auto-correlation in the residuals were verified
for the linear regression fitted model.

2.3. Inventories Updating and Stand Variable Computation

Field data measurements were updated to year 2011 and 2016, which correspond to each ALS
flight, to avoid any tempeoral lag between ALS-metrics and stand-level variables. The PITRAGON-2017
individual tree model was applied [55] through the forest simulator platform Simanfor [56]. This model
enables tree-level distance—independent simulation of the development of Aleppo pine afforestations
in Aragon. Tt consists of a set of equations for diameter over bark growth, diameter under bark growth,
diameter under bark—diameter over bark ratio, generalized height—diameter relationship, volume
over bark (taper equation) and crown ratio. In addition, it presents a survival model for the coming
10-year period and a classification tree for the regeneration of species of the genus Pinus, Quercus,
and Juniperus, also in the coming decade. Explanatory variables included those related to tree size
(diameter at breast height, total height), stand density (basal area, Hart—Becking index), dominant trees
(dominant height, dominant diameter), competition (BALMOD) [57] and site quality (site index). Site
index and dominant height evolution were estimated using the site index curves developed for natural
Aleppo pine forests in the central Ebro valley [58].
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Thus, when projecting future stand variables, diameter growth and survival equations were
applied to every single tree in each plot, while the site index curve was used to forecast the future stand
dominant height {and hence estimate the total height of each surviving tree). To reconstruct stand
structure in the past, we need to deploy the diameter under bark growth equation, as it permits the
use of the current stand features to predict the past growth of a tree (backdating procedure). Therefore,
past tree diameters over bark are estimated through the diameter under bark —diameter over bark
ratio—, while past dominant height can be calculated with the same site index curves, as they are
dynamic, age-independent functions. Once every diameter and dominant height are known, the rest
of the stand variables can be directly computed.

Seven forest inventory attributes were calculated from field data for each plot: stand density (IN);
basal area (G); squared mean diameter (Dg); dominant diameter (Do); dominant height (Ho); timber
volume over bark of stem (V); and total tree biomass (W) [37] (Table 1). Thus, Ho is the mean height
of the 100 trees per ha with largest dbh; Do is the mean dbh of the 100 trees per ha with largest dbh.
V is estimated through the taper equation included in the PHHRAGON-2017 individual-tree model [55].
W is computed as the sum of aboveground and belowground tree biomass using the Aleppo pine
allometric equations developed by Ruiz-Peinado et al. [59].

Table 1. Forest inventory attributes.

Date of the Campaign Field Data Variables Units
First: JLlI'lE to JLllY 2013 Green crown hClght Stand dCD%ll’Y (N) stems h{l_1
Second: July to September 2014 Total height Basal area () m2ha 1
Dbh Squared mean diameter (Dg) cm
Dominant diameter (Do) cm
Dominant height (Io) m
Third: April 2016 Volume over bark (V) m> ha!
Total tree biomass (W) tons ha—!

2.4. ALS Data and Processing

The ALS data were acquired in 2011 and 2016 by the Spanish National Plan for Aerial
Orthophotography (PNOA) [60]. The respective acquisition specifications are shown in Table 2.
The point clouds, delivered in 2 x 2 km tiles in LAS binary file format, were captured with up to
four returns measured per pulse. The x, y, and z coordinates were provided in European Terrestrial
Reference System (ETRS) 1989 Universal Transverse Mercator (UTM) Zone 30 N.

Table 2. Technical specifications of airborne laser scanning (ALS) data.

Characteristics Year 2011 Year 2016
Time period January to February September to November
Laser scanning system Leica ALS60 Leica ALS80
Wavelength 1,064 nm 1064 nm
Average flying altitude over sea level 3,000 m 3150 m
Pulse repetition frequency ~70 kHz 176-286 kHz
Scanning frequency ~45 kHz 28-59 Hz
Maximum scan angle 29° 25°
Nominal point density 0.5 points m~2 1 points m~2
Average point density 0.64 points m 2 1.25 points m 2
Accuracy of the point cloud (RMSEz) <0.2m 0.09 m

After the noise removal from the point clouds, a verification of the overlapping returns was
performed considering vertical and horizontal displacements. Thus, overlapping returns were
removed from 105 tiles for the 2011 ALS flight. The subsequent steps were evenly applied for both
ALS campaigns. The multiscale curvature classification algorithm [61], implemented in MCC 2.1
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command line tool, was used to classify ground points according to Montealegre et al. [62]. A digital
elevation model (DEM) with a 1-m size grid was generated using the Point-Triangulated Irregular
Network-Raster interpolation method [61], implemented in ArcGIS 10.5 software. This DEM was
used for point height normalization. The point clouds were clipped to the spatial extent of each
field plot. Then, a full suite of statistical metrics related to height distribution and canopy cover was
calculated [63] using FUSION LDV 3.60 [64] software. A threshold value of 2 m height was applied to
remove ground and understory laser hits before generating the ALS-derived variables according to
Nilsson [65] and Neesset and @kland [66]. For better understanding of the results, the ALS metrics
were classified into three macro classes and seven classes (see Table Al in Appendix A). Canopy
height metrics (CHMs) were subdivided into lower, mean, and higher height variables; canopy height
variability metrics (CIHIVMSs) were subdivided into variability and variability metrics derived from the
L moments [47]; and canopy density metrics (CDMs) were subdivided into percentage of first or all
returns, canopy relief ratio (CRR), and the ratio between all returns and total returns.

2.5. Modeling of Forest Stand Attributes and Temporal Tranferability Assessment

Figure 2 depicts in a graphical way the steps followed in the methodology in which two main
phases can be distinguished: (i) the selection of variables and the forest attributes modeling in 2011
and 2016 using the indirect approach and (ii) the temporal transferability assessment applying a
direct approach.

2013 (n=53)

2014 (n=43) . Field data
2016 (n=51)
2011 (n=147) [ Inventories
2016 (n=147) ALS data processsing
Single-tree growth models | 2011 and 2016
N,G,Dg,Do,Ho, Plot stand Selection Spearman rank,
> lect
v':‘,‘; 35%2,1 ! attributes independent variables “.?&‘{‘f 'Eﬁs";’cﬁ CA?Sn d
Modeling
Foriract enrtmch < MLR, SVM, RF, MDL, LWLR
3 Best fitted Best fitted
Phasei 2011 models 2016 models
Best regression method
Modeling
Direct approach
Phase ii Best fitted 2011 models Best fitted 2016 models

extrapolated to 2016 extrapolated to 2011

I—‘L—l

Model temporal transferability assessment

Figure 2. Methodology for forest stand attributes estimation using indirect and direct approaches.

2.5.1. Variable Selection and Attributes Modeling Using the Indirect Approach

Forest stand attributes modeling using the indirect approach was performed by two steps:
(i) selection of the suitable ALS metrics using five selection approaches, and (ii} estimation of each
stand attribute using five types of regression methods for 2011 and 2016 years (Figure 2). Thus, each of
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the computed models have associated a selection approach, which determined the ALS metrics to be
included in the models.

As described by Domingo et al. [36], different selection methods were applied to choose the
AlLS-metrics that present the best relationship with the forest inventory attribute at plot-level:
(i) Spearman’s rank correlation coefficient considering a minimum positive and negative rho value
of 0.5; (ii) stepwise selection using backward, forward, and bidirectional approaches; (iii} principal
compoenent analysis (PCA} using varimax rotation to better interpret the results [67,68]; (iv) last
absolute shrinkage and selection operator (LASSO) [69]; and (v) all subset selection (ASS) implementing
exhaustive, backward, forward, and sequential replacement (Seqrep) approaches [70].

The selection of ALS-metrics was restricted to a combination of up to four independent variables
using the mentioned selection methods to avoid variable multicollinearity, overfitting [71], and within
the purpose of generating parsimonious models for forest management.

The estimation of forest stand attributes using an area-based approach and ALS data is usually
done using either parametric (i.e. multiple linear regression) or non-parametric approaches such as
regression trees, random forest, support vector machine, k-nearest neighbor, artificial neural networlk
among others [72]. Five different regression methods, as described by Domingo et al. [36], were
compared to estimate the seven forest inventory attributes (Table 1): multiple linear regression model
(MLR), support vector machine (5VM), random forest (RF), locally weighted linear regression (LWLR),
and linear model with a minimum length principle (MDL).

In the case of multiple linear regression model (MLR) normality, homoscedasticity, independence,
and no auto-correlation of the residuals were verified. Logarithmic transformation of the dependent
variables and the independent ones was also performed in those cases where statistical assumptions of
linear regression were not fulfilled [73-75] or to improve the goodness-of-fit of the models. Support
vector machine was computed using two kernel variants, linear (SVMI), and radial (SVMr) cones. Cost
and gamma SVM parameters were tuned applying an interval of 1-1000 and 0.01-1, respectively.
Random forest was implemented in R using “randomForest” [76] and “caret” packages [77], including
“corrbias” parameter to minimize bias effects. The model was tuned by applying a number of trees to
growth (ntrees) within the interval 1-3000 and a number of variables to divide the nodes between 1
and 3. Locally weighted linear regression and MDL tree structures were computed using the R package
“CORElearn” considering up to four ALS metrics. Model computation required the splitting of the
original sample into a training set of 75% of the cases (110 plots) and a test set of 25% of the cases
(37 plots). Validation was performed for all the models, being executed 100 times for those methods
with associated randommess as SVM, RF, LWLR, and MDL to increase robustness in the results [78].
Furthermore, data were normalized in values ranging from 0 to 1 in order to avoid weights saturation
according to Gorgens [79].

Statistic performance of each computed model was reported including root mean square error
(RMSE), relative RMSE respect to the mean (%RMSE) and bias. Differences between models were
determined by using the Friedman nonparametric test according to the RMSE of each plot [80].
Furthermore, the Nemenyi post-hoc test was applied to determine whether differences were statistically
significant, with a significance level of 0.05 [81]. This test was applied only when the null-hypothesis
of the Friedman test was rejected, thus implying non-equivalence between models.

2.5.2. Assessment of Temporal Transferability by Applying a Direct Approach

The temporal transferability of models were assessed by three steps: (i) selection of the best
regression model previously generated by the indirect approach for each forest stand attribute and
year (2011 and 2016); (ii) extrapolation of the selected models from 2011 to 2016 ALS data, using the
same variables and model parameters, and inversely from 2016 to 2011 by using the direct approach;
(iii) performance comparison between extrapolated models for both years (Figure 2). Thus, Friedman
and Nemenyi tests were applied for selecting the best regression model for each year (step i) and for
selecting the best transferable models for both years (step iii).
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3. Results

3.1. Field Plot Computation

Equation (1) was used for estimating tree height (ht) for those trees not measured in the field plots
for the first and third campaign. Model performance for the ht model was as follow: RMSE of 0.80 m
and R? of 0.93.

1
- _ — — s . 25511
ht — (1_32_5311 + (H5'5°“ _ 1'32.5511)_1 exp(—0.025687 dbh)) M

1 — exp(—0.025687-Dy)

where ht is tree height (m), dbh is the diameter at breast height (cm), Hy and Dy are the dominant height
and dominant diameter, as defined in Section 2.3.

Table 3 shows a summary of the forest inventory attributes obtained from the field plot data.
The N values of the inventoried plots ranges from 99.03 to 3200 stems ha—! and G ranges from 0.82 to
58.89 m?2 ha l, presenting also a variety of diameters, from 9.21 to 47.96 cm. V and W data show also a
high range of values with a standard deviation in both cases higher than 60 tons ha=!. The high range
and standard deviation values of the forest inventory attributes show the variability that characterizes
Aleppo pine forest in Aragon region.

Table 3. Summary of the field plot characteristics (12 = 147),

Forest Inventory Attribute Min, Max., Range Mean  Standard Deviation

N (stems ha=1) 99.03 320000 3100.97 71561 486.54
G(m2ha 1) 0.82 5889 58.07 2147 10.04
Dg (cm) 904 4352 34.48 2167 8.01
Do (cm) 921  47.96 38.76 27.79 8.73
Ho (m) 469 1890 14,21 11.32 3.54
V(m?ha ) 221 467.62 46541  118.71 77.79
W (tons ha—!) 289 373.02 37014 10191 60.69

Table 4 shows a summary of the estimated field plot attributes using single-tree growth models
for each measured stand variable and both years. N shows a general decrease in the number of stems
ha~!, which may be caused by tree growth, resulting in an average of N change of 10.56 stems ha—!-G
shows average values of change of 2.55 m? ha~! and Dg and Do changes range from around 1.73 to
2.13 cm of growth, respectively. Ho values show an average increment of (.62 m, ranging from (.35
to 1.89 m. V and W changes show similar values ranging from around 2.00 to 50.00 tons ha=! with
average values around 17.00 tons ha~ 1.

Table 4. Summary of the estimated field plot attributes using single-tree growth models for each year.

Inventory Min. Min. Max. Max. Range  Range Mean Mean sD SD
Attribute 2011 2016 2011 2016 2011 2016 2011 2016 2011 2016
N (stems ha 1) 99.03 99.03 340567 316181 3306.64 3062.79 709.64 69920 500.86 481.00
G(mZha 1) 0.11 0.91 57.56 58.69 57.45 57.77 19.71 22.26 9.97 10.14
Dg (cm) 3.29 9.55 41.41 45.05 38.12 35.50 20.72 22.45 7.99 8.40
Do (cm) 3.36 9.72 45.85 49.19 42.50 3947 26.59 28.72 8.84 9.09
Ho (m) 4.24 4.90 18.46 19.08 14.22 14.17 10.97 11.58 3.70 3.60
vV (m? ha™!) 0.35 2,51 454.77  476.02 45442 47351 107.31 12645  74.83 81.48

W (tons ha—1) 1.34 314 359.22 377.82 357.88 374.68 92.46 108.26 58.10 63.63

3.2. Variable Selection

This section includes the results of the selection of ALS variables for the seven estimated forestry
attributes modeled with the different regression methods.
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Figure 3A synthetizes the performance of the analyzed selection methods for each forest stand
attributes by year. All subsets regression Seqrep (ASSs) was the most powerful selection method.
Spearman’s rank correlation (rho} coefficient also showed good results, especially for selecting N, G,
Dg, and W in 2011. All subsets regression Exhaustive {AS5e) and Stepwise (Step bé&f) were both good
selection methods for estimating G, Ho, and V. However, lasso selection (LASSO), all subsets regression
Backward (ASSb) and all subsets regression Forward (ASSf) have been less utilized. The stepwise
forward and PCA selection methods have not been included in Figure 3 as they did not determine
the best variables for modeling in any of the cases. For detailed information of the selection methods
performance, see Tables A2-A15 in the Appendix A.

) i “ ]
Step. b&f Step. b&f
I LASSO LASSO
ASSb ASSb
l ASSf ASSf
I . ASSe ASSe

Selection methods

= My = O = 0 = 8 o= s = O o= B a4 = [+ = = w
Sy B By By g S By S & A8 B B S 5 = = = = ?)
z 2 oo g g g g ¢ ¢z 5 b
Forest inventory attributes Regression methods
Ne of models
2 4

Figure 3, Performance of selection methods for each forest inventory attribute by year (3A} and
performance of selection techniques for each regression method without considering the year of the
model (3B). Maximum number of computed models in Figure 3A was six for all the stand attributes
except for volume (V) and tetal tree biomass (W), which have a maximum number of five models.
Maximum number of models in Figure 3B is 14, seven for each year and stand attribute, for all
regression methods. Rho stands for Spearman Rank; ASSs stands for All Subsect Selection Seqrep;
ASSe stands for All Subsect Selection Exhaustive; ASSt stands for All Subsect Selection Forward; ASSbh
stands for All Subsect Sclection Backward; and Step. b&f stands for Stepwise Selection Both Backward
and Forward.

Figure 3B depicts the performance of selection methods associated to each regression method
without considering the year of the model. The AS5s was the most powerful method to select the
best ALS metrics when using the MDL, LWLR, SVMr, and SVMI regression methods. Furthermore,
rho coefficient was the most powerful one when using the MLR and RF regression methods. The
ASSe and Step bé&f both were also good selection techniques for almost all the regression methods,
excluding MLR. However, LASSO, ASSb, and ASSf were less effective.

Figure 4 shows the ALS selected metrics for estimating the forest inventory attributes for both
2011 and 2016 years. As mentioned in Section 2.4, for better understanding of results, the ALS metrics
are classified into groups (see Table A1l in Appendix A). In general, higher height variables, variability,
and variables related to the ratio between all returns and total returns were included in most of
the models, while height variables and variability L moments were less demanded. Comparing the
different estimated forest attributes, some differences can be observed. N, Dg, and Do estimations

127



Characterization of Mediterranean Aleppo pine forest using low-density ALS data

Remote Sens, 2019, 11, 261 10 of 28

included higher height variables, variability metrics, and CDM metrics. Ho estimation usually required
higher height variables and variability metrics, while CDM metrics were not included. G, V, and W
estimations included either lower or higher height metrics, variability metrics, and CDM ones.

. . I All returns Total returns-1

% first, % all returns, CRR

Variability L moment

Variability
Higher height variables

Mean height variables

I I I Lower height variables

N2 of models

2 4

S_2016

V_2016

S_2011
G_2011
G_2016

Dg_2011

Dg_2016

Do_2011

Do_2016

Ho_2014

Ho_2016
V_2011
W_2011
W_2016

Figure 4. ALS selected metrics for estimating forest stand attributes for both 2011 and 2016 years.
Maximum number of models is six for all the stand attributes except for V and W, which have a

maximum number of five models.

3.3. Indirect Approach

The regression models to estimate Dg, Do, G, Ho, N, V, and W for 2011 and 2016 years using the
indirect approach are summarized in Tables A2—-A15 of the Appendix A. Figure 5 summarizes the
%RMSE respect to the mean of the different regression methods for estimating the forest inventory
attributes. Models developed for 2016 (Figure 5B) present generally higher accuracy than the ones
generated for 2011 (Figure 5A). The point density of ALS datasets may determine these differences
in accuracy. The SVMr shows the lower RMSE when modeling all the analyzed stand attributes in
2011 (Figure 5A). In this year, SVMI was the second best model when estimating Do, G, Ho, and
W; MDL when estimating N and V; and RF when estimating Dg. The MLR regression method was
not computed for V and W, as statistical assumptions of linear regression were not fulfilled, even
considering logarithmic transformation. The MLR shows the lowest accuracy when estimating Do, G,
Ho, and N.
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Figure 5. % root mean square error (RMSE) respect to the mean of the different regression methods for
estimating the forest inventory attributes for 2011 (A) and 2016 (B).

The SVMr is the best model for estimating N, V, W, Dg, and G in 2016 (Figure 5B). However,
in this year, SVMI and MDL outperformed SVMr when estimating Do and Ho, respectively. In 2016,
MLR shows the lowest accuracy when estimating G, Ho, and N.

Friedman tests shows that the models are not equivalent, with a p-value lower than 0.05 when
testing whether there were statistically significant differences between regression methods for 2011 and
2016 years. Thereby, the post-hoc Nemenyi test indicates that no statistically significant differences exist
between the methods, with 95% of probability, except for MLR. In this sense, statistically significant
differences were found when comparing models in the following cases: between MLR and SVMr
models when estimating Do and G for 2011; between MLR and MDL models when estimating Ho for
2011; between MLR and MDL models when estimating Dg for 2016; and between MLR and all the
generated models when estimating G, Ho, and N for 2016.

3.4. Direct Approach

The SVMr was established as the regression method for analyzing how models fitted at 2011
perform at 2016, and inversely, following a direct approach to analyze temporal transferability. This
method resulted the best estimator for all the models generated in 2011 and for the majority of forest
attributes modeled in 2016.

Table 5 summarizes the best-selected SVMr models fitted in 2011 and the ones extrapolated to 2016
by using the same ALS metrics and model parameters. Table 6 summarizes the best-selected SVMr

models fitted in 2016 and extrapolated to 2011 by using the same ALS metrics and model parameters.

Furthermore, scatter plots of observed and predicted values for the analyzed forest stand attributes for
both years are included in Figures Al and A2 of Appendix A.
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Table 5. Summary of the best-selected SVMr 2011 models and 2016 extrapolated ones. ref. refers

to returns; ¢ is extrapolated; N is stand density; G is basal area; Dg is squared mean diameter; Do

is dominant diameter; Ho is dominant height; V is timber volume over bark of stem; W is total
tree biomass.

Fitting Phase Validation
Attribute ALS Metrics RMSE % RMSE  Bias RMSE % RMSE Bias R?
N 2011 . o Fin ! 257.09 36.34 28.81 272.76 38.55 2699  0.72
N 20160 P99 + ElevIQ + % first ret. Above 2.00 265.62 38.10 17.99 295 83 4943 2049 064
G 2011 Elev. minimum + Elev. kurtosis + % 4.43 22.77 —0.10 477 2451 —-0.10 077
G 2016e first ret. above mean 418 19.01 0.20 5.51 25.05 0.57 0.71
Dyg 2011 P90 + Elev. 8D + % first ret. above 3.38 16.38 0.19 3.06 17.25 0.06 .81
Dg 2016e mean 3.02 13.48 0.19 343 15.35 0.06 0.85
Do 2011 P90 + (All ret. Above 2)/(total first 411 15.53 0.19 4.07 15.36 0.11 0.79
Do 2016e Tet) = 100 3.43 11.99 0.41 3.53 12.33 0.31 0.86
Ho 2011 P90 + Elev. variance + % all ret. 1.32 12,11 0.11 1.34 12.30 0.09 087
Ho 2016e above mean 0.86 7.47 0.10 .98 8.54 0.10 0.93
V2011 Elev. L2 + Elev. cubic mean + % first 28.87 27.42 259 29,71 2822 1.79 0.84
V 2016e ret. above mean 25.03 20.15 3.14 26.00 20.92 2.64 0.90
W 2011 10 + Elev. Quadratic mean + (Allret.  23.00 25.29 0.75 24.29 26.71 —0.03 0.82
W 2016e Above mean)/ (total first ret) x 100 19.63 18.41 1.80 21.39 20.06 1.08  0.89

Table 6. Summary of the best-selected SVMr 2016 models and 2011 extrapolated ones. ref. refers
to returns; e is extrapolated; N is stand density; G is basal area; Dg is squared mean diameter; Do

is dominant diameter; Ho is dominant height; V is timber volume over bark of stem; W is total

tree biomass.

Fitting Phase Validation
Attribute ALS Metrics RMSE % RMSE  Bias RMSE % RMSE Bias R2
N 2011e Flew, maximum + Elev, L kurtosis + 256.69 36.28 33.73 340.20 48.09 49.31 Q.55
N 2016 % first ret. Above 2.00 250.87 35.98 13.95  278.58 39.96 11.83  0.67
G 2011e 1’75 + Flev. CUR mean CUBE + (All 497 25.54 0.26 5.04 25.88 0.13 0.74
G 2016 ret. Above 2)/(total first ret} = 100 3.88 17.61 0.41 4.14 18.80 0.30 0.84
Dg2011e  Elev. maximum + Elev. 1Q + (A1l ret. 3.54 17.14 0.14 377 1825 0.00 0.79
Dg 2016 Above 2)/(total first ret) x 100 3.03 13.53 0.21 342 15.28 a.11 0.85
Do 2011e 199 + Elev. CV 4.20 15.85 0.25 418 15.79 0.16 0.78
Do 2016 +blew. 3.25 11.35 0.40 340 11.89 0.33 0.87
Ho 2011e PO5 + Pley. SD 1.32 12.12 0.03 1.38 12.64 0.03 0.86
Ho 2016 79+ Ry 00.86 7.48 0.03 1.02 5.83 .03 0.92
V 201le P75 + Elev. CUR mean CUBE + (All 2997 28.46 1.51 30.596 29.40 0.84 0.83
V2016 ret. Above 2)/(total first ret} x 100 24.69 19.87 2.65 26.35 21.20 1.92 0.90
W 2011e Elev. L2 + Elev. CUR mean CUBE + 23.11 2542 0.96 23.36 25.69 0.27 0.83
w2016 %, first ret. Above 2.00 18.82 17.65 1.23 20.06 18.81 0.56 0.90

In the case of the models fitted in 2011 and extrapolated to 2016 (Table 5), the %RMSE after
validation ranges from 8.54 to 42.43% and R? ranges from 0.64 to 0.93 within the different stand
attributes. As it is shown in Table 5, models are transferable. In fact, the average %RMSE differences
between the fitted and the extrapolated models is 3.87%. Dg, Do, Ho, V, and W estimations for 2011
models have higher %RMSE than the one for models extrapolated to 2016. However, N and G models
show higher %RMSE for the 2016 extrapolated ones.

In the case of the models fitted in 2016 and extrapolated to 2011 (Table 6), the %RMSE in the
validation sample ranges from 8.83 to 48.09% and R? ranges from 0.55 to 0.92 within the different
stand attributes. These models also show good temporal transferability, being the average %RMSE
differences between the fitted and the extrapolated model 5.85%, even lower than the models fitted in
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2011 and extrapolated to 2016. All the models fitted in 2016 for the analyzed stand attributes present
lower RMSE than the ones extrapolated to 2011.

The comparison between fitted models generated tor either 2011 or 2016 and the extrapolated ones
were assessed using Friedman and post-hoc Nemenyi tests. Friedman test shows that the models for
the analyzed stand attributes are not equivalent with a p-value lower than 0.05 when testing whether
there were differences: (i) between models fitted in 2011 and the ones extrapolated to 2016; (ii) between
models fitted in 2016 and the ones extrapolated to 2011; (iii} between models fitted in 2011 and models
fitted in 2016; (iv) between models fitted in 2011 and models extrapolated to 2011; (v} between models
fitted in 2016 and models extrapolated to 2016. Thereby, the required application of the post-hoc
Nemenyi test indicates that no statistically significant differences exist between the methods for the
proposed hypothesis, with 95% of probability.

4. Discussion

Airborne laser scanning is considered the best technology for mapping 3D vegetation structures [3]
allowing the measurement of fine-scale forestry metrics [82]. Multi-temporal ALS data has been less
explored as the availability of two or more LiDAR surveys in the same area is still limited. Nevertheless,
several studies have used multi-temporal small-footprint ALS to estimate total tree biomass or carbon
dynamics [3,9,21-27], volume changes [17,21], height growth [14-19], and basal area [17]. This study
estimates seven forest attributes (N, G, Dg, Do, Ho, V, W) using bi-temporal low-point density ALS
data in Mediterranean Aleppo pine heterogeneous forests. The high number of field plots has allowed
estimating the seven mentioned forest attributes for 18.7% of the forested area in Aragdén, providing
results at a regional scale. Moreover, model temporal transferability was demonstrated which could
improve forest management in a cost-effective way in Mediterranean Aleppo pine forests.

Multi-temporal LIDAR estimations of forest attributes requires the support of accompanying
field surveys [3] being desirable to have them corresponding to LIDAR surveys [9]. Field surveys
are cost and time demanding specially when acquiring a high number of plots. The use of specific
individual-tree growth equations, derived from dbh growth by extracting tree cores or from interval or
permanent plots, is a good way to get value from field plot inventories acquired between different
ALS surveys. Diameter at breast height and height growth values from general yield tables from the
Spanish National Forest Inventory have been applied in other studies for estimating total tree biomass
in Aleppo pine forests [36]. Nevertheless, in this work specific single-tree growth models, generalized
height-diameter curves and taper equations were used to estimate all stand attributes in the measured
field plots at two different points in time, which produces more accurate results, particularly when
predicting at short term [83].

The use of selection methods reduces variable collinearity, modeling time and increases model
parsimony. All subset selection Seqrep was the most powerful selection method in agreement with
Hansen et al. [84] who also used similar best subset regression procedures to estimate biomass with
ALS data. Spearman rho coefficients, proposed as a good tool for determining the relationships
between ALS and field metrics by Kristensen et al. [85], also showed a good result, agreeing with our
previous studies [37]. Furthermore, our results agree with Garcia-Gutierrez et al. [78], who found that
stepwise was a powerless technique. Accordingly, the use of automatic selection methods such as ASSs
is proposed when using MDL, LWLR, SVMr, and SVMI regression methods in Mediterranean Aleppo
pine forest. Nevertheless, comparison between selection methods should be considered when working
with other forest types or species. In this sense, Rho coefficients should be considered specially when
using MLR and RF regression methods and PCA should be taken into account for a first attempt to
reduce collinearity as proposed by Naesset [54] and Cao et al. [9], but afterwards another selection
approach should be considered before modeling.

The most selected types of ALS metrics for estimating the seven analyzed stand attributes were
higher height variables, variability ones and the ratio between all returns and total returns, while
dominant height and variability L moment variables where less demanded. Ho estimation usually
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required the inclusion of high height percentiles as concluded by Naesset and Gobakken [17]. V and
W estimations normally included either lower or higher height variables, variability metrics, and /or
CDM ones as proposed by Silva et al. [86] and Hopkinson et al. [87].

The comparison between regression methods shows that SVMr had the lowest RMSE when
estimating the majority of the analyzed stand attributes for both dates, except for Do and Ho when
using 2016 data. These results match with Garcia-Gutiérrez et al. [78] and Guerra-Hernandez et
al. [38,88], which obtained higher accuracies when using non-parametric regression methods. Different
results were found in our previous studies [36,89] as MLR slightly outperformed other nonparametric
methods when estimating total tree biomass in Aleppo pine forests, but no statistically significant
differences were found. Thus, in agreement with Gagliasso et al. [90], a high number of field plots may
have boosted machine-learning performance. Furthermore, the broad range and standard deviation
values of the field plot data that characterizes Aleppo pine forest at a regional scale is notoriously
higher than in our previous studies. Thus, although logarithmic transformation of the dependent and
independent variables was carried out, most of the data was not normally distributed. The limitation
on using the best-suited ALS metrics, as most of them were not normally distributed, generates a
considerable decrease of accuracy in MLR model performance. In this sense, comparison between
regression methods is desirable, especially when working with big datasets in heterogeneous forest
stands as the Mediterranean ones.

The comparison of direct and indirect approaches allowed us to assess model temporal
transferability between 2011 and 2016. The direct approach was computed when extrapolating
2011 models to 2016 and inversely. The indirect approach has shown slightly better results when
estimating N, G, Dg, Do, and V. Direct approach showed slightly better results in the estimation
of W when extrapolating 2016 model to 2011, but not inversely. Similar results were found for the
estimation of Ho when extrapolating 2011 model to 2016 data, but not inversely. Comparisons with
previous studies cannot be done for N, Dg, and Do, as these attributes have not been previously
estimated using multi-temporal data. Comparisons between Ho, G, and V results are neither possible
as Naesset and Gobalken [17] performed only the indirect approach. Regarding W estimations, several
results have been obtained using different regression methods, and even in our work both direct and
indirect approaches performed in a different way when extrapolating the first-year model (2011) or
the second one (2016). The indirect approach obtained better results when estimating W for 2011
data agreeing with Zhao et al. [3] and Meyer et al. [25]. Our results also agree with Cao et al. [9],
Skowronski et al. [24], and Bollandsés et al. [26], which detected slightly better performance of direct
approach. Similar results have been found in our study when extrapolating 2016 model to 2011.
In general, the SVMr regression method shows good temporal transferability between both ALS
acquisitions with average %RMSE differences for all the modeled stand attributes of 2.13% for 2011
and 1.58% for 2016.

Models generated using 2016 data (1.25 points m~—2) showed generally higher accuracy than
2011 ones (0.64 points m~2). However, no statistically significant differences were found between the
best-fitted models for each year. In agreement with Cao et al. [9], point density may influence model
performance but did not significantly affect the estimations of forest attributes as point clouds has a
consistent vertical pattern. According to Hudak et al. [27], the relatively large size of the sample plotsis
considered sufficient for generating canopy height metrics. Thus, the results confirm, as other previous
studies based on low-density ALS from the Spanish National Plan for Aerial Orthophotography
data (i.e., [33,36-38]), that this information is an accurate and economic alternative to perform forest
inventories when higher point density data are not available.

Overall, the use of low-point ALS data for two dates and single-tree growth models for
generating temporally-concomitant field data provides accurate estimations of forest stand attributes
in Mediterranean Aleppo pine forests. The indirect approach produced higher precision, but the direct
approach, within those conditions, may reduce fieldwork and time of model parametrization. When
using a direct approach it would not be necessary to create one model for two different points in
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time, as it will be possible to extrapolate a model generated for one date (validated with field data) to
another date. Furthermore, the number of revisited field plots can be dismissed or even not required,
when the time between ALS surveys is not large [28]. This will benefit not only forest managers but
also enterprises devoted to forest inventories. The use of direct method and the possibility of model
temporal transferability generates new alternatives to calibrate future ALS captures with a lower
number of field plots and helps in designing the temporal gap between flights. Single-tree growth
models constitute a useful and rebust alternative to update field data to a point in time, allowing
to accurately estimate forest inventory parameters with the use of ALS data. Future research using
multi-temporal ALS data should focus on the inclusion of inference models to better understand
uncertainties as well as on the analysis of field plot size and saturation effects in model accuracy.
Furthermore, the analysis of forests structural biodiversity changes caused by wildfires or the fusion of
ALS data with multi-temporal passive remote sensing series or unmanned aerial vehicle (UAV) point
clouds may help to monitor forest dynamics over time.

5. Conclusions

Multi-temporal ALS data may improve forest management and planning, providing accurate
forest inventory attribute estimations for different points in time. The results illustrate the usefulness
of bitemporal low-point density ALS data and single-tree growth models, when lacking temporally-
concomitant field campaigns, to accurately estimate seven forestry attributes, using an area-based
approach. All subsets regression Seqgrep was the most powerful selection method, followed by rho
coefficient, to generate parsimonious models. Higher height metrics, canopy height variability, and
canopy density variables were the most selected ALS-metrics, while mean height variables and
variability L moments were less demanded. The SVM with radial kernel outperformed the analyzed
non-parametric and multivariate linear regression methods for estimating all forest inventory attributes
except from Do and Ho when using 2016 data. Thus, machine-learning performance may have been
boosted by forest heterogeneity and an elevated number of field plots.

This study has assessed model temporal transferability by comparing direct and indirect
approaches for the estimation of seven forestry attributes. Indirect approach have preduced slightly
more accurate results than the direct approach, but average %RMSE differences between both
approaches for all modeled stand attributes ranged from 2.13% in 2011 to 1.58% in 2016. Thus,
mixing the direct approach with single-tree growth methods provides a suitable alternative to reduce
fieldwork and enhance ALS technology as a good tool for estimating forest attributes in two different
dates. The utility of multi-temporal ALS data and the combination with multi-temporal series from
passive remote sensing and UAV point clouds derived by using photogrammetric techniques would
have great value for forest management and planning.
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Table Al. Summary of the airborne laser scanning (ALS) computed metrics including the abbreviations,

classes, and macro-classes defined.

Macro-Classes Classes ALS Computed Metrics Abbreviations
Minimum elevation Elev. minimum
0ith percentile of the return heights POl
05th percentile of the return heights Po5

Lower height 10th percentile of the return heights P10
variables 20th percentile of the return heights P20
25th percentile of the return heights P25
L. moment 1 elevation Elev. 1.1
L moment 2 elevation Elev. L2
Mean elevation Elev. Mean
Mode elevation Elev. Mode
30th percentile of the return heights 30
Canopy height 40th percentile of the return heights P40
metrics {CHM} Mean height 50th percentile of the return heights P50
variables 60th percentile of the return heights P60
70th percentile of the return heights P70
E moment 3 elevation Elev. 1.3
Elevation quadratic mean Elev. 50QRT mean 50
Elevation cubic mean Elev. CUR mean CUBE
75th percentile of the return heights P75
80th percentile of the return heights T80
: i 90th percentile of the return heights Pa0
Htg_her height 95th percentile of the return heights Po5
variables 99th percentile of the return heights Pog
Maximum elevation Elev. maximum
L moment £ elevation Elev. L4
S?anfi aré. deviation of point heights Elev. SD
distribution
Variance of point heights distribution Elev. Variance
Variability Coefficient of variation of point heights Elev. OV
distribution T
Skewness of point heights distribution Elev. Skewness
Cancpy height kurtosis ()f: p{)iz}t heights dé;?tribuFion Elev. Kurtosis
variability metrics In»ter_qua?t;le distance of point heights Elev. 10
(CHVM) i;strxbutizg ] Deviat oo
verage Absolute Deviation of point ,
height%; distribution F Elev. AAD
L moment coefficient of variation of point | 7
Variability ¥ heights distribution ’ Elev. LCV
moment L moment skewness of point heights

distribution
L. moment kurtosis of point heights
distribution

Elev. Lskewness

Elev. Lkurtosis

Cancpy density
metrics {COM)

% first, % all
relurns, canopy
relief ratio

percentage of first returns above the 2.00
percentage of all returns above the 2.00
percentage of first returns above the mean
percentage of first returns above the mode
percentage of all returns above the mean
percentage of all returns above the mode
Canopy relief ratio

% first ret. above 2.00
% all ret. above 2.00

% first ret. above mean
Yo first ret. above mode
% all ret. above mean
% all ret. above mode
CRR

All returmns Total
refurns-1

All returns above 2.00 divided by the total
first returns x 100

All returns above mean divided by the
total first returns x 100

All returns above mode divided by the
total first returns x 100

(All ret. above 2.00) /{total

first ret.} » 100
{All ret. above mean)/(
first ret.} x 100

total

{All ret. above mode}/{total

first ret.) » 100
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Table A2. Summary of the N models using 2011 ALS data. Validation resuits in terms of RMSE {(stems
ha™! ), %RMSE, and bias {stems ha”l} and RZ, SM refers to selection method; Step, stands for Stepwise
both and forward; SYMr. refers to support vector machine with radial kernel; SVM L. refers to support
vector machine with linear kernel; ret. refers to returns.

Fitting Phase Validation

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R?
2] o )
;‘ﬂfﬁ *x(?élﬂrei‘ abovemean)/{total first g G sz 4908 000 35067 4957 876 0.53
Elev. L2 + Elev. Variance + {All ret.
above 2.00)/(total firstret.} x 100 MDL  AShs 23589 33.34 —0.83 29237 41.33 —148 065
PO9 + Elev. IQ + % first ret. above 2.00 IWLR Rho 20580 29.09 -87% 31097 43.90 -11.39 0.65
Po9 + Blev. 1) + % first ret. above 2.08 SVNMr rho  257.09 36.34 28.81 27276 38.55 2699 Q.72
Elev. 1.2 + Elev. Variance + {AH ret. .
above 2.00)/ (total firstrer) x 100 SVMI  ASSs 31934 45.14 60.68  309.56 43.76 64,83  0.65
P99 + Elev. 5D + %% first ret. above 2.0 RE rho  151.86 21.46 1.91 303.56 42.91 691 0.60

Table A3. Summary of the N models using 2016 ALS data. Validation results in terms of RMSE (stems
ha~1y, %RMSE, and bias {stems ha !} and RZ. $M refers to selection method; Step. stands for Stepwise
both and forward; SVMr. refers to support vector machine with radial kernel; SVM 1. refers to support
vector machine with linear kernel; ret. refers fo returns.

Fitting Phase Validation
ALS Metrics Model SM  RMSE % RMSE  Bias RMSE % RMSE  Bias R?

Elev. mean + Elev. L kurtosis + Canopy  wyp  gep. 38884 5147 000 36362 5215 1157 045
relief ratio

Flev. maximurm + Blev. L kurtosis +% gy | pesyoa313 3487 114 3289 4631 815 061
first ret. above 2.00

. aAXi . i o

Elev. maximum + Elev. Lkurtosis +% 1oy o ¢ rceo0463 29.35 455 33320 4776 11.06 057
first ret. above 2.00

Blev. maximum + Elev. L kurtosis + % gyng ¢ agsoom0.87 35.98 13.95  278.58 39.96 11.83 (.67

first ret. above 2.00
Elev. maximum + Elev. L kurtosis + %
first ret. above 2.00
Elev. maximum + Elev. L kurtosis + %
first ret. above 2.00

S5vMi  LASSO32211 46.20 2931 313.41 4495 3604 059

RF LASS( 159,15 22.83 -31.71 30257 43.40 -10.81 0.60

Table A4. Summary of the G models using 2011 ALS data. Validation results in terms of RMSE (m?
ha—1), %RMSE, and bias (m? ha—!} and R?. SM refers to selection method; Step. stands for Stepwise
both and forward; SVMr. refers to support vector machine with radial kernel; SVM 1. refers to support
vector machine with linear kernel; ret. refers to returns.

Fitting Phase Validation
ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE  Bias Rr?

Elev. minimum + Elev. Kurtosis + (Al . .
ret. above mode)/ (total first ret.) = 100 MLR rha 380 29.80 0.00 6.01 30.89 ate 064
P10 + % first ret, above 2,00 MDD rho 4.01 23.69 0.21 523 26.85 038 074
PO5 + % first ret. above mean LWLR  ASSe 407 2092 0.0 5.53 2842 012 070
Elev. minimum + Elev. Kurtosis + (All

ret. above mode}/{total first ret.) x 100 SVMr  ASSs 443 22.77 —0.10 4.77 24.51 —0.10 077
Elev. minimum + Elev. Kurtosis + (Al

ret. above mode)/{total first ret) x 100 SVMI  ASSs 485 2492 0.10 487 25.05 0.05 075
P10 + % [irst ret, above 2.00 RF rho 261 13.41 0.02 519 26.69 006 073
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Table A5, Summary of the G models using 2016 ALS data. Validation results in terms of RMSE {m?
ha""‘}), %% RMSE, and bias {m?® ha’ ’1) and R2. 8M refers to selection method; Step. stands for Stepwise
both and forward; SVMr. refers to support vector machine with radial kernel; SVM L. refers to support

vector machine with linear kernel; ret. refers o returns.

Fitting Phase Validation
ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias Rr?
Elev. minimum +% all ret. above mode MLR rho 9.27 42.11 0.00 9.19 41.76 0.21 0.15
P75 «+ Elev. CUR mean CUBE + (All ret. = -
above 2.00)/(total first ret.} x 100 MDL  ASSe  3.65 16.57 0.19 4,43 20,31 0.12 0.82
P75 + Elev. CUR mean CUBE + (All ret.
above 2.00)/(total first ret.} x 100 IWLR  ASSe 2.84 12.93 0.1 5.05 22.94 —0.10  0.77
P75 + Elev. CUR mean CUBE + (All ret. .
above 2.00) /(total first ret.} x 100 SVMr  ASSe 3.88 17.61 0.41 4.14 18.80 0.30 0.84
P75 + Blev. CUR mean CUBE + (All ret. . .
above 2.00)/ (total first ret.} » 100 SVMi ASSe 4.38 19.89 0.44 £.43 2032 0.35 (.81
- 1 1 o, ., i i . .
P10 + Elev. minimum -+ % first ret RE  ASSf 232 1056 008 464 2106 037 08
above mean
Table A6. Summary of the Dg models using 2011 ALS data. Validation results in terms of RMSE (cm),
Y%RMSE, and bias {cm) and R?. SM refers to selection method; Step. stands for Stepwise both and
forward; SVMr. refers to Support Vector Machine with radial kernel; SVM L refers to Support Vector
Machine with linear kernel; ret. refers to returns.
Fitting Phase Validation
ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R?
P90 + % first ret. above mean MLR rho 3.80 18.44 0.00 3.84 18.60 =003 0.77
. e .
f:tﬂ) *X(‘?élom' above 2.00)/{total first  yry  agse 330 15.97 016 378 18.34 000 078
3] . e T
f_egt{)) +x(‘i‘("}lore§' above 200)/(total first 1 2 Agee 298 1446  —002 375 1819 —022 078
E?ez; Hlev. Std.dev + % firstret. above  gynp gy 238 16.38 019 356 17.25 006 081
LS 7o Y f .
}r;g:;; Elev. Stddev + % firstret above  gynp g 37 18.24 008 388 1880 006 078
P90 + Elev. Std.dev + (All ret. above p
rean)/(total first ret} x 100 RF rho 1.89 g.17 —{.02 3.75 18.18 —0.04 059
Table A7. Summary of the Dg models using 2016 ALS data. Validation results in terms of RMSE (cm),
Y%RMSE, and bias {cm) and. RZ, SM refers to selection method; Step. stands for Stepwise both and
forward; SVMTr. refers to Support Vector Machine with radial kernel; SVM L refers to Support Vector
Machine with linear kernel; ret. refers to returns.
Fitting Phase Validation
ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R
P90 + Elev, LCV + {All ret. above -
- 5.5: R 3,67 . —£) .
mean)/(total first ret.} x 100 MILR Step. 3.48 15.53 0.0 3.63 16.22 .07 082
Elev. maximum + Hlev. 1Q + (All ret. . , ,
above 2.00)/(total first ret} x 100 MDL  ASSf 312 13.93 0.23 371 16.58 0.21 (.82
P90 + Elev. LCV + {All ret. above
rrean)/(total first ret.) x 100 LWLR  Step. 2.59 11.58 —{.03 391 17.48 —0.04  0.80
Elev. maximurm + Elev, 1Q + (Allret. . .
above 2.00) /(total first ret.} % 100 SVMr  ASST 3.03 13.53 0.21 3.42 15.28 Q.11 0.85
By L .
f;i? é“; Elev. mode + % fizst ret. above SVMI  ASSs 345 15.40 020 357 1595 011 083
P90 + Elev. LGV + (Aliret. abave RE  tho 165 7.39 0.01 3.59 16.05 005 082

mean)/ (total first ret.} x 100
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Table A8. Summary of the Do models using 2011 ALS data. Validation results in terms of RMSE (cm),
%RMSE, and bias {cm) and R*. SM refers to selection method; Step. stands for Stepwise both and
forward; SVMr. refers to Support Vector Machine with radial kernel; SVM L refers to Support Vector
Machine with near kernel; ret. refers to returmns.

Fitting Phase Validation
ALS Metrics Model SM RMSE % RMSE  Bias RMSE % RMSE Bias R®

Flev. skewness + Elev. Lkurtosis + P25 MLR rho 534 2017 Q.00 5.42 2047 0.07 0.62
fi%*ﬁgg“‘ above 200}/ (total first MDL  ASSf  3.99 15407 010 4327 16.12 011 077
f;ﬂfiﬁgge“ above 2.00)/ (total first LWLR ASSf 349 1337 —003 429 1619 —005 077
) o IE i

P90+ (All ret. above 200}/ (total first SVMr  ASSF 411 15.53 019 407 1536 011 079
ret.) x 100

f:te))’f;ggﬂ' ahove 2.00)/ (lotat first SVMI  ASSf 424 1601 022 420 15.85 011 078
P90 «+ Y% [lirst ret. above mean RF rtho 213 8.04 -,173 4.38 16.55 {136 0.76

Table A9. Summary of the Do models using 2016 ALS data. Validation results in terms of RMSE (cm),
%RMSE, and bias {cm) and R2. SM refers to selection method; Step. stands for Stepwise both and
forward; SVMr. refers to support vector machine with radial kernel; SYM 1. refers to support vector
machine with linear kernel; ret. refers to returns.

Fitting Phase Validation
ALS Metrics Model SM  RMSE % RMSE Bias RMSE % RMSE Bias Rr?

P90 + Elev, CV + {All ret, above ) N

mean)/ (tolal first et} x 100 MLR  Step. 3.53 12.33 0.0 3.63 12.68 0.08 085
P90 + Hlev. variance + Flew. 1.2 MDL  ASSs 3.26 11.40 0.18 3.47 12.13 0.23 0.86
P95 + Elev. CV IWLR ASSs 288 10.07 —0.03 3.63 12.70 —8.09 084
P95 + Elev. OV SVMr  ASSs 325 11.35 0.40 3.40 11.89 033 Q87
Elev. Std.dev + Elev. Variance + P05 SVMI ASSe  3.26 11.40 0.8 3.36 11.75 011 087
P95 + Blev. CV RF ASSs 161 564 —.02 3.62 12.64 0.00 085

Table A10. Summary of the Ho models using 2011 ALS data. Validation results in terms of RMSE
(m), %RMSE, and bias (m) and R?. SM refers to selection method; Step. stands for Stepwise both and
forward; SVMr. refers to Support Vector Machine with radial kernel; SVM L. refers to Support Vector
Machine with linear kernel; ret. refers to returns.

Fitting hase Validation
ALS Moetrics Model SM  RMSE % RMSE  Bias RMSE % RMSE  Bias  RZ
Elev. LCV + Elev. Lkurtosis + P01 MLR  rtho 221 20.24 000 226 20.71 005 063
P90 + Elev. kurtosis MDL  Step. 124 11.36 010 144 13.18 008 085
P90 -+ Elev. skewness IWLR  ASSs  1.16 1069 002 140 12.83 001 086
if’eoa; Flev. variance + % All ret, above  cyp e ager 132 12,11 011 134 12.30 0.09 087
Elev. L1 + Flev. maximum SVMI  LASSO 1.42 12,99 009 140 12.82 005 086
P90 + Canopy relief ratio RF Step. 072 6.65 —~0.01 1.46 13.41 —.06 084
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Table AT1. Summary of the Ho models using 2016 ALS data. Validation results in terms of RMSE
{m), % RMSE, and bias (m) and B2, SM refers to selection method; Step. stands for Stepwise both and
forward; SVMr. refers to Support Vector Machine with radial kernel; SVM L refers to Support Vector
Machine with near kernel; ret. refers fo returns.

Fitting Phase Validation
ALS Metrics Model SM RMSE % RMSE  Bias RMSE % RMSE Bias R*

Elev. minimum + Elev. CV + Canopy MLR  rho 241 20.90 000 252 21.91 001 051
relief ratio

P95 4 Plev. Stdh.dev MDL  ASSs 092 7.99 007 £.95 8.27 007 033
P95 4+ Elev. variance LWLR ASSs 079 .87 0.02 .98 8.48 000 093
P95 + Flev, Std.dev SVMr ASSs  0.86 7.48 0.03 1.02 8.83 003 092
gg} + Elev. variance + Elev. SORT mean  qypp agqn o6 8.30 0.12 1.00 8.69 008 093
P95 + Elev, vanance + (All ret. ahove RF o 043 276 001 1.00 872 003 097

mean)/ (total first ret.} = 100

Table Al2. Summary of the V models using 2011 ALS data. Validation results in terms of RMSE (i
ha %), %RMSE, and bias (m® ha—?) and R?. SM refers to selection method; Step. stands for Stepwise
both and forward; SVMr. refers to support vector machine with radial kernel; SVM 1. refers to support
vector machine with linear kernel; ret. refers to returns.

Fitting Phase Validation

ALS Metrics Model SM  RMSE % RMSE  Bias RMSE % RMSE  Bias R?
rpeztﬂ) “’;((jl‘\é{)ret' above 200)/(total first gy Agae 3015 2863 169 3339 3171 213 081
f:tﬂ) 't((?('}gm"' above 2.00)/(total first (1o age 2589 2458 005 3409 32.37 024  0.80
Elev. 12 + Elev. CUR mean CUBE + % gy Step.  28.87 27.42 259 2071 28.22 179 084
first ret. above mean
P20 + Elev. L skewness + (All ret. above -
)/ (total firet 2ot » 100 SVM!  ASSs 3425 32.52 0.88 3430 32.58 009 079
3 2V, PR ess + Yo firg -
P20 + Blev. L skewness + % first ret RF  ASSs 16.80 15.96 017 3428 32.55 —056 078

above 2.00

Table A13. Summary of the V models using 2016 ALS data. Validation results in terms of RMSE {m®
ha—?), %RMSE, and bias (m® ha—?) and R?. SM refers to selection method; Step. stands for Stepwise
both and forward; SVMr. refers to support vector machine with radial kernel; SVM L refers to support
vector machine with linear kernel; ret. refers to returns.

Fitting Phase Validation

ALS Metrics Model SM RMSE % RMSE Bias RMSE % RMSE Bias R?
P75 + Elev. CUR mean CUBE + (All ret.
above 2.00)/(total first ret.) x 100 MDL  ASSe 2487 2002 —0.34 29.63 23.85 —{.19 088
P75 + Blev. CUR mean CUBE + (All ret.
above 2.00) /(total first ret.} x 100 LWLR ASSe 2026 16.30 —0.08 31.80 2559 —8.06 085
P75+ Blev, CUR mean CUBE + (All ret.
above 2.00)/ (total first ret.} % 100 SVMr  AShe  24.69 19.87 2.65 26.35 21.20 192 080
P75 + Elev. CUR mean CUBE + (All ret.
above 2.00)/ (total first ret.} x 100 SVMi  ASSe 3049 24.54 2.60 31.14 25.06 148 0.8

y ay L}

Elev. L2 4 Blev: CUR mean CUBE + % RF  Step. 15325 12.27 —038  3L73 25.53 032 086
first ret. above 2.00
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Table A14. Summary of the W models using 2011 ALS data. Validation results in terms of RMSE (tons
ha“"i), YWRMSE, and bias {tons ha“’“i) and RZ. §M refers to selection method; Step. stands for Stepwise
both and forward; SVMr. refers to support vector machine with radial kernel; SVM 1. refers to support
vector machine with linear kernel; ret. refers to returns.

Fitting Phase Validation

ALS Metrics Model SM RMSE % RMSE  Bias RMSE % RMSE Bias R®
Elev. L2+ Blev. CURmean CUBE+% 1y gop 22m 24.21 0.68 2830 3112 182 076
first ret. above 2.00
P10+ Flev. CURmean CUBE + % firsst yyre g0 1g34 2017 023 2912 32.02 004 04
ret. above mean
P12+ Elev, SORT mean SO + (All ret, -
above meany, (total first rot) o 100 SYMr  tho  23.00 2529 0.7% 2429 26.71 903 082
P10 + Canopy relief ratio + {All ret. . =
above meamy/ (total first ret) x 100 SVMI  ASSE 2660 29.25 050 2682 2949 011 079
P10 + Blev. CUR mean CUBE « (Allret. o tho 1439 15.85 —005 2043 32.36 024 075

above mean}/(total first ret,) = 100

Table A15. Summary of the W models using 2016 ALS data. Validation results in terms of RMSE (tons
ha—1), %RMSE, and bias {kons ha~1) and R?. SM refers to selection method; Step. stands for Stepwise
both and forward; SVMr. refers to support vector machine with radial kernel; SVM L. refers to support
vector machine with linear kernel; ret. refers to returns.

Fitting Phase Validation
ALS Metrics Model SM RMSE 9% RMSE  Bias RMSE % RMSE Bias R2

P75 + Elev, CUR mean CUBE + (All ret.

aborye 2.00)/(total firet ret} % 100 MDL  ASSe  19.66 18.44 ~0.64 2344 21.98 ~043 088
P75 + Flev. CLIR mean CUBE + (All ret.

Abave 2.00)/ (fotal fret ret) > 100 IWLR ASSe 1611 15.11 ~011 2575 2415 018 085
Elev. 1.2+ Biev. CUR mean CUBE + SVMr Step. 1882 17.65 123 2006 18.81 056 090
first ret. above 2.00

P75 + Elev. CUR mean CUBE + (All ret.

above 2.00)/ (total first et} 100 SUME  ASSe 2278 21.37 165 2343 21.98 080 087
P20 + Hlev. CURmean CUBE = Allzet.  op g 1958 11.80 013 2238 20.99 001 087

above 2.00)/ (total first ret} » 100
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4. Conclusions and future working lines

The last chapter of this PhD Thesis summarizes the main
conclusions of the use of ALS-PNOA data for forest stand
variables estimation in Mediterranean environments. The
results, presented in the different papers, allow us to
synthesize the general and specific conclusions as well as
introduce some of the possible future research proposals.
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4.1. Main conclusions

Airborne laser scanning is considered one of the best technologies for 3D characterization of
vegetation structure and fine-scale forestry metrics estimation. The use of low-density ALS-PNOA
data in coniferous Mediterranean forest, characterized by a rugged topography and structural
heterogeneity, gives value to these public data and provides useful information for forest

management at local and regional scales.

This PhD Thesis addressed the estimation of different forest variables and the temporal
transferability of models, focusing on the comparison of selection and regression methods, and the

effects of ALS and environmental characteristics in error modelling.

The fusion of ALS and passive optical data evidenced the suitability of these data for wildfire
emissions quantification. The use of ALS data capabilities to better describe forest structure and its
fusion with optical passive data might be considered as suitable tools to enhance greenhouse gases
quantification caused by fires, while solving the lack of post-fire structural information. This
methodological approach could be also applied when having pre and post-fire ALS data by

determining severity indexes.

We have proven the usefulness of low-density ALS-PNOA data for forest variable estimation at
local and regional scales in Aleppo pine Mediterranean forests. The model accuracies reached
similar values to those proposed in the literature in applications using low-density ALS data.
Apart from the estimation of traditional inventory variables, the estimation of total biomass,
including shrubs, and different biomass fractions, such as forest residual biomass, improved
Mediterranean Aleppo pine forest characterization. The performance in the prediction of dominant
height, volume and different biomass fractions achieved higher precision than number of stem
predictions. The assessment of total biomass better quantified Aleppo pine forests as carbon
stocks. The quantification of forest residual biomass might act as a first step to enhance the use of
this renewable energy, whose exploitation has socio-economic benefits and may increase rural
development. Furthermore, this forest parameter is related with canopy bulk density and canopy

fuel weight, whose control can reduce fire risk in forested Mediterranean ecosystems.

After comparison between direct and indirect approach to assess temporal transferability, it was
concluded that there is no perfect approach. The results demonstrate that both approaches were
suitable for estimating forest stand variables using multi-temporal ALS data. Direct approach
reduces modelling time and fieldwork costs in cases where the time between the ALS surveys is
not large. Accordingly, the last mentioned approach benefits not only forest managers but also
enterprises devoted to forest inventories and might serve as an alternative to design the temporal
gap between ALS flights to predict accurately forest variables over time. This research provides
guidance for potential users to select the most favourable approach according to the aim and time
between ALS surveys.

The determination of metric suitability for estimating forest variables potentially reduces
modelling time and improves model accuracy. In this sense, the proposed methodology compares
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five selection processes to determine the most favourable one. In general, the results showed that
any of the selection methods is preferred and their performance depends on the estimated forest
variable. Nevertheless, this research provides guidance for potential users of the most favourable

selection method, according to the analysed variable and conditions.

The generation of parsimonious and understandable models requires the selection of a reduced
number of metrics that show a comprehensive relationship with the modelled variable. These
requirements were considered for all the generated models in this research, selecting a maximum
number of three ALS metrics. The models to estimate forest variables generally included one
independent variable related to canopy height, one associated to height variability and one linked

to canopy density.

After comparison between regression methods, we concluded that no perfect approach exists,
being influenced by sample size and sample heterogeneity. Multivariate linear regression
outperformed non-parametric methods in estimating aboveground tree biomass and total biomass
with small or medium sample sizes (46 and 83 plots). However, with a bigger sample size (147 and
192 plots) multivariate linear model showed a limited applicability, being SVM the most accurate
method. The main restriction for the multivariate linear model was the non-normal distribution of
the best-suited ALS metrics.

From the analysis of the effects of ALS characteristics and environmental variables on forest
residual biomass prediction accuracy, we concluded that the presence of higher point cloud
densities, lower sensor scan angles and higher canopy pulse penetration values increased model
performance. On the contrary, slope steepness of the terrain decreased model accuracy, which may
be partially explained by the errors in DTMs generation. Finally, the effect of shrub presence was
not clear. In this sense, further research could be done to analyse the effect on the prediction of

other forest variables and in different forest environments.

This research enriched the knowledge of Mediterranean Aleppo pine forests using ALS-PNOA
data and enhanced the utility of these public data, which is of great utility in forest management at

local and regional scales.

4.2. Specific conclusions

The main conclusions for each of the specific aims detailed in chapter 1 are presented below:

Explore the usefulness of low-density ALS data to new applications: estimation of biomass losses and CO:
emissions to atmosphere, quantification and mapping of forest residual biomass and estimation of different

tree fractions and shrub fraction of biomass at stand level

e The estimation of pre-fire above ground tree biomass using ALS data showed a good
model performance, allowing an accurate quantification of this forest variable. The models
included two ALS-derived metrics: the 40% percentile of the return heights, related with

canopy height, and the percentage of first returns above 2 m, associated to canopy density.
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The determination of fire severity using Landsat 8 dNBR index allowed applying different
burning efficiency factors, solving one of the traditional inaccuracies in fire emission
estimations: the assumption of total loss of biomass after burning. The determination of
three burning efficiency factors associated to three general ranges of dNBR permitted
extrapolating the methodology to other environments. Biomass losses accounted for
262,659.7 ton and a total of 426,754.8 ton of CO:2 were emitted by the Aleppo pine forested
burned areas. The application of regional conversion factor to estimate carbon content and,
subsequently, CO: emissions reduces the uncertainties related to the use of general
emission equations, while providing an accurate estimation. The three-phase
methodological approach provides a suitable option for estimating wildfire biomass losses,
minimizing fieldwork, while solving the lack of post-fire structural information.

e Spearman rank’s rank determined the more suitable ALS variables to estimate forest
residual biomass: the 70™ percentile of return heights, the elevation variance and the
percentage of first returns above mean, representing canopy height, variability and canopy
density metrics. The 197,951.24 ha mapped represent 87.6% of the Aleppo pine forested
area of Aragon, summing up 3,627,021.25 tons. Low-density ALS-PNOA data provide
accurate information for forest managers about green renewable energy resources and
canopy fuel distribution at regional scales.

e Three ALS metrics were selected to estimate total biomass, including a metric that
characterizes the vertical distribution of ALS returns (the 25" percentile of the return
heights), a metric related with the variability of the return heights (the elevation variance)
and a metric associated with canopy density (the percentage of first returns above mean).
Higher canopy density and variability of the point cloud are associated with higher total
biomass content. Lower height values of the 25" percentile is related with a higher presence
of shrubs in the understory and, subsequently, and increase of the total biomass. The
presence of shrub in Aleppo pine Mediterranean forest, especially for those semi-natural
stands, constitutes a relevant fraction of total biomass. The estimation and cartography of
these forest resources using low-density ALS data provided useful information for forest
management purposes. Total biomass mapping showed values ranging from less than 10
tons/ha up to 150 tons/ha.

Explore the temporal transferability of models for estimating forest stands attributes at regional scale using
multi-temporal ALS-PNOA data

e The acquisition of a high number of field plots to support ALS inventories at regional scales
is cost and time demanding. In this research, the estimation of stand attributes to generate
temporal-concomitant field data for two different points in time (2011 and 2016) were
performed using specific single-tree growth models, generalized height-diameter curves
and taper equations. This methodology produced more accurate results than using yield
tables in tree growth at short term predictions.

e Temporal transferability was performed by using indirect and direct approaches. The
indirect approach, consisting on fitting two different models (one for each analysed year),
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produced generally higher precision. However, no strong differences in precision with the
direct approach were found. Besides, the last mentioned approach reduces fieldwork and
time of model parametrization, being possible to extrapolate a model generated for one
date (validated with field data) to another date, especially if the time between ALS surveys
is not large. These potentialities benefits forest managers and enterprises devoted to forest

inventories reducing time and cost when modelling changes in forest stand attributes.

Compare different parametric and non-parametric methods in forest variable modelling

152

The comparisons between eight regression models to estimate pre-fire aboveground
biomass determined that multivariate linear model outperform the two machine learning
algorithms and five regression trees structures. The models were developed with 46 plots
and two ALS metrics were included. Model accuracy ranged from 11.1 %RMSE, using the
multivariate regression model, up to 23.2 %RMSE, using the KNN algorithm. Models were
not equivalent according to Friedman test, but only WKNN and KNN presented
statistically significant differences respect to the linear, the two machine learning and the
three regression trees structures analysed.

The best regression model to estimate total biomass was the multivariate linear model,
outperforming the four non-parametric analysed regression methods. The models were
developed with 83 plots and three ALS metrics were included. Model accuracy ranged
from 19.21 up to 24.93 %RMSE, using the multivariate linear model and random forest,
respectively. In this approach, statistically significant differences were found neither
between the analysed methods. Random forest and locally weighted linear regression
showed overestimation before performing cross-validation.

SVM with radial kernel was the most accurate regression method to estimate forest residual
biomass at regional scale (26.38 % RMSE). The higher number of plots (192) and higher
sample variability might have boosted the performance of non-parametric regression
methods over linear ones. While generalization of regional models might generate less
accurate results, the use of SVM with radial kernel could be considered when working with
large field datasets and ALS data.

The SVM with radial kernel was also the best method to analyse temporal transferability
between 2011 and 2016. Multivariate linear model showed a limited applicability with a
high number of plots (147) as the best-suited ALS metrics were not normally distributed.
This fact may have caused a decrease in accuracy of model performance. Stem number,
basal area, squared mean diameter, dominant diameter, dominant height, volume and
aboveground tree biomass showed a %RMSE of 38.55, 24.51, 17.25, 15.36, 28.22 and 26.71,
respectively, using ALS data captured in 2011. Generally lower %RMSE were obtained
using the ALS data captured in 2016, obtaining values of 39.96, 18.80, 15.28, 11.89, 8.83,
21.20 and 18.81, respectively (statistics are presented in the same order as in 2011).
Generally, lower accuracy was obtained using SVM with linear kernel, random forest,
LWLR and MDL. The use of WKNN and KNN was tested for estimating pre-fire above
ground tree biomass, presenting the lowest accuracy and denoting statistically significant
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differences respect to the rest of the analysed methods. RF showed an overestimating
tendency during the fitting phase, even applying bias correction methods. However, this
method provided the best results to estimate dominant height with a size sample of 147.
Further tests are required to determine whether large sample sizes improve accuracy in

more complex stand variables prediction.

Assessing the suitability of different variable selection methods in order to improve accuracy following the
principle of parsimony

e The comparison between selection methods determined that all subset regression and
selection based on Spearman’s rank were the most powerful techniques. LASSO selection,
forward Stepwise selection and PCA showed a lower power in determining the best
subsets. All Subset Selection, which is an automatic selection method, allows selecting the
maximum number of metrics and provides faster results than Spearman’s rank, which was
applied using “manual expert criteria”.

e All Subset Selection was the best method for estimating basal area, dominant diameter,
dominant height and volume, while Spearman rank determined the best metrics in
estimating forest residual biomass, tree aboveground biomass and stem number. Equal
usefulness of both methods was detected in squared mean diameter and total biomass
predictions. Stepwise selection was also used for estimating aboveground tree biomass and
volume, and LASSO for estimating stem number.

e High percentiles from the return height distribution were usually selected to estimate
dominant height. Higher canopy height metrics, variability metrics and canopy density
metrics were chosen for estimating stand density, dominant diameter, squared mean
diameter and residual biomass. The last three mentioned metric types and lower canopy
height metrics were used for estimating basal area, volume, aboveground tree biomass and

total biomass.
Assessing the effect of some ALS parameters and environmental conditions in model performance

e Densities lower than 1 point m? increases MPE values in 0.56 tons ha'. However, the
accuracy remained relatively high using low point densities, confirming that ALS-PNOA
information is an accurate alternative to estimate residual biomass when higher point
density are not available.

e Scan angles higher than 15° increases MPU values in 1.94 tons ha' compared to angles
close to nadir (<5°), but no statistically significant differences were found between the
analysed ranges. Agreeing with previous studies, data collection should be minimized at
scan angles greater than ~15°.

e The decrease of CPP, especially for those areas densely covered by high strata, increases
MPE model values up to 5.47 tons ha"!, especially with CPP values lower than 25% respect
to plots with CPP values higher than 75%. The decrease of CPP implies a reduction of

returns number in lower strata and, accordingly, a lower accuracy of DTM.
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The presence of steep slopes decreases model accuracy up to 1.44 tons ha in comparison
with smooth slopes lower than 15%, but do not represent a significant change. The decrease
of accuracy may be partially explained by the lower accuracy of DTMs, considering that
filtering algorithms have more errors on steep slopes.

Shrub presence slightly increases MPE values in 0.11 tons ha. The effect of shrubs in error
modelling is not clear and further research is needed to analyse the effect in the prediction

of different forest variables.
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4.1. Conclusiones principales

El escaner laser aeroportado (ALS) es una de las tecnologias mas utiles para caracterizar
tridimensionalmente la estructura de la vegetacion y estimar variables forestales a escala de
detalle. El uso de los datos ALS de baja densidad del Plan Nacional de Ortofotografia Aérea
(PNOA) en masas forestales de coniferas, en entornos mediterraneos, caracterizados por una
topografia compleja y una heterogeneidad estructural, pone en valor estos datos publicos y

proporciona informacion ttil para la gestion forestal a escala local y regional.

Esta Tesis analiza la estimacion de diversas variables forestales y la transferibilidad temporal de
modelos, enfocandose en la comparacion de métodos de seleccion y regresion, asi como en el
analisis de los efectos que diversas variables ambientales y caracteristicas ALS tienen en los errores

de modelado.

La fusion de datos ALS e imagenes capturadas por sensores 0ptico-pasivos evidencia la idoneidad
de esta informacion para la cuantificacion de las emisiones generadas por un incendio. El uso de
los datos ALS para una mejor caracterizacion de la estructura forestal y su fusion con sensores
Optico-pasivos pueden ser de utilidad para la cuantificacion de gases de efecto invernadero
generados por incendios, a la par que solventar la falta de informacion estructural post-incendio.
Este enfoque metodoldgico puede aplicarse también en los casos en los que exista disponibilidad

de datos ALS pre y post-incendio, mediante la determinacién de indices de severidad.

Los datos ALS-PNOA de baja densidad se han mostrado ttiles para estimar variables forestales a
escalas locales y regionales en masas forestales mediterrdneas de Pino Carrasco. Los ajustes de los
modelos muestran valores similares a los propuestos en la literatura cuando se utilizan datos ALS
de baja densidad. Ademds de la estimacién de variables de inventario forestal tradicional, la
estimacion de biomasa total, incluyendo el matorral, y diferentes fracciones de biomasa, como la
biomasa residual, han permitido mejorar la caracterizacion de las masas forestales mediterraneas
de Pino carrasco. En este sentido, la estimacion de la altura dominante, el volumen y diversas
fracciones de biomasa presenta mayor precision que la estimacion del nimero de pies. La
estimacion de la biomasa total proporciona una mejora en la cuantificacion de las reservas de
carbono en masas forestales de Pino carrasco. Del mismo modo, la cuantificacion de la biomasa
residual forestal pone en valor el uso de este recurso de energia renovable, cuya explotacion tiene
beneficios socio-econémicos, que pueden redundar en un mejor desarrollo de las dreas rurales.
Ademas, este parametro forestal estd asociado a la densidad del dosel y el peso de combustible,

cuyo control puede minimizar el riesgo de incendios en ecosistemas forestales mediterraneos.

De la evaluacion de la transferibilidad de los modelos realizada mediante la comparaciéon del
enfoque directo e indirecto se concluye que no existe una metodologia perfecta. Los resultados
demuestran que ambos enfoques son Optimos para estimar variables forestales utilizando datos
ALS multi-temporales. El enfoque directo reduce el tiempo de modelado y los costes asociados al
trabajo de campo en aquellos casos en los que el tiempo entre adquisiciones ALS no es amplio. Este
enfoque beneficia no sélo a los gestores de los espacios forestales sino también a las empresas
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dedicadas a la realizacion de inventarios forestales, pudiendo también servir como alternativa para
disefiar las fechas entre dos vuelos ALS y mantener una precision adecuada en la estimacion de
variables forestales. Este estudio proporciona una guia para que los usuarios potenciales
seleccionen el enfoque mas favorable, acorde a sus objetivos y tiempo transcurrido entre

adquisiciones ALS.

La determinacion de la idoneidad de las métricas ALS para la estimacion de variables forestales,
reduce potencialmente el tiempo de modelado, a la par que mejora la precision de los modelos. La
metodologia propuesta se basa en la comparacion de cinco métodos de seleccion para determinar
las métricas mas favorables en la estimacion de diferentes variables forestales. En general, los
resultados muestran que el método de seleccion varia con respecto a la variable a estimar. Sin
embargo, el andlisis realizado proporciona una guia para usuarios potenciales sobre la utilizacion
de métodos de seleccion mas favorables, considerando la variable analizada y las condiciones

ambientales.

La generacion de modelos parsimoniosos requiere la seleccion de un numero reducido de métricas
ALS que muestren una relaciéon comprensible con la variable modelada. Este supuesto fue
considerado para el conjunto de modelos generados a lo largo de la Tesis, seleccionando un
numero maximo de tres métricas ALS. Los modelos de estimacion de variables forestales
generalmente incluyen una variable asociada a la altura del dosel, una relacionada con la

variabilidad del dosel y una descriptora de la densidad del dosel.

La comparacidon entre métodos de regresion determind que no existe un tipo de modelo que
funcione mejor en todas las situaciones, estando influenciado por el tamafio de la muestra y su
heterogeneidad. En este sentido, los modelos de regresion linear multivariante generaron mejores
resultados que los no-paramétricos cuando se estimd la biomasa arbdrea y la biomasa total,
utilizando un niimero de parcelas de campo pequefio o medio (46 a 83 parcelas de campo). Por el
contrario, cuando la muestra de parcelas de campo fue superior (147 o 192 parcelas de campo) el
método de regresion linear multivariante mostr6 una aplicabilidad menor, siendo el método SVM
el mas preciso. La principal restriccion de los modelos de regresion linear multivariante fue la

distribucion no-normal de las métricas ALS con mayor capacidad explicativa.

El andlisis del efecto de las caracteristicas ALS y las variables ambientales en la precision de los
modelos de estimacién de biomasa residual forestal a escala regional determind que una mayor
densidad de puntos, menores dngulos de escaneo y una mayor penetracion de los pulsos ALS en el
dosel incrementa la precisién de los modelos. Por el contrario, la presencia de pendientes fuertes
genera menores precisiones, pudiendo ser parcialmente explicadas por los errores generados en la
derivacion del modelo digital de elevaciones (MDE). La presencia de arbustos no gener6 un efecto
claro en la ganancia o pérdida de precisiéon de los modelos, por lo que se debe continuar

investigando sobre su efecto en otras masas forestales, asi como en la estimacion de otras variables.
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La investigacion ha enriquecido el conocimiento de las masas forestales mediterraneas de Pino
carrasco utilizando datos ALS-PNOA poniendo en valor esta informacion publica y de gran

utilidad para la gestion forestal a escala local y regional.
4.2. Conclusiones especificas

Las principales conclusiones para cada uno de los objetivos detallados en el capitulo 1 se presentan

a continuacion:

Explorar la utilidad de los datos ALS de baja densidad en nuevas aplicaciones: estimacion de la pérdida de
biomasa y emisiones de CO: a la atmdsfera, cuantificar y cartografiar la biomasa residual forestal y estimar
diferentes fracciones de biomasa incluyendo la fraccién arbustiva

e Laestimacion de la biomasa arbdrea pre-fuego utilizando datos ALS mostrd un buen ajuste
de los modelos, posibilitando la cuantificaciéon precisa de esta variable forestal. Los
modelos incluyen dos métricas ALS: el percentil 40 de la altura de los retornos, relacionado
con la altura del dosel, y el porcentaje de primeros retornos sobre 2 m, asociado con la
densidad del dosel. El indice dNBR obtenido mediante imagenes del sensor Landsat 8
permitio estimar la severidad del incendio y aplicar diferentes factores de combustion,
solventando una de las fuentes de error tradicionales en la estimacion de emisiones
asociadas a incendios forestales, que considera la pérdida total de la biomasa tras el
incendio. El establecimiento de tres factores de combustion asociados a tres rangos
generales del dNBR permitid la extrapolacion de la metodologia a otros ambientes. Las
pérdidas de biomasa se cuantificaron en 262.659,7 toneladas, lo que supone un total de
426.754,8 toneladas de CO: emitidas a la atmdsfera por la combustion de las masas de Pino
carrasco. La aplicacion de factores de conversion a escala regional para estimar el contenido
de carbono y posteriormente las emisiones de CO: reduce la incertidumbre asociada al uso
de ecuaciones de cardcter global, incrementando la precision de las estimaciones. El
enfoque metodoldgico en tres fases constituye una opcion buena para estimar las pérdidas
de biomasa forestal, minimizando el trabajo de campo y solventando la falta de
informacion estructural post-incendio.

e Los coeficientes de correlacion de Spearman determinaron las métricas ALS mds adecuadas
para la estimacion de la biomasa residual forestal: el percentil 70 de la altura de los
retornos, la varianza de la elevacion y el porcentaje de primeros retornos sobre la media,
representando la altura del dosel, la variabilidad y la densidad del mismo. Las 197.951,24
ha cartografiadas representan el 87,6% de la superficie forestal de Pino carrasco de Aragon,
la cual alberga 3.627.021,25 toneladas. Los datos ALS-PNOA de baja densidad
proporcionan informacion precisa para la gestion forestal relacionada con la estimacion de
este recurso de energia renovable, asi como de la distribucién de los combustibles del dosel
a una escala regional.

e La estimacion de biomasa total se realiz6 utilizando tres métricas ALS que caracterizan la
distribucion vertical de los retornos (el percentil 25 de la altura de los retornos), una

métrica asociada con la variabilidad de la altura de los retornos (la varianza) y una métrica
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que expresa la densidad del dosel (el porcentaje de primeros retornos sobre la media). La
presencia de una densidad del dosel mayor y variabilidad de la nube de puntos estan
asociadas con un mayor contenido total de biomasa. Valores de altura mas bajos en el
percentil 25 determinan una mayor presencia de arbustos en el sotobosque vy,
consecuentemente, un incremento en la biomasa total. La presencia de sotobosque en los
pinares de Pino carrasco mediterraneos, especialmente en aquellas masas semi-naturales,
constituye una parte importante de la biomasa total. La estimacion y cartografia de estos
recursos forestales utilizando datos ALS de baja densidad proporciona informacién util
para la gestion forestal. La cartografia de biomasa total muestra valores que varian entre
zonas con menos de 10 toneladas por hectdrea a otras que superan las 150 toneladas por

hectarea.

Explorar la transferibilidad temporal de los modelos para la estimacion de variables forestales a escala

regional utilizando datos ALS-PNOA multitemporales

La adquisicion de un nimero elevado de parcelas de campo para la realizacion de los
inventarios con tecnologia ALS a escala regional es costosa desde un punto de vista
economico y demanda gran cantidad de tiempo. En este estudio, la estimacion de las
variables de campo para generar informacion concomitante al vuelo ALS en los afios 2011 y
2016 se realizé utilizando modelos de crecimiento de arbol individual especificos, curvas
generalizadas de altura-didmetro y ecuaciones cdnicas. El uso de esta metodologia produce
resultados mds precisos que la utilizacion de tablas de crecimiento para predecir el
crecimiento de los arboles a corto plazo.

La transferibilidad temporal de los modelos se realiz6 comparando los enfoques directo e
indirecto. El enfoque indirecto, que consiste en el ajuste de un modelo diferente para cada
uno de los afios analizados, ha mostrado generalmente una mayor precision. Sin embargo,
utilizando el enfoque directo se obtuvieron resultados similares. Ademas, este enfoque
reduce considerablemente el tiempo invertido en trabajo de campo, asi como en la
parametrizacion de los modelos, siendo posible extrapolar un modelo generado para una
fecha (validado con datos de campo) a otra fecha en la que haya datos ALS, siempre que no
hayan pasado muchos afios entre ambas adquisiciones. Esta potencialidad beneficia a los
gestores forestales y las empresas encargadas de realizar los inventarios forestales, reduce

el tiempo y el coste de modelar pardmetros forestales y sus cambios.

Comparacion de métodos paramétricos y no-paramétricos en el modelado de variables forestales
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La comparacion de ocho modelos de regresion para estimar la biomasa arborea pre-fuego
determind que el modelo de regresion linear multivariante era el mejor, superando a dos
algoritmos de aprendizaje automatico y cinco arboles de regresion. Los modelos se
desarrollaron con 46 parcelas de campo y utilizando dos métricas ALS. La precision de los
modelos varia entre un 11,10 y un 23,20 %RMSE cuando se utiliza el modelo de regresion

linear multivariante y el algoritmo KNN, respectivamente. El test de Friedman determind
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que los modelos no eran equivalentes pero solo se encontraron diferencias estadisticamente
significativas entre el modelo linear y el WKNN y KNN.

e El mejor modelo de regresion para estimar la biomasa total fue el modelo de regresion
linear multivariante, mejorando a los cuatro modelos no paramétricos analizados. Los
modelos se generaron a partir de 83 parcelas de campo y constan de tres métricas ALS. El
ajuste de los modelos varia de 19,21 hasta 24,93 %RMSE al utilizar el modelo de regresion
linear multivariante y random forest, respectivamente. No se encontraron diferencias
estadisticamente significativas entre los métodos de regresion analizados. Todos los
modelos se desarrollaron con el mismo nimero de parcelas y las mismas métricas ALS. Los
modelos Random forest y regresion linear ponderada localmente mostraron una
sobreestimacion previa a realizar la validacion cruzada.

e FEl método SVM con kernel radial fue el mds preciso para estimar la biomasa residual
forestal a escala regional, con un 26,38 %RMSE. El mayor namero de parcelas (192) y el
incremento en la variabilidad de la muestra puede haber incrementado el rendimiento de
los modelos de regresion no-paramétricos respecto a los modelos lineares. Aunque la
generalizacion de modelos regionales puede generar resultados menos precisos para otros
tipos de bosques utilizando el método SVM con kernel radial, consideramos que este
modelo es 1til para trabajar con un niimero de parcelas de campo elevadas y datos ALS.

e El método SVM con kernel radial fue el que obtuvo los mejores resultados en el analisis de
la transferibilidad temporal de modelos entre 2011 y 2016. Los modelos de regresion linear
multivariante mostraron una aplicabilidad limitada con un nimero de parcelas de campo
elevado (147) dado que las métricas ALS mas representativas no se distribuian de forma
normal, generando una pérdida de precision y ajuste de los modelos. El ajuste de los
modelos de estimacion, con los datos ALS de 2011, de nimero de pies, drea basal, didmetro
cuadratico medio, didmetro dominante, altura dominante, volumen y biomasa arborea fue
de 38,55; 24,51; 17,25; 15,36; 28,22 y 26,71 %RMSE. Valores menores de error (%RMSE) se
obtuvieron utilizando los datos ALS de 2016: 39,96; 18,80; 15,28; 11,89; 8,83; 21,20 y 18,81,
respectivamente (las estadisticas se presentan en el mismo orden que las del afio 2011).

e Los modelos SVM con kernel linear, random forestt LWLR y MDL obtuvieron en su
mayoria precisiones menores que el SVM con kernel radial. El uso de WKNN y KNN
presentd una menor precision al estimar la biomasa arbdrea pre-fuego y mostré diferencias
estadisticamente significativas con respecto al resto de métodos analizados. El método
random forest mostrd una tendencia a la sobreestimacion durante la fase de entrenamiento,
incluso aplicando métodos de correccion del sesgo. Sin embargo, este método proporciond
los mejores resultados para estimar la altura dominante con una muestra de 147 parcelas de
campo. En este sentido, se debe continuar analizado si un mayor niimero de parcelas de
campo en la muestra mejora la precision de este método cuando se estiman variables mas

complejas.

Evaluacion de la idoneidad de diferentes métodos de seleccion de métricas para mejorar la precision de los

modelos siguiendo el principio de parsimonia
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La comparacion entre métodos de seleccion determind que el método de seleccion de todos
los subconjuntos y seleccion basada en los coeficientes de correlacion de Spearman fueron
las técnicas mas adecuadas. La seleccion LASSO, seleccion paso a paso y andlisis de
componentes principales mostraron una menor capacidad para determinar los mejores
subconjuntos de métricas. La seleccion de todos los subconjuntos es un método automatico
que permite determinar el numero maximo de métricas a incluir en el modelo y
proporciona resultados mas rapidos que la seleccion basada en los coeficientes de
correlacion de Spearman, siendo esta ultima aplicada de forma manual con criterio experto.
La seleccion de todos los subconjuntos fue el mejor método para la estimacion de area
basal, didmetro dominante, altura dominante y volumen, mientras que el coeficiente de
correlacion de Spearman determiné las mejores métricas para estimar la biomasa residual
forestal, la biomasa arborea y el nimero de pies. Ambos métodos mostraron la misma
capacidad de seleccion al estimar el didmetro cuadratico medio y la biomasa total. Los
métodos de seleccion paso a paso fueron utilizados para estimar la biomasa arborea y el
volumen, mientras que LASSO se utiliz6 para estimar el numero de pies.

Los percentiles elevados de altura de los retornos se seleccionaron recurrentemente para la
estimacion de la altura dominante. Métricas asociadas a la altura del dosel, a la variabilidad
y a la densidad del dosel se seleccionaron para estimar la densidad de pies, el didmetro
dominante, el didmetro cuadratico medio y la biomasa residual. Ademads de los tres tipos
de métricas ALS mencionadas con anterioridad, también se seleccionaron métricas
asociadas a las partes del dosel con menor altura para estimar el drea basal, volumen,

biomasa arbdrea y biomasa total.

Evaluacion del efecto de diversos pardmetros ALS y variables ambientales en el ajuste de los modelos
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El error medio predicho se incrementd con densidades de puntos inferiores a 1 punto por
metro cuadrado en 0,56 toneladas por hectarea. Sin embargo, la precisién se mantuvo en
valores elevados, confirmando la utilidad de los datos ALS-PNOA de baja densidad. Esta
informacidn constituyen una alternativa dptima para estimar variables forestales cuando
no existan nubes de puntos con una densidad superior.

Los angulos de escaneo superiores a 15° incrementan los valores de error medio predicho
en 1,94 toneladas por hectarea, en comparacion a angulos proximos al nadir (<5°). Pese a
ello, no se encontraron diferencias estadisticamente significativas entre los rangos
analizados. Ademas, el analisis confirma los resultados de estudios previos, que proponian
realizar la adquisicidn de datos evitando dngulos de escaneo superiores a 15°.

La reduccién de la penetracion del pulso en el dosel, especialmente en aquellas areas
densamente cubiertas por estratos altos, incrementa el error medio predicho de los modelos
hasta 5,47 toneladas por hectarea, cuando la penetracion es inferior al 25%, respecto a
parcelas cuya penetracion del pulso es superior al 75%. La reduccién de la penetracion del
pulso en el dosel genera también una reducciéon del nimero de retornos en los estratos

inferiores y una menor precision del MDE.
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Las pendientes fuertes generan un incremento del error de hasta 1,44 toneladas por
hectdrea, en comparacion con pendientes suaves inferiores al 15%, si bien, no representan
un cambio significativo. La reduccion de la precision puede ser explicada de forma parcial
por la menor precision del MDE, considerando que los algoritmos de filtrado tienen mayor
error en las pendientes fuertes.

La presencia de arbustos incrementa ligeramente el error medio predicho en 0,11 toneladas
por hectarea. El efecto de la presencia de arbustos en el error de los modelos requiere ser
analizado en la estimacion de otras variables forestales, dado que los resultados obtenidos

no muestran un patron significativo.
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4.3. Future working proposals

This research deepened into the use of low density ALS-PNOA data from two coverages to
provide several forest applications in Aleppo pine forest of Aragén region. The comparison
between parametric and non-parametric models under different conditions; the exploration of
different variable selection methods; the analysis of ALS characteristics and environmental effects
in error modelling; the cartography of different forestry variables at local and regional scales; and
the analysis of model transferability between two ALS dates provided an insight of this public ALS
data potentiality. This PhD Thesis also constitutes the “begin” for new research, which can be even
more promising, either improving some of the presented applications or considering new research

proposals.

The research field that might be more promising for future developments is the combination of
ALS data with long temporal series of satellite images to characterize forest evolution during the
last decades. These data may be also combined with 3D data derived from orthophotography to
provide more accurate structural data from the past. Furthermore, the development of unmanned
aerial vehicles provides new spatial and temporal scales of analysis for forest environments. The
fusion with other remote sensing data would be one of the keys to develop regional products that

may improve forest management.

Several research proposals are summarized below, some of which are currently under

development:

e The estimation of forest variables for other Mediterranean species, including deciduous
ones. The second ALS-PNOA coverage, mostly captured in the vegetative period, may
provide suitable information for characterizing deciduous forests. In addition, the increase
in point density of this second coverage may improve the generation of models in the
shrubland areas that characterize the Mediterranean environments.

e The analysis of the effect of ALS filtering and interpolation errors in forest variable
prediction. The comparison between several filtering and interpolation methods, including
the performed by the PNOA project, could be tested to analyse modelling errors at regional
scales.

e The refinement of existing DTMs and the use of triangulation or Scale Invariant Feature
Transform (SIFT) for key point detection might enhance metrics calculations using low-
density ALS data.

e The analysis of model uncertainty and cartography, using different methods as covariance
values, Bayesian inference or Monte Carlo simulations, might improve forest decision
making.

e The exploration of other variable heuristic-based selection methods such as genetic
algorithms, simulated annealing or status quo model optimizations might be compared
with the ones explored in this PhD Thesis.

e Fuel model classification can contribute to better managing Mediterranean forests,

frequently affected by fires. The comparison of parametric and non-parametric methods

163



Characterization of Mediterranean Aleppo pine forest using low-density ALS data

164

and the fusion with other remote sensing data, including images and point clouds derived
from unmanned aerial vehicles, could be explored.

The use of radiative transfer models like DART to simulate ALS data, and the subsequent
comparison with ALS-PNOA data, might improve generalization and characterization of
fuel models at regional scales.

The use of pre- and post- fire ALS data derived metrics can be used to create severity
indexes. The comparison between these indexes and the ones frequently generated with
passive remote sensing data for determining fire severity requires further research.
Furthermore, the fusion of structural and optical data may improve fire severity
estimations.

Structural diversity and textural metrics might improve traditional forest inventory
variables prediction. These metrics also open new possibilities to characterize some
fractions of forest diversity, analyse forest changes after disturbances or provide useful
information to characterize pasture potential areas within the EU’s Common Agricultural
Policy.

The positioning improvements of permanent plots from the National Forest Inventory
might contribute to use these public datasets to estimate forestry variables at a regional
scale. The availability of two or more ALS coverages may provide accurate structural data
for characterizing forest changes.

The determination of disturbances using algorithms like LandTrendr and long temporal
series of satellite images could be explored to characterize forest evolution during the last
decades. These data may be processed using new platforms as Google Earth Engine
combined with ALS data to better characterize forest structure and improve forestry
parameters estimation. The use of point clouds derived from orthophotography may also
improve structural characterization.

The effects of UAV flight configuration to characterize forest parameters at Mediterranean
environments should be explored. The determination of the most suitable post-processing
methods to generate point clouds from UAV images, filtering and interpolation algorithms
should be tested. The fusion of UAV spectral and derived point cloud data with other
remote sensing data may enhance forest management at local and regional scales.

The need of generating a DEM to normalize a point cloud and subsequently estimate
forestry variables should be explored when using ALS or UAV data.

The use of ALS data and fusion with UAV data could be explored to estimate dominant

trees structural characteristics to improve sampling for dendrochronology purposes.
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