Spectral and localization properties of random bipartite graphs
Resumen: Bipartite graphs are often found to represent the connectivity between the components of many systems such as ecosystems. A bipartite graph is a set of n nodes that is decomposed into two disjoint subsets, having m and n-m vertices each, such that there are no adjacent vertices within the same set. The connectivity between both sets, which is the relevant quantity in terms of connections, can be quantified by a parameter a ¿ [0, 1] that equals the ratio of existent adjacent pairs over the total number of possible adjacent pairs. Here, we study the spectral and localization properties of such random bipartite graphs. Specifically, within a Random Matrix Theory (RMT) approach, we identify a scaling parameter ¿ = ¿(n, m, a) that fixes the localization properties of the eigenvectors of the adjacency matrices of random bipartite graphs. We also show that, when ¿ < 1/10 (¿ > 10) the eigenvectors are localized (extended), whereas the localization–to–delocalization transition occurs in the interval 1/10 < ¿ < 10. Finally, given the potential applications of our findings, we round off the study by demonstrating that for fixed ¿, the spectral properties of our graph model are also universal.
Idioma: Inglés
DOI: 10.1016/j.csfx.2020.100021
Año: 2019
Publicado en: Chaos, Solitons and Fractals: X 3, 100021 (2019), [7 pp]
ISSN: 2590-0544

Factor impacto SCIMAGO: 0.0 - Mathematics (miscellaneous)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E36-17R-FENOL
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/FIS2017-87519-P
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Física Teórica (Dpto. Física Teórica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2023-10-06-14:07:16)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-02-23, última modificación el 2023-10-06


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)