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Abstract

Bayesian optimization has become a popular
method for high-throughput computing, like the
design of computer experiments or hyperparame-
ter tuning of expensive models, where sample ef-
ficiency is mandatory. In these applications, dis-
tributed and scalable architectures are a necessity.
However, Bayesian optimization is mostly sequen-
tial. Even parallel variants require certain compu-
tations between samples, limiting the paralleliza-
tion bandwidth. Thompson sampling has been
previously applied for distributed Bayesian opti-
mization. But, when compared with other acqui-
sition functions in the sequential setting, Thomp-
son sampling is known to perform suboptimally. In
this paper, we present a new method for fully dis-
tributed Bayesian optimization, which can be com-
bined with any acquisition function. Our approach
considers Bayesian optimization as a partially ob-
servable Markov decision process. In this context,
stochastic policies, such as the Boltzmann policy,
have some interesting properties which can also be
studied for Bayesian optimization. Furthermore,
the Boltzmann policy trivially allows a distributed
Bayesian optimization implementation with high
level of parallelism and scalability. We present re-
sults in several benchmarks and applications that
show the performance of our method.

1 Introduction
Many engineering problems and scientific phenomena are be-
ing studied in high-throughput computing facilities, through
complex computer models or simulators. Due to the large
amount of resources that are needed, experiments should be
carefully selected and studied. This is known as the design
and analysis of computer experiments [Sacks et al., 1989].
Bayesian optimization (BO) can be used for designing com-
puter experiments which require the search of an optimum
value [Jones et al., 1998; Mockus et al., 1978]. BO care-
fully selects the next experiments to perform in order to find
the optimum value as efficiently as possible. For example,
consider the problem of finding the optimal shape of a wing

profile to reduce the drag force. Instead of dealing with the in-
famous equations of Navier-Stokes, we can experiment with
a Computational Fluid Dynamics (CFD) simulator and check
the outcome [Forrester et al., 2006; Martinez-Cantin, 2019].
Thus, for the optimization algorithm, the simulator becomes a
black-box where we only care about the resulting drag force.
For scientific experiments, we may want to adjust the param-
eters of a computational model of cell migration to mimic
the behaviour of in vivo or in vitro experiments [Merino-
Casallo and others, 2018], or we may want to find new
drugs through virtual screening [Hernandez-Lobato et al.,
2017]. Finally, one of the most popular applications for BO
is the tuning of hyperparameters of complex machine learn-
ing models, such as deep neural networks [Snoek et al., 2012;
Klein et al., 2017].

BO achieves sample efficiency by learning a probabilistic
surrogate model of the the target function. Then, using sev-
eral heuristics, called acquisition functions, we can select the
next point to be evaluated or experimented. Therefore, BO
is intrinsically a sequential process. Each new observation
is incorporated into the surrogate model, which at the same
time, modifies the acquisition function for the selection of
future experiments. There are certain algorithms that allow
parallel or batch queries of experiments [Snoek et al., 2012;
González et al., 2016a; Desautels et al., 2014], but they still
require the queries to be computed in a sequential manner.
In high-throughput systems, these methods require a central
node that computes and dispatches the queries. Furthermore,
as pointed out by [Kandasamy et al., 2018], many of those
methods do not allow for asynchronous execution. To the
authors knowledge, only the Thompson sampling approach
from [Hernandez-Lobato et al., 2017] can be fully distributed.
However, it is well-known that there are many other acquisi-
tion functions that performs better than Thompson sampling
in practice [Shahriari et al., 2016]. In this work, we introduce
a new method to allow a fully distributed BO, which can be
combined with any acquisition function.

However, the contribution of our paper is twofold. Before
introducing our distributed BO algorithm, we present a new
portrayal of BO in the Markov decision process framework,
following the analysis of [Toussaint, 2014]. We show how
this new framework allows a greater understanding of the fea-
tures and capabilities of BO. Then, we introduce the idea of
stochastic policies for BO, which is the ingredient necessary
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to perform fully distributed BO in combination with any ac-
quisition function. Furthermore, we analyze the advantages
of the stochastic policies beyond parallelization, from a theo-
retical and practical point of view.

2 The Optimization Agent
We consider the optimization algorithm as an agent that is
interacting with the environment, which is the space of func-
tions. The current state of the environment is the target func-
tion f . The agent does not have full observability of the state
and can only perform partial observations by querying the
function yt = f(xt). As pointed out in [Toussaint, 2014],
the future decisions made by the agent can be modelled as a
partially observable Markov decision process (POMDP). A
similar analogy, although from a control theory perspective is
also presented in [Lam et al., 2016].

2.1 POMDPs
A (PO)MDP is a stochastic model where the agent and the en-
vironment are fully represented by state variables st ∈ S and
the agent can change that state by performing actions at ∈ A
in a Markovian way p(st+1|at, st). The (PO)MDP model
also assumes that the agent is rational, acting to maximize

the future expected reward E[
∑N

t=0 R(st, at)]. The behavior
of the agent is encoded in the policy which maps states to ac-
tions at = π(st). In order to rank the possible actions at one
state, we can compute the Q-function which represents the
quality of taking a certain action considering the future re-
ward. The optimal Q-function Q∗ can be computed by doing
full backups of future rewards and actions recursively. Then,
we can obtain the optimal greedy function by:

π∗(st) = argmax
a

Q∗(st, at) (1)

In the POMDP setting, the agent does not have full ob-
servability of the state and must rely on partial observa-
tions yt following an observation model p(yt|st, at). Thus,
the agent relies on beliefs, which are the distributions over
possible states, given the known observations and actions
bt = p(st|a0:t, y0:t). Because, the belief is a suffi-
cient statistic, it can be shown that a POMDP on state
space, is equivalent to a MDP on belief space [Kaelbling
et al., 1996]. In this case, the transition model becomes
p(bt+1|at, bt) =

∫
y
p(bt+1|at, bt, yt)p(yt|at, bt)dy. Then,

the reward and the policy become functions of the belief
r(bt, at) =

∫
s
bt(s)R(st, at)ds and π(bt) =

∫
s
bt(s)π(st)ds.

In this case, the optimal policy and Q-function can also be
mapped to the belief space π∗(bt) = argmaxa Q

∗(bt, at).

2.2 Bayesian Optimization
Bayesian optimization is a set of optimization meth-
ods [Shahriari et al., 2016] with two important distinct fea-
tures: a probabilistic surrogate model p(f) to learn the prop-
erties and features of the target function that we are trying to
optimize and, an acquisition function α(x, p(f)) that, based
on the surrogate model, rate the potential interest of subse-
quent queries.

More formally, BO tries to optimize a function f : X → R

over some domain X ⊂ R
d, by carefully selecting the queries

POMDP / belief MDP Bayesian optimization

State: st Target function: f
Action: at Next query: xt+1

Observation: yt Response value: yt = f(xt)
Belief: bt = p(st) Surrogate model: p(f)
Q-function: Q∗(bt, at) Acquisition function: α(x, p(f))
Reward: R(st, at) Improvement: max(0, yt+1 − ρt)

Table 1: Comparison of POMDP and belief MPD terms with respect
to the corresponding elements in BO

of the function to reduce the number of evaluations of f be-
fore finding the optimum x∗. At iteration t, all previously ob-
served values y = y1:t at queried points X = x1:t are used to
construct a probabilistic surrogate model p(f |y1:t,x1:t). Typ-
ically, the next query location xt+1 is determined by greedily
optimizing the acquisition function in X :

xt+1 = argmax
x∈X

α (x, p(f | y1:t,x1:t)) (2)

For example, we can use the expected improvement (EI) as
the acquisition function [Mockus et al., 1978]:

EIt(x) = Ep(yt+1 | y1:t,x1:t) [max(0, yt+1 − ρt)] , (3)

where ρt = max(y1, . . . , yt) is the incumbent optimum at
that iteration. EI is still one of the most popular choices,
although there are multiple alternatives depending on the
criteria selected, such as optimism in the face of uncer-
tainty [Srinivas et al., 2010], information about the optimum
[Hennig and Schuler, 2012; Hernandez-Lobato et al., 2014;
Wang and Jegelka, 2017], etc.

It has been found that EI might be unstable in the first it-
erations due to the lack of information [Jones et al., 1998;
Bull, 2011]. Therefore, the optimization is initialized with p
evaluations by sampling from low discrepancy sequences.

Surrogate Model
Most frequently, this takes the form of a Gaussian pro-
cess (GP), although other alternatives have been presented,
such as Bayesian neural networks [Hernandez-Lobato et al.,
2017]. For the remainder of the paper we consider a GP
with zero mean and kernel k : X × X → R as the surro-
gate model. The kernel is chosen to be the Matérn kernel
with smoothness parameter ν and hyperparameters θ. The
GP posterior model gives predictions at a query point xq

which are normally distributed yq ∼ N (μ(xq), σ
2(xq)), such

that μ(xq) = k(xq)
TK−1y, and σ2(xq) = k(xq,xq) −

k(xq)
TK−1k(xq) where k(xq) = [k(xq,xi)]xi∈X and K =

[k(xi,xj)]xi,xj∈X + Iσ2
n.

2.3 BO as a POMDP
As can be seen, Equation (1) is analogous to Equation (2).
The POMDP framework, as a rational Bayesian model, can
also be applied to BO. Table 1 summarizes the connections
between those frameworks. If we use EI as the acquisi-
tion function, then we assume that the improvement function
I = max(0, yt+1 − ρt) is the reward. In this case, the EI is
the optimal myopic policy for POMDP, as it maximizes the
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Figure 1: Example of a surrogate model (blue) on top of the target
function (red). The greedy policy selects the maximum of the ac-
quisition function (red dot), but completely ignores the rest of the
regions which are almost as valuable.

expected reward one step ahead. More interestingly, entropy
based acquisition functions can be interpreted as an active
learning problem, for which the POMDP can also be applied
as a framework [Lopes and Montesano, 2014].

3 Stochastic Policies for BO
BO policies are typically greedy in two ways. First, they are
temporally greedy, that is, they look for the maximum im-
mediate reward, although some lookahead alternatives have
been proposed in the past [González et al., 2016b; Lam et al.,
2016]. Second, they are spatially greedy, that is, they only
select the action or next query that maximizes the acquisition
function (or Q-function). However, one might want to explore
suboptimal actions to gather knowledge about the world. In
fact, Q-learning algorithms may not converge to the solution
using a greedy policy due to the lack of infinite exploration.

Many acquisition functions, such as those mentioned in
Section 2.2 are already designed to trade-off exploration and
exploitation. However, this trade-off is based on the assump-
tion that the surrogate model is good enough to predict both
the expected function value and its uncertainty. In practice,
even if the model is chosen carefully, we still need to learn
the hyperparameters. Thus, for the first few iterations, the
model is inaccurate. Interestingly enough, theoretical re-
sults rely on bounding the length-scales of the GP kernels
to artificially increase the exploration, or directly using ε-
greedy strategies to guarantee near-optimal convergence rates
with unknown hyperparameters [Wang and de Freitas, 2014;
Bull, 2011]. For inaccurate models, the acquisition function
is still able to provide some information, but by greedily se-
lecting a single value we are wasting some of that informa-
tion. Figure 1 shows how the greedy policy only cares about
the central mode of the acquisition function, while the two
modes on the left are almost as interesting to be explored.

Instead, we propose to use a stochastic policy such as the
following Boltzmann policy (also known as Gibbs or softmax
policy):

p(xt+1 | y1:t,x1:t) =
eβtα(xt+1,p(f | y1:t,x1:t))

∫
x∈X eβtα(x,p(f | y1:t,x1:t))dx

(4)

This policy defines a probability distribution for the next
query or action. Thus, the actual next query is selected by

sampling that distribution xt+1 ∼ p(xt+1 | y1:t,x1:t). This
policy allows exploration even if the model is completely bi-
ased. Furthermore, it has some interesting properties for BO
convergence as we will discuss in Section 3.1. The main re-
sult of this work is that the sampling process of xt+1 can be
done in parallel and fully distributed, as will be discussed
in Section 3.2. This approach can be applied to any acquisi-
tion function or surrogate model that can be found in the liter-
ature. Nevertheless, the theoretical analysis and posterior ex-
perimentation focuses on GP and EI as previously discussed
in Section 2.2.

3.1 Theoretical Analysis
Convergence of BO algorithms has been extensively studied
in terms of convergence rates [Bull, 2011] or regret bounds in
a bandit setting [Srinivas et al., 2010; Wang and de Freitas,
2014]. In this paper we are going to follow upon the analysis
by [Bull, 2011] for the expected improvement. We show how
the stochastic policy from equation 4 has the same rates as
the greedy policy in the limiting case. We also show that
the stochastic policy does not need to rely on the ε-greedy
strategy for near-optimal rates.

Let X ⊂ R
d be compact with non-empty interior. For a

function f : X → R, let Eu
f denote the expectation when

minimizing the fixed function f with strategy u, as u can be
random. We assume a prior π for p(f), following a Gaus-
sian process with a Matérn kernel with smoothness parameter
ν and length-scales θ, having the Square exponential kernel
as the limiting case of ν → ∞. Each kernel Kθ is associ-
ated with a space of functions Hθ(X), its reproducing-kernel
Hilbert space (RKHS).

Definition 1. An EI(π, βt) strategy chooses:

1. initial design points x1, . . . ,xk independently of f ; and

2. further design points xt+1 (t ≥ k) sampled from (4).

This is analogous to [Bull, 2011, Def. 1], but replacing the
greedy selection by the stochastic selection. The EI(π, βt)
strategy can also be adapted to consider estimated parameters
[Bull, 2011, Def. 3]. Note that, for the stochastic policy, there
is no need to enforce that the selection is dense for constant
values of the acquisition function.

Theorem 2. Let X be a finite space. If βt = ln t/Ct and
Ct = maxx |maxz α(z, p(f)) − α(x, p(f))|, then (4) is a
greedy in the limit with infinite exploration (GLIE) policy.
Therefore:

1. each point x is queried infinitely often if we use the
EI(π, βt) strategy infinitely often, and

2. in the limit, the EI(π, βt) policy is greedy with respect
to the acquisition function α(·) with probability 1.

The proof can be found in [Singh et al., 2000, Ap. B]

following the relations from Table 1. In order to generalize
the previous result to X ∈ R

d, we can partition X in n re-

gions of size O(t1/d). Following EI(π, βt) and assuming
a large t each region will be sampled with high probability,
thus, the mesh norm is small, which is the requirement for
near-optimal rates [Bull, 2011, Lemma 12]. In fact, with β1

the sampling distribution is exactly uniform.
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Theorem 3. Let EI(π, βt) be the strategy in Definition 1. If
ν < ∞, then for any R > 0,

sup
‖f‖Hθ(X)≤R

E
u
f [f(x

∗
t )−min f ] = O((t/ log t)−ν/d(log t)α),

with probability 1, while if ν = ∞, the statement holds for all
ν < ∞.

The sketch of the proof is based on [Bull, 2011, Theo-
rem 5], which uses greedy EI for optimality combined with
ε-greedy to guarantee the reduced mesh norm. Following
Theorem 2, for large t, the mesh norm will be small and
the strategy will be greedy with probability 1. We encourage
the reader to follow up the discussion in [Singh et al., 2000]

where it is shown that, for certain values of ε, the strategy
followed by [Bull, 2011] is also GLIE.

3.2 Distributed BO
Now we are ready to present the main contribution of this
work. The stochastic policy presented in Section 3 allow us to
implement BO in a fully distributed setup which can be eas-
ily deployed and scaled. Contrary to most parallel or batch
BO methods which require of a central node to keep track of
the queries computed and deployed, our approach does not
need a centralized node. All the computation can be done
in each node of the distributed system. Furthermore, for op-
timal results, the nodes only need to broadcast their queries
and observed values {xt, yt}, requiring minimal communica-
tion bandwidth. In addition to that, communication can be
asynchronous and be even robust to failures in the network,
as the order of the queries and observations is irrelevant.

Algorithm 1 summarizes the code to be deployed in each
node of the computing cluster or distributed system. The ini-
tialization part requires sampling from a low discrepancy se-
quence. This can be easily distributed by setting the precom-
puted sequence on a lookup table where each node accesses it
based on their id. Once the initialization phase is done, each
node builds its own surrogate model (e.g.: a GP) with all the
data that is available to them. There is no requirement for the
models to be synchronized or updated, although each node
behaviour will be optimal if it has access to all the observa-
tions available as soon as possible.

One advantage of this setup is that it can be easily scaled
by deploying new nodes using Algorithm 1, even halfway
through the optimization process, as seen in Figure 2. In that
case, the first operation is to collect all the data that has been
broadcasted in the network instead of using the low discrep-
ancy sequence. Another advantage is that we can play with

Algorithm 1 BO-NODE

Input: Budget T , low discrepancy sequence LD.
1: Query LD for p initialization points based on node id.
2: Broadcast x1:p, y1:p
3: for t = p . . . T do
4: Collect x, y from other nodes when available.
5: Update surrogate model p(f |x1:t, y1:t)
6: Sample xt+1 with Equation (4).
7: Broadcast xt+1 and yt+1 = f(xt+1)
8: end for

A

xA

C

xC

B

xB

xt, yt x1:t, y1:t

Figure 2: Visualization of the interaction between BO nodes. We
have 3 nodes: A and B, which are already up and working; and C, a
new node that we want to spin up mid-optimization. A and B only
need to broadcast their new queries and observations. C needs to
be given all the previous queries and observations up to the current
instant t. Then it can resume its work in the same way as A and B.

the βt parameter from equation (4) and deploy nodes more
exploitative βt → ∞ or more exploratory βt → 0, or we can
combine different kinds of node configurations, resulting in
an overall behaviour analogous to parallel tempering [Neal,
1996].

Many parallel BO methods have been proposed in the
past few years. The main idea of all those methods is
to ensure that the parallel experiments are well-distributed
among the search space, which is problematic when we use
a greedy approach without adding new information between
queries. Thus, some authors include artificially augmented
data by hallucinated observations [Ginsbourger et al., 2010;
Snoek et al., 2012] or by combining optimization with some
degree of active learning in order maximize the knowledge
about the target function [Desautels et al., 2014; Contal et al.,
2013; Shah and Ghahramani, 2015] or by enforcing diversity
through heuristics [González et al., 2016a].

As noted on [Kandasamy et al., 2018], the majority of par-
allel methods are synchronous. Recently, a Thompson Sam-
pling approach [Hernandez-Lobato et al., 2017; Kandasamy
et al., 2018] has been applied to achieve fully distributed BO.
To the authors knowledge, this is the only method comparable
to our proposed distributed BO method.

3.3 Sampling Strategies
Sampling from equation (4) is not trivial. Most acquisition
functions are highly multimodal with many large areas of low
probability between modes. This is known to be problematic
for MCMC methods. Tempering methods, such as simulated
or parallel tempering [Neal, 1996] usually perform better in
these situations by allowing higher temperatures and, there-
fore, higher mixing of particles, in combination with lower
temperatures to better represent the distribution. One advan-
tage of our distribution is that it is already in Boltzmann form,
allowing us to change the temperature by altering the βt pa-
rameter. In our case, since we have a target temperature that
we want to use for sequential convergence (as seen in The-
orem 2) or for distributed exploration-exploitation (as seen
in Section 3.2), we can select the temperature profile in such
a way that the lower temperature matches the target. Alter-
natively, we can select another profile and use importance
sampling on the target temperature. In practice, we found
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Figure 3: Inmediate regret on benchmark functions with the stochastic policy in combination with EI, UCB and PI. We include PDTS for
comparison and sequential EI as baseline.

that, for small dimensional problems as those typically found
for BO, a mixture of Gaussians with different variance as the
proposal function and a fixed temperature using Metropolis-
Hasting can be enough to get a good distribution.

4 Discussion
Although the main result of this work is on distributed BO,
the POMDP framework can introduce new interesting ideas
to explore in the context of BO. For example, multitask-
ing or multifidelity systems have a great potential for high-
throughput computing with BO, where we are able to improve
the convergence of our method by introducing new informa-
tion from other sources, either from related problems where
we already have previous experiments or from less expen-
sive sources like a smaller training datasets, incomplete ex-
ecutions or a simpler simulator. In both scenarios the target
function f now belongs to a family of functions from other
tasks or fidelities fk. In the bandit setup, this is equivalent to
contextual bandits. In the POMDP formulation, the function
f is analogous to the state s (see Table 1). The POMDP model
includes a transition function p(st+1 | at, st), which can be
known a priori or learned, that defines a probability distri-
bution of transitions between states. This transition function
allows more flexibility than contextual variables.

Recent results on lookahead policies try to avoid the tem-
poral greediness of BO. One interesting approach is based
on dynamic programming [Lam et al., 2016]. However, as
pointed out by the authors, the dynamic programming ap-
proach is challenging due to the nested maximizations and
expectations, requiring heuristics to relax the maximization
steps. By using the stochastic policy from equation (4), we
can provide a full Bayesian treatment of the dynamic pro-
gramming, similar to value iteration [Kaelbling et al., 1996].

5 Results
We show the performance of our stochastic policy for dis-
tributed BO with different acquisition functions: Expected
Improvement (SP-EI), Probability of Improvement (SP-PI)
and Upper Confidence Bounds (SP-UCB). We also include
the parallel and distributed Thompson sampling (PDTS)
[Hernandez-Lobato et al., 2017] as an alternative distributed
method and the sequential expected improvement (EI) as a
baseline. Note that [Hernandez-Lobato et al., 2017] already
compares PDTS with parallel EI and ε-greedy methods. In
order to simplify the comparison, we use a GP as the surro-
gate model for all the algorithms. However, both PDTS and
our stochastic policy methods allow other surrogate models
such as Bayesian neural networks. In all the experiments, we
assume a network of 10 nodes synchronized, that is, func-
tion evaluations are performed in batches of 10 for all dis-
tributed methods. Note that EI has an unfair advantage, as
it has access to all the data for each iteration while the dis-
tributed methods only update their GP model once every 10
observations. For all the plots, we display the average of each
method over 10 trials with a 95% confidence interval. We use
common random numbers to reduce the variance in the com-
parison and use the same initial samples among all methods.

5.1 Benchmark Functions
First, we start with a set of test problems for global optimiza-
tion1. We have selected the functions to have a mixture of be-
haviours (smooth/sharp, single/multiple minima, etc.). The
results on these functions are showcased in Figure 3. First,
we can see how the performance of SP-EI is fairly consistent
among the different functions, achieving better or similar re-
sults than the alternatives. Even for functions that are difficult

1From: https://www.sfu.ca/∼ssurjano/optimization.html
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Figure 4: Optimizing random functions from a GP. A Matérn kernel
(left) and rational quadratic kernel (right) are used in the GP. As
a Matérn kernel is used in optimization, we have a within-model
(left) and out-of-model (right) experiment. It is important to note that
different kernels can generate different possible random functions,
making the vertical axis not comparable between both problems.

to optimize with BO, such as Schubert, the stochastic policy
is able to perform well thanks to the extra exploration induced
by the sampling process. However, this exploration does not
interfere with easier functions where exploitation is more im-
portant, such as Branin or Bohachevsky. Interestingly, SP-PI
performs reasonably well. In the case of PI, the stochastic
policy prevents excessive exploitation, a known behaviour of
PI in the sequential BO setting [Shahriari et al., 2016].

We have also followed the methodology from [Hennig and
Schuler, 2012] and generated random functions from a known
GP. We have studied two situations: a) we have studied the
within-model problem, where the GP sample uses the same
kernel as the optimization algorithm (Matérn with ν = 5/2)
and, b) the out-of-model problem where the GP sample is gen-
erated with a different kernel (a Rational Quadratic). The re-
sults in Figure 4 show how SP-EI is comparable to PDTS both
for the within-model and the out-of-model problems.

5.2 Robot Pushing
In the next experiment, we use the active learning for robot
pushing setup and code from [Wang and Jegelka, 2017]. It
consists of performing active policy search on the task of se-
lecting a pushing action of an object towards a designated
goal location. The function has a 3-dimensional input: the
robot location (rx, ry) and the pushing duration tr. In a
second experiment, we add the robot angle rθ to have a 4-
dimensional version. In this experiment, the repetitions are
increased to 40, as each repetition is a different goal location.
Figure 5 shows the results of both problems in which we can
see how our methods SP-EI and SP-PI have faster conver-
gence than GP-PDTS.

5.3 Hyperparameter Tuning of Neural Networks
Finally, we use the set of problems for hyperparameter tuning
of neural networks from [Martinez-Cantin et al., 2018], as
these are good examples of the advantage of distributed BO
for training expensive models in the cloud. We can see the
results of both networks in Figure 6, where SP-EI and SP-PI
consistenly outperform PDTS.

Variational Autoencoder (VAE) on MNIST. A VAE is a
generative method that learns a low dimensional representa-
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Figure 5: Robot pushing policy results, showing the 3-dimensional
(left) and the 4-dimensional (right) problems.
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Figure 6: Hyperparameter tuning of neural network problems. A
Variational Autoencoder trained with the MNIST dataset (left) and
a Feedforward network trained with the Boston housing dataset
(right).

tion of high dimensional data, such as images. We train a
VAE for the MNIST dataset, and tune the following hyperpa-
rameters: number of nodes in the hidden layer, learning rate,
learning rate decay and ε constant for the ADAM optimizer.

Feedforward Network on Boston Housing. We fit a sin-
gle layer feedforward network on the Boston housing dataset.
The hyperparameters tuned are: number of nodes in the hid-
den layer, learning rate, learning rate decay and ρ parameter
for the exponential decay rate from RMSprop.

6 Conclusion
We have introduced several implications and advantages of
viewing Bayesian optimization as a Markov decision process.
We also have shown that this approach can be interesting for
further developments of BO, both in theory and practice. As
the main contribution of the paper, we have presented a new
method for fully distributed BO based on stochastic policies
which can be easily integrated in any setup, independent of
the surrogate model or acquisition function of choice. This
distributed BO allows high scalability, even by adding new re-
sources on demand and reducing the communication between
nodes. We show how, in most cases, the stochastic policy out-
performs the state of the art on distributed BO (PDTS) and
even to the sequential expected improvement.
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N. Lawrence. Batch bayesian optimization via local pe-
nalization. In AISTATS, pages 648–657, 2016.
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