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RESUMEN 

 

La cereza (Prunus avium L.) es una fruta muy apreciada, con un alto valor nutricional y de 

interés económico, cuyo cultivo ha aumentado durante los últimos años. Para poder proporcionar 

nuevos cultivares adaptados a las demandas de los productores y consumidores, y que puedan hacer 

frente a desafíos como el calentamiento global, es necesario desarrollar herramientas que puedan 

ayudar a optimizar el proceso de mejora. Con este propósito, el objetivo de este trabajo es investigar 

la genética de algunos caracteres fenológicos y de calidad de fruto de interés en cerezo y avanzar 

en el conocimiento de los mecanismos biológicos que los regulan. Para alcanzar este objetivo se 

han utilizado siete familias intra-específicas de cerezo que derivan de polinizaciones cruzadas y 

autopolinizaciones de material vegetal local (‘Cristobalina’ y ‘Ambrunés’) que proporcionan 

variabilidad fenotípica adicional para éstos caracteres. Estas familias se genotiparon utilizando las 

plataformas genómicas ‘RosBREED cherry 6K y/o 15 SNP Illumina® Infinium’, lo que permitió 

desarrollar cinco mapas genéticos de alta densidad, que fueron utilizados para analizar la sintenia 

entre cerezo y melocotonero (P. persica), y para análisis de QTLs. Las siete familias fueron además 

fenotipadas para caracteres fenológicos (fecha de floración, período de desarrollo de fruto y fecha 

de maduración), y caracteres de calidad del fruto [firmeza, tamaño, color, contenido en sólidos 

solubles, acidez titulable y contenido en polifenoles (antocianinas y ácidos fenólicos)]. Estos datos 

se utilizaron para realizar análisis anuales y/o multianuales de QTLs utilizando diferentes 

estrategias de mapeo, el análisis de familias únicas se realizó utilizando MapQTL®, y el análisis de 

varias familias de manera combinada se realizó utilizando FlexQTL™. Estos análisis permitieron 

identificar QTLs principales y menores para todos los caracteres investigados, validar algunos 

QTLs previamente descritos para los mismos caracteres, identificar nuevos QTLs para caracteres 

estudiados por primera vez, e identificar nuevas variantes de QTLs de interés para la mejora. Se 

identificaron QTLs principales en los grupos de ligamientos (GL) 1 y 2 para fecha de floración, en 

el GL4 para el período de desarrollo de fruto y fecha de maduración, en los GL 1 y 2 para tamaño 

de fruto, en los GL 1 y 4 para firmeza, en el GL4 para el contenido en sólidos solubles, en GL6 

para acidez titulable, en GL3 para color de fruto y contenido en antocianinas, y en GL1 para el 

contenido en ácidos fenólicos. Haplotipos de interés para la mejora en estos QTLs principales 

fueron identificados en algunos cultivares, como en los GL 1 y 2 de ‘Cristobalina’ para bajos 

requerimientos de frío y floración temprana, en el GL4 de ‘Cristobalina’ y ‘Burlat’ para período 

de desarrollo de fruto corto y fecha de maduración temprana, y en el GL1 de ‘Ambrunés’ para 

tamaño y firmeza. El período de desarrollo de fruto destacó como un carácter esencial para la 

fenología y la calidad del fruto, ya que la fecha de maduración, la firmeza y el contenido de sólidos 

solubles están correlacionados con el desarrollo de fruto y se asociaron a los mismos QTLs. La 

identificación de QTLs principales permitió proponer y confirmar genes candidatos para estos 

caracteres en estos QTL, y los genes candidatos para fecha de floración fueron investigados. 

Utilizando la secuencia del genoma de ‘Regina’, genes candidatos para requerimientos de frío y 

fecha de floración, PavDAM, ortólogos a los genes DAM de P. persica y P. mume, fueron 

identificados y caracterizados en el QTL principal de fecha de floración en GL1. La comparación 

de secuencias de los genes PavDAM de varios cultivares de cerezo con diferentes requerimientos 

térmicos y fechas de floración, permitió detectar polimorfismos que pueden estar asociados a las 

diferencias fenotipicas, y una deleción en el promotor de los PavDAM (DPD) en ‘Cristobalina’ que 

está asociado a floración temprana. También se desarrolló un marcador de ADN para esta 

mutación, que puede ser usado para la selección asistida por marcadores de floración temprana en 

‘Cristobalina’.  
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SUMMARY 

 

Sweet cherry (Prunus avium L.) is a very appreciated fruit, with a high nutritional value 

and economic interest, which cultivation has increased during last years. In order to provide new 

cultivars adapted to producer and consumer demands, and that confront challenges like global 

warming, is necessary to develop tools that can help optimizing the breeding process. For this 

purpose, the objective of this work is to investigate the genetics of some relevant phenology and 

fruit quality traits of sweet cherry and to advance in the understanding of the biological mechanisms 

that regulate them. To achieve this goal, seven sweet cherry intraspecific populations that derive 

from cross- and self-pollinations of local plant material (‘Cristobalina’ and ‘Ambrunés’), and that 

provide additional phenotypic variation for these traits, were used. These populations were 

genotyped with the whole genome RosBREED cherry 6K and/or 15K Illumina® Infinium SNP 

arrays, which allowed developing five high-density genetic maps that were then used for analyzing 

synteny between sweet cherry and peach (P. persica) and for QTL analyses. The seven populations 

were also phenotyped for phenology traits (bloom time, fruit development period and maturity 

date), and for fruit quality traits [firmness, size, color, solid soluble content, titratable acidity and 

polyphenols (anthocyanins and phenolic acids) content]. These data were used to perform single 

and/or multi-year QTL analysis, using different mapping strategies, which included single bi-

parental analysis with MapQTL®, or combined multi-parental populations using FlexQTL™. These 

analyses allowed identifying major and minor QTLs for all the traits investigated, validating some 

QTLs previously reported for the same traits, reporting new QTLs for newly investigated traits, 

and identifying new QTLs variants of breeding interest. Major QTLs were identified on linkage 

groups (LGs) 1 and 2 for bloom time, on LG4 for fruit development period and maturity date, on 

LGs 1 and 2 for fruit size, on LGs 1 and 4 for fruit firmness, on LG4 for solid soluble content, on 

LG6 for titratable acidity, on LG3 for fruit color and anthocyanins content, and on LG1 for phenolic 

acids content. Relevant QTL haplotypes for breeding purposes were identified in these major QTLs 

in some cultivars, like for low chilling and early blooming in ‘Cristobalina’ LGs 1 and 2, for short 

development period and early maturity date in ‘Cristobalina’ and ‘Burlat’ LG4, and in ‘Ambrunés’ 

LG1 for size and firmness. Fruit development period reveal itself as an essential trait for phenology 

and fruit quality, as maturity date, firmness and soluble solids contents were correlated with fruit 

development and were associated to the same QTLs. The identification of major QTLs allowed 

proposing and confirming candidate genes for these traits at these QTLs, and candidate genes for 

bloom time were investigated. Using the ‘Regina’ sweet cherry genome sequence, candidate genes 

for chilling requirements and bloom time, PavDAM genes, orthologous to P. persica and P. mume 

DAM genes, were identified and characterized in the major bloom time QTL on LG1. Sequence 

comparison of PavDAM genes of various sweet cherry cultivars with different chilling 

requirements and bloom times allowed detecting sequence polymorphisms that may be associated 

to their phenotypic differences, and a deletion in the ‘Cristobalina’ PavDAM promoter (DPD) that 

is associated to early blooming. A DNA marker for this mutation, that can be used for marker-

assisted selection of early blooming from ‘Cristobalina’, was also developed. 

 

 

 

 

 

 

 

 



4 

 

 



   

5 
 

 

 

CHAPTER 1 

INTRODUCTION



   

6 



  Introduction 

7 
 

SWEET CHERRY 

 

Taxonomy 

Sweet cherry (Prunus avium L.) is a stone fruit crop belonging to Rosaceae family. 

Sweet cherry trees are mainly cultivated for their edible fruits, although wild types, or 

mazzards, are also used for timber production and ornamental practices (Webster, 1996). 

Sweet cherry belongs to the Prunus genus, which includes more than 200 species divided 

into six different subgenus: Amygdalus, Cerasus, Lauroceraus, Lithocerasus, Padus and 

Prunus (Potter et al., 2007). Within the Prunus genus, other species of economic relevance 

are almond (Prunus amygdalus Batsch) and peach (Prunus persica L.) belonging to 

Amygdalus subgenus, and apricot (Prunus armeniaca L.) and plums (Prunus domestica L. 

and Prunus salicina Lind), both belonging to Prunus subgenus. Cherries belong to the 

Cerasus subgenus. Other than sweet cherry, these include sour cherry (Prunus cerasus L.), 

which fruits are mainly used for transformation, Santa Lucía cherry (Prunus mahaleb L.) 

that has been traditionally used as sweet cherry rootstock, and Prunus fructicosa Pall. that 

is considered an ancestor of sweet and sour cherries (Fogle, 1975). 

Sweet cherry has a basic chromosome number of x = 8. This specie presents a 

diploid genome (2n = 2x = 16) although triploid and tetraploid forms are found (Fogle, 

1975). Prunus cerasus L. and Prunus fruticose Pall. are tetraploid (2n = 4x = 32). 

 

Botany 

Sweet cherry is a vigorous deciduous tree that can reach 20 meters in height. It 

presents smooth reddish-brown bark that frequently peels off on old trees. Leaves are 

simple, oval with short tip, large (6 to 15 cm of length and 3 to 7 cm of width) and 

characterized by coarse and irregular toothing (Webster, 1996). The leaf stalk length is 

about 3 cm and presents red glands near the lamina. Flowers are hermaphrodite and form 

singly in the axis of one-year wood or grouped (up to five) on older wood. Flowers have a 

white corolla of approximately 2.5 cm in diameter, with five sepals and five petals, from 

30 to 36 stamens and a hairless pistil. The species exhibits gametophytic self-

incompatibility (Herrero et al., 2017). Fruits are spherical drupes (approximately 2.0-3.5 

cm in diameter), hairless and present a bright skin that range from yellow to black, although 
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vast majority of cultivars present red-mahogany color. The pit is globose and smooth, 

approximately of one third of the total fruit size.  

 

Origin and distribution 

 Sweet cherry is believed to be originated in the region of Caspian and Black Seas 

that comprises northern Iran, Ukraine and countries south of Caucasus Mountains (Hedrick 

et al., 1915). Cherries are found all around Europe and it is believed that dissemination 

from the center of origin to Europe took place by birds prior to human migrations (Webster, 

1996). Theoprastus, in 300 BC, reports first written references of cherry cultivations in the 

‘History of Plants’, although evidences of cherry consumption 4000 to 5000 years BC have 

been reported based on cherry pits found on prehistoric caves (Brown et al., 1996). 

Cherries were initially cultivated by Albanians before Greek civilization that used 

it for wood and fruit production but the Romans, who regularly consumed cherries in their 

diet, facilitated cherry distribution through Europe including the Iberian Peninsula 

(Hedrick et al., 1915). The Roman writer Varro already described in the 1st century various 

grafting techniques and cherry cultivars. However, little is known about cherry 

development from Roman period up to 16th century, when cultivations increased especially 

in central Europe (Watkins, 1976). Following this growth, cherry cultivation was spread 

through Western Europe and individuals adapted to the climatic and agronomic condition 

of each growing area were selected in the different regions (Iezzoni et al., 2017). A few 

cultivars were taken to America in 19th century, and spread through the country by earlier 

settlers from east to the west coast (Brown et al., 1996; Faust and Surányi, 1997). 

Nowadays, more than 300 sweet cherry varieties are cultivated in more than 40 countries 

from temperate to subtropical regions (Quero-García et al., 2017). 

 

Economic interest 

 World sweet cherry production has increased over 30% in the last two decades, 

reaching 2.4 M tons (in 416,000 ha) in 2017 (FAOSTAT, 2019). Sweet cherry is a relevant 

fruit crop, as it is the fourth largest stone fruit cultivated worldwide behind peach, plum 

and apricot. Turkey is the world leader sweet cherry producer (26%) followed by the USA, 

Iran, Uzbekistan, Chile, Italy and Spain, that all together represent the 40% of global 

production. 
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 Spain is the seventh largest sweet cherry producer in the world and reached 114,433 

tons in 2017 (MAPA, 2019). Cultivated area of sweet cherry was 27,600 ha in 2017, being 

the second cultivated stone fruit after peach, with mean yields of 4,146 kg/ha. Extremadura 

(7,523 ha; 40,503 tons) and Aragón (8,486 ha; 36,353 tons) are the two main producing 

regions. The Jerte Valley in Extremadura and Valdejalón and Caspe in Aragón concentrate 

almost 70% of national production. Other regions of relevant production in Spain are 

Cataluña, Comunidad Valenciana or Andalucia. 

 

Sweet cherry cultivation in Spain 

 Sweet cherry cultivation in Spain began on calcareous terraces of mountain areas 

under dry conditions, resulting in trees having low production but good fruit quality 

(Negueroles, 2005). During the last decades, irrigation systems were introduced to increase 

yield, with a total amount of irrigated water that range from 2,500 to 5,500 m3/ha 

depending on regions and growing season (Iglesias et al., 2016). The planting density is 

usually 4 × 3 to 5 × 3 m with approximately 600 trees/ha. The ‘Spanish bush’, which 

consists on induction of three or four separated branches by 90-120º from approximately 

35 cm above the ground, is the most popular training system (Negueroles, 2005; Iglesias 

et al., 2016). This system results in trees that do not overlap, of about 2.5 m in height and 

exhibit good production and early yields. Sweet cherries are regularly grafted in ‘Santa 

Lucía 64’ (Prunus mahaleb) and ‘Adara’ (Prunus cerarifera), which are the most common 

rootstocks for their adaptation to soil condition of main cherry producing areas and for the 

promotion of early yields. 

An important varietal renewal was carried out in Spain with the introduction of new 

varieties obtained from breeding programs of Canada, USA, France, Italy or Hungary 

(Iezzoni, 2008). These varieties have replaced the traditional cultivars in most orchards, 

except in some region such as the Jerte Valley (Cáceres) where local varieties 

(‘Ambrunés’, ‘Pico Colorado’, ‘Pico Negro’ and ‘Pico Limón’) are still used for 

production. Bred cultivars from early to late maturity date have been progressively 

introduced in Spain to widen the ripening period. Main used early maturity cultivars are 

‘Early Bigy’, ‘Early Lory’ and ‘Burlat’ (Iglesias et al., 2016). ‘Frisco’, ‘Chelan’, ‘Brooks’, 

‘Giant Red’, ‘Celeste’, ‘13S3-13’, ‘Samba’, ‘4-84’, ‘Cristalina’, ‘Summit’, ‘Sunburst’, and 
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‘Sonata’ are the main cultivars of medium season, while ‘Skeena’ and ‘Sweetheart’ are the 

two most important cultivars of late ripening. 

 

 

SWEET CHERRY BREEDING 

 

History  

Until 1767, cherries were locally consumed and only the selection of local varieties 

propagated by seed was used (Brown et al., 1996). It was not until the beginning of the 20th 

century that cherry breeding started (Hedrick et al., 1915). First cherry breeding program 

were initiated in Geneva (USA) by 1911, and some years later, programs in Vineland and 

Summerland stations (Canada) were started. In Europe, first breeding programs were 

carried out at John Innes Institute by 1925 (Faust and Surányi, 1997). Today sweet cherry 

breeding is carried out in various private and public institutions and new cultivars are 

continuously being released. As a result, more than 230 new sweet cherry cultivars were 

released in the last two decades, most of them in Europe, North America and Asia 

(Sansavini and Lugli, 2008). 

 

Breeding objectives 

 Several traits are targeted as sweet cherry breeding objectives in the different 

breeding programs (Dirlewanger et al., 2009; Quero-García et al., 2017; Wünsch, 2017; 

Dondini et al., 2018; Quero-García, 2019). Regular yields, superior fruit quality and self-

compatible cultivars are considered main objectives in sweet cherry breeding (Dondini et 

al., 2018). Other relevant objectives like shortening juvenility period or the reduction of 

excessive tree vigor, by growing compact cultivars that will allow intensive growing are 

also considered (Bargioni, 1996; Kappel et al., 2012). Phenology related traits, mainly 

early and late cultivars, that enable the reduction of cherry seasonality, are also primary 

objectives in many breeding programs (Dondini et al., 2018). Cultivars with low chilling 

requirements are also gaining special attention in the recent years, in order to adapt cherries 

to current warming temperatures (Campoy et al., 2019), and to extend the growing area to 

regions with warmer winters.  
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Fruit quality traits like fruit size, firmness, color, sweetness and flavor are also main 

priority traits considered by breeders (Dirlewanger et al., 2009). Within these, fruit 

firmness and fruit size are the most important traits due to their relationship with consumer 

acceptance and post-harvest aptitude (Zheng et al., 2016). Relevant progress has been 

achieved regarding fruit size and firmness, with cultivars of outstanding fruit size (more 

than 12 g) and large firmness (Quero-García et al., 2017). Reduction of economic losses 

derived from fruit cracking is also a main objective of breeding programs. Despite the 

complexity of this phenomenon, different studies have been carried out to determine 

cracking susceptibility in cherry collections (Christensen, 1972; Meland et al., 2014). 

Although cultivars with total resistance to cracking are not known, cultivars as ‘Regina’ 

and ‘Fermina’ present low susceptibility and are potential parental for new cultivars highly 

resistance to cracking. 

Resistance to biotic stresses are also fundamental traits considered by sweet cherry 

breeders (Quero-García et al., 2017; Dondini et al., 2018). Regarding tolerance or 

resistance to diseases, breeding has been limited because of the narrow genetic diversity 

and therefore low number of resistance alleles (Stegmeir et al., 2014). The most serious 

diseases and pests of sweet cherry are bacterial canker (caused by Pseudomonas spp.), 

brown rot (caused by Monilinia spp.), fruit fly (Rhagoletis spp.), black cherry aphid (Myzus 

cerasi Fab.) and the Drosophila suzukii.  

Other traits relevant for the selection of new sweet cherry cultivars have been 

considering in the recent years, some of these are: stemless cultivars, double fruit 

reduction, postharvest behavior, content of bioactive compounds, or tree architecture 

(Quero-García et al., 2017). 

 

Germplasm 

Sweet cherry adaptation to different regions due to a large geographical distribution 

has resulted in landraces with different phenological and fruit quality characteristics (3,688 

of sweet cherry and 1,553 of sour cherry accessions in European Prunus Database; Dondini 

et al., 2018). Despite this large number of local diversity, studies concerning commercial 

cultivars, advanced selections and landraces have shown a narrow genetic diversity in 

commercial varieties (Iezzoni et al., 1990; Choi and Kappel, 2004). Thus, local germplasm 

represents a valuable resource for sweet cherry breeding, especially for those traits related 



Introduction   

12 
 

to environment adaptation, and also fruit quality improvement (Badenes and Zuriaga, 

2016). 

 In Spain, local germplasm is a potential source for breeding for relevant traits like 

self-compatibility, low chilling requirements, fruit quality and maturity date (Wünsch, 

2019). This plant material includes local self-compatible varieties like ‘Cristobalina’, 

‘Talegal Ahim’ or ‘Son Miro’ (Wünsch and Hormaza, 2004; Cachi and Wünsch, 2014). In 

addition, the low chilling requirements of ‘Cristobalina’ (<800 h; Tabuenca, 1983) 

compared with other sweet cherry cultivars, make it highly interesting for breeding to 

extend sweet cherry cultivation to warmer areas and adapt the crop to current global 

warming. This cultivar also has a very early maturity date, which make it of interest to 

wide ripening period and reduce cherry seasonality. High fruit quality and good 

postharvest aptitude is found in cultivars like ‘Ambrunés’, from the Jerte Valley, which 

has been used for breeding for firmness, postharvest aptitude, late ripening date and the 

possibility of stemless harvest (Manzano et al., 2014). 

 

 

GENETICS, GENOMICS AND MARKER ASSISTED SELECTION IN SWEET 

CHERRY 

 

Linkage maps  

 In sweet cherry, several linkage maps have been constructed from cross-pollinated 

populations and inter-specific crosses with related species (Clarke et al., 2009). Initially, 

partial linkage maps with a low number of mapped markers were developed. More than 20 

years ago, Stockinger et al. (1996) developed the first sweet cherry linkage map using 

RAPDs markers of a microspore-derived callus culture population of the cultivar ‘Emperor 

Francis’. The 89 RAPD markers and 2 allozymes used were then mapped in 10 linkage 

groups (LGs). Another partial map using isoenzymes was obtained from the inter-specific 

crosses of sweet cherry ‘Emperor Francis’ with Prunus incisa and Prunus nipponica 

cultivars (Boškovic and Tobutt, 1998). Subsequently, simple sequence repeat (SSR) 

markers were used for linkage map construction in a population of sweet cherry cultivars 

‘Regina’ × ‘Lapins’ (Dirlewanger et al., 2004), and in a reciprocal cross of ‘Emperor 

Francis’ × ‘New York 54’ (Olmstead et al., 2008). A consensus linkage map of ‘Regina’ 
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× ‘Lapins’, ‘Emperor Francis’ × ‘New York 54’, ‘Namati’ × ‘Summit’ and ‘Natami’ × 

‘Krupnoplodnaya’ populations was also developed using 268 markers (SNP and SSR) that 

grouped in 8 LGs (Cabrera et al., 2012). The development of a sweet cherry SNP array 

(RosBREED cherry 6K Illumina Infinium® SNP array v1; Peace et al., 2012), allowed he 

construction of high-density linkage maps in the species. This array was used for the 

construction of maps from two unrelated sweet cherry populations (Klagges et al., 2013), 

which considerably increase marker density compared with earlier SSR linkage maps (723 

SNPs in ‘Black Tardarian’ × ‘Kordia’ and 687 in ‘Regina’× ‘Lapins’). Other NGS 

technologies such as Genotyping by Sequencing (GBS) and Specific-Locus Amplified 

Fragment (SLAF) were also recently used to develop high-saturated linkage maps in the 

species (Guajardo et al., 2015; Wang et al., 2015). More recently, three sweet cherry 

populations were used to construct a consensus high-density linkage map using double-

digest restriction site-associated DNA sequencing that includes 2,382 markers (Shirasawa 

et al., 2017). 

 

Genome sequences 

New genomic technologies have contributed to the release of various Rosaceae 

genome sequences in the last years (Genome Database for Rosaceae (GDR); Jung et al., 

2019). The sweet cherry genome sequence was published for the cultivar ‘Satonishiki’ 

(Shirasawa et al., 2017). This sequence has a total length of 272 Mbp covering the 80% of 

estimated genome size (338 Mbps; Arumuganathan and Earle, 1991), with 43,349 

predicted protein-encoding genes. More recently, the genome sequence of sweet cherry 

cultivar ‘Regina’ has also been sequenced de novo using long reads sequencing and optical 

mapping (Le Dantec et al., 2019). This genome covers 279 Mbp, 83% of estimated cherry 

genome, and it is divided in 92 scaffolds. Structural annotation of predicted genes for the 

‘Regina’ genome sequence is ongoing (Dirlewanger, personal communication). The partial 

draft genome of another sweet cherry cultivar, ‘Karina’, as a tool for genomic studies has 

also been reported (Cáceres-Molina et al., 2019). Low coverage was observed for ‘Karina’ 

genome in some regions and new sequencing data, in particular long sequences, are being 

introduced to improve the assembly contiguity (Cáceres-Molina et al., 2019). 
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Quantitative Trait Loci 

In sweet cherry, most agronomical and fruit quality traits are quantitative (Iezzoni 

et al., 2017). During the recent decades, numerous studies have focused on the 

identification of quantitative trait loci (QTL) that explain the phenotype variation of these 

traits. Below, we resume the main detected QTLs in the species in the recent years. 

 QTLs related to bloom time (BT) and flowering-related traits such as chilling and 

heat requirements (CR and HR) have been conducted in sweet cherry. Dirlewanger et al. 

(2012) were the first that reported bloom time QTLs in the species; two major QTLs on 

LGs 1 and 4 of the population ‘Regina’ × ‘Lapins’ were reported. Latter, Castède et al. 

(2014) using two sweet cherry populations and data from various years found major BT, 

CR and HR QTLs overlapping on a syntenic region of main BT QTL detected by 

Dirlewanger et al. (2012) on LG4. Additional, BT QTL analysis were done for sour cherry 

(Wang et al., 2000; Cai et al., 2018) and high significant and stable QTLs were also 

detected on syntenic regions of LGs 1 and 4. These results provided the identification of 

candidate genes involved in the control of BT. Within this, Dormancy Associated MADS-

box (DAM), ARP4, EMF2, NUA, PIE1, GA2ox or KS genes have been proposed as 

potential candidates for BT control in sweet cherry (Castède et al., 2015). As well as for 

BT, maturity date QTL analyses were conducted in sweet cherry. Dirlewanger et al. (2012) 

identified a major and stable maturity date QTL on LG4, and two additional minor QTLs 

on LGs 1 and 5 of the ‘Regina’ × ‘Lapins’ population. The same major maturity date QTL 

on LG4 was identified in the analysis of ‘Beniyutaka’ × ‘Benikirari’ population explaining 

almost 50% of phenotype variation (Isuzugawa et al., 2019). A NAC transcription factor 

has been reported as the candidate gene for maturity date in the syntenic region of peach 

genome (Pirona et al., 2013). 

 Several studies have been conducted to investigate the genetics of fruit size, a 

quantitative trait highly influenced by environmental conditions. Zhang et al. (2010) 

carried QTL analysis of fruit weight, size and diameter in the ‘New York’ × ‘Emperor 

Francis’ population and reported QTLs on LGs 2 and 6. Rosyara et al. (2013) performed a 

multifamily analysis (‘New York 54’ × ‘Emperor Francis’; ‘Regina’ × ‘Lapins’; ‘Namati’ 

× ‘Summit’; ‘Namati’ × ‘Krupnoplodnaya’) of fruit weight, which allowed the validation 

of two main fruit size QTLs detected by Zhang et al. (2010) on LGs 2 and 6, and reported 

new minor QTLs on LGs 1, 2, 3 and 6. More recently, Campoy et al. (2015) used ‘Regina’ 
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× ‘Lapins’ and ‘Regina’ × ‘Garnet’ populations to detect a major fruit weight QTL on the 

bottom region of LG5. The cell number regulator (CNR) genes overlapping within QTL 

regions were reported to be the strongest candidate genes controlling fruit size in sweet 

cherry (De Franceschi et al., 2013). 

Fruit firmness has been also taken special attention during the last years as a result 

of its relevance in consumer acceptability and postharvest aptitude in sweet cherry. Two 

firmness QTL analysis in sweet cherry are published up to date. Campoy et al. (2015) were 

the first that reported a firmness QTL in the species for the populations of ‘Regina’ × 

‘Lapins’ and ‘Regina’ × ‘Garnet’ that were phenotyped during 7 and 4 years, respectively. 

A stable and most significant QTL was found on LG2, although various minor QTLs were 

also reported on all LGs (except LG7). Recently, a large fruit firmness QTL analysis was 

conducted in plant material that include wild cherry, landraces and modern cultivars 

(‘Fercer’ × ‘X’ population, the INRA sweet cherry germplasm collection and RosBREED 

pedigreed population; Cai et al., 2019). This study allowed the identification of a major 

firmness QTL on LG4 that accounted up to 84.6% of the phenotypic variation. Minor QTLs 

overlapping with those previously detected by Campoy et al. (2015) were also detected in 

this study. 

QTL for other important agronomical and fruit quality related traits have been also 

reported in sweet cherry. A major fruit color QTL was located on LG3 explaining up to 

87.1 and 94.7% of phenotype variation of skin and flesh color, respectively 

(Sooriyapathirana et al., 2010). Similarly, two stable QTLs on LG5 of ‘Regina’ and 

‘Lapins’ cultivars were associated with rain-induced cracking susceptibility (Quero-García 

et al., 2014). Regarding cherry resistance to diseases, QTL analysis was performed for 

cherry leaf spot, which allowed the identification of a QTL mapped on LG4 associated 

with the resistance to this disease (Steigmer et al., 2014). Finally, Wang et al. (2015) 

conducted a trunk diameter QTL analysis in the ‘Wanhongzhu’ × ‘Lapins’ population 

reporting two QTLs on LGs 7 and 8. 

 

Major genes, DNA tests and Marker Assisted Selection 

 Marker assisted selection (MAS) is an essential tool in sweet cherry breeding. The 

development of DNA-test for major genes and QTLs identified in sweet cherry can 

increase breeding efficiency giving information about the best parental available in the 
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germplasm to develop the crosses and to discard undesirable seedling in early stages of 

development (Dirlewanger et al., 2009). Despite the advances in genetic control of several 

traits, up to date, only few quantitative and qualitative traits of breeding interest are 

routinely implemented in MAS programs. 

 A few traits of breeding interest are known to be controlled by major genes, being 

self-incompatibility, determined by the S-locus, the most studied trait. DNA PCR markers 

are available to determinate cross compatibility between cultivars [reviewed in Herrero et 

al. (2017) and Iezzoni et al. (2017)]. DNA tests for this purpose are based in PCR length 

polymorphisms associated to the different S-locus genes alleles, namely S-RNase and SFB. 

These genes determine self-incompatibility specificity in sweet cherry (reviewed in 

Herrero et al., 2017). Self-compatibility is also a relevant trait in sweet cherry breeding 

and molecular markers to determinate this trait have also been developed. Ikeda et al. 

(2004) developed a DNA marker to identify the four base pair deletion in the S4’-SFB allele, 

the most common source of self-compatibility in sweet cherry. A microsatellite in the 

mutated S5 allele of ‘Kronio’, conferring the self-compatibility in this cultivar, was also 

reported to select for self-compatibility (Marchese et al., 2007). Self-compatibility from 

‘Cristobalina’ is not linked to the S-locus but it is located on chromosome 3. Marker 

assisted selection for this trait can be done using the linked SSR EMPaS02 (Cachi and 

Wünsch, 2011) or more efficiently by primers that amplify the insertion in MGST gene 

associated to self-incompatibility in this cultivar (Ono et al., 2018). 

The most common DNA marker for a quantitative trait was developed for main 

fruit size QTL on LG2. Zhang et al. (2010) reported two polymorphic SSR markers that 

were used to define the fruit size QTL haplotypes. This QTL must be associated with 

cherry domestication as most modern cultivars are homozygous or heterozygous for the 

allele associated with larger fruit size. More recently, a DNA marker for the main fruit 

firmness QTL found on LG4 was developed using five SNP markers from the RosBREED 

cherry 6K SNP array v1 (Cai et al., 2019). For the 13 haplotypes observed in this QTL 

region in a wide pool of cherry cultivars, they identified 5 firm and 8 soft haplotypes mainly 

found on wild and landrace cherry cultivars. 

 Cherry skin and flesh color have been reported to be a quantitative trait 

(Sooriyapathirana et al., 2010). The identification of a major QTL on LG3 explaining most 

of phenotype variation and co-localized with PavMYB10, a transcription factor associated 
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with the anthocyanin pathway, allowed the identification of a SSR marker for the routine 

identification of mahogany or blush color in sweet cherry fruits (Sanderful et al., 2016). In 

addition, a genetic test to detect resistance to cherry leaf spot was developed based on four 

SSR that spanned the major QTL controlling this disease (Stegmeir et al., 2015). 
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OBJECTIVES 

 

The objective of this work is to investigate the genetics of some relevant phenology 

and fruit quality traits in sweet cherry, with the aim of providing tools that allow to improve 

the breeding process for these traits, and to advance in the understanding of the biological 

mechanisms that regulate them. For this purpose, sweet cherry populations derived from 

local plant material, ‘Cristobalina’ and ‘Ambrunés’ that provide additional phenotypic 

variation for these traits, were used. This general aim is divided into four main objectives: 

 

Objective 1. Genotyping and high-density linkage mapping  

To genotype several sweet cherry populations (cross- and self-pollinations), 

derived from local germplasm, using whole-genome SNP arrays developed in sweet cherry 

and to develop high-density linkage maps useful for genetic and QTL analysis. 

Objective 2. Phenotyping and genetic analysis  

 To phenotype and evaluate phenology (bloom time, fruit development period and 

maturity date) and fruit quality (firmness, size, solid soluble content, titratable acidity, 

color and polyphenols content) traits in these populations, in order to investigate their 

behavior in these plant materials.  

Objective 3. QTLs analyses and candidate genes 

 To identify and validate QTLs associated to these phenology and fruit quality traits, 

using single and multi-family QTL mapping approaches using the genotypic and 

phenotypic data generated, and to identify candidate genes in these major QTLs. 

Objective 4. Haplotype analyses and marker assisted selection 

To identify most relevant QTL alleles to implement marker assisted selection of 

these traits from these plant materials, and to identify polymorphisms in candidate genes 

that can be associated to the phenotypic variation to develop specific markers for marker 

assisted selection. 
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CHAPTER 2 

HIGH-DENSITY LINKAGE MAPS CONSTRUCTED IN 

SWEET CHERRY USING CROSS- AND SELF-

POLLINATION POPULATIONS REVEAL 

CHROMOSOMAL HOMOZYGOZITY IN INBRED 

FAMILIES AND NON-SYNTENIC REGIONS WITH 

THE PEACH GENOME* 

 

 

 

 

 

 

 

 

* Calle A, Cai L, Iezzoni A, Wünsch A (2018). High-density linkage maps constructed in sweet 

cherry (Prunus avium L.) using cross- and self-pollination populations revealed chromosomal 

homozygosity in inbreed families and non-syntenic regions with the peach genome. Tree Genetics 

& Genomes 14:37. (Appendix I).
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INTRODUCTION 

 

Sweet cherry (Prunus avium L.), a diploid species (2n = 2x = 16) in the Rosaceae, 

is mainly cultivated for its fruit. World sweet cherry production has increased over 30% 

during the last two decades, reaching 2.2 M tons in 2014 (FAOSTAT, 2018). The increase 

in sweet cherry consumption, combined with challenges posed by climate change, and 

grower and consumer demands require breeding and production improvements. New 

genomic technologies and physical and genetic linkage maps generated contribute to an 

increase in knowledge that can lead to an improvement in breeding efficiency. In the 

Rosaceae family, various genome sequences have been published in recent years [Genome 

Database for Rosaceae (GDR); Jung et al., 2008]. Verde et al. (2013) sequenced the peach 

genome, the first Prunus genome sequenced, and, just recently, a sweet cherry genome 

was published (Shirasawa et al., 2017). Next generation sequencing (NGS) technologies 

have also allowed the identification of single nucleotide polymorphisms (SNPs) along the 

genome and the development of SNP array platforms for Rosaceae crops. This is the case 

for peach (Verde et al., 2012), sweet and sour cherry (Peace et al., 2012), strawberry (Bassil 

et al., 2015), and apple (Chagné et al., 2012a; Bianco et al., 2014 and 2016). These arrays 

have enabled the development of highly saturated linkage maps in the different species 

(Klagges et al., 2013; Di Pierro et al., 2016; Mahoney et al., 2016; Lambert et al., 2016). 

Linkage maps are a useful tool for the identification of quantitative trait loci (QTL), 

genomic regions associated with variation for quantitative traits. QTL for traits of breeding 

and production interest can be further used for marker-assisted selection or to identify 

candidate genes responsible for these traits. 

Numerous linkage maps have been constructed in sweet cherry (reviewed in 

Salazar et al., 2014; Iezzoni et al., 2017). The first sweet cherry linkage maps were 

constructed using RAPDs (Stockinger et al., 1996) and isoenzymes (Boškovi and Tobutt, 

1998). Later, maps were developed using SSR markers (Dirlewanger et al., 2004; Olmstead 

et al., 2008; Clarke et al., 2009) and SNP markers (Cabrera et al., 2012). High-density 

maps have been developed more recently (Klagges et al., 2013) using the RosBREED 

cherry 6K Illumina Infinium® SNP array v1 (Peace et al., 2012), Genotyping By 

Sequencing (GBS; Guajardo et al., 2015), and Specific-Locus Amplified Fragment (SLAF; 

Wang et al., 2015). Most recently, an integrated consensus linkage map containing 2,317 
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SNPs and 65 SSRs spanning 1,165 cM, from three crosspollination populations (Shirasawa 

et al., 2017), was constructed using double-digest restriction site-associated DNA 

sequencing (ddRAD-Seq).  

All linkage maps developed in sweet cherry to date have been constructed from F1 

populations from interspecific or intraspecific crosses. Sweet cherry is a natural 

outcrossing species that exhibits a gametophytic self-incompatibility system controlled by 

the S locus. Pollen tube growth expressing an S allele that matches one of the two S alleles 

expressed in the diploid style is inhibited (Tao and Iezzoni, 2010). As a result of 

gametophytic self-incompatibility, self-fertilization is not possible in this species. F1 

mapping populations developed in sweet cherry have been made between cross-compatible 

parents. However, selfcompatible mutants do exist in sweet cherry. The selfcompatible 

mutant most widely used in breeding is a mutation that was induced using irradiation that 

renders S4 pollen compatible in an S4 containing style (Lewis, 1949). Therefore, any sweet 

cherry that carries this S4 mutant, termed S4′, is self-compatible. However, natural 

selfcompatible mutants have been found in local germplasm, including the landrace 

cultivars ‘Cristobalina’ (Wünsch and Hormaza, 2004), ‘Talegal Ahim’, ‘Son Miro’ (Cachi 

and Wünsch, 2014), and ‘Kronio’ (Marchese et al., 2007). 

These cultivars, and any cultivar with S4′, can be used to develop populations from 

self-pollination. Self-pollinated populations are useful for the genetic dissection of 

quantitative traits, especially in species with a low level of heterozygosity, because genetic 

effects (additive and dominant) can be estimated, and therefore, these population types are 

frequently used in fine mapping of QTLs (Zhang, 2012). In the genus Prunus, linkage 

maps have been developed using F1 and F2 populations, and these maps have been used 

for QTL analyses for traits of interest. In peach, most linkage maps come from F2 

populations [Genome Database for Rosaceae (GDR); Jung et al., 2008], but in other Prunus 

species that are self-incompatible, like almond or sweet cherry, all genetic maps have been 

developed in F1 populations. In apricot, in which some cultivars are self-compatible, F2 

linkage maps have also been developed (Vilanova et al., 2003; Soriano et al., 2008). In 

breeding of sweet cherry, use of these self-compatible mutants makes it possible for the 

breeder to do self-pollinations or sib-matings that were previously not possible, raising the 

question of whether an associated increase in homozygosity in this naturally cross-

pollinated crop could lead to inbreeding depression. 
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‘Cristobalina’, a landrace cultivar from Eastern Spain, specifically, a mountain area 

(Sierra de Espadán, Castellón) near the Mediterranean coast, offers many opportunities for 

sweet cherry breeding. This cultivar has a very low chilling requirement (<800 h), 

compared with other sweet cherry cultivars, such as ‘Van’ or ‘Napoleon’ (> 1100 h), that 

have large chilling requirements (Tabuenca, 1983). This trait makes ‘Cristobalina’ an 

important cultivar for breeding for low chilling, looking to extend the area of production 

to areas with warmer winters. This cultivar also has a very early maturity date, which 

makes it of interest for breeding early maturing cultivars. In addition, ‘Cristobalina’ has 

compact growth and medium to small size fruit (4–5 g) with dark red skin. Another relevant 

aspect is that ‘Cristobalina’ is self-compatible (Wünsch and Hormaza, 2004) due to a 

mutation located on linkage group (LG) 3 and therefore unlinked to the S-locus that is on 

LG6 (Cachi and Wünsch, 2011). Thus, it is an alternative source for breeding for self-

compatibility. Being self-compatible, ‘Cristobalina’ also offers the possibility to use F2 

populations for genetic analysis of these important production traits and to investigate the 

possibility of inbreeding depression in this naturally cross-pollinated species. In this work, 

we used three sweet cherry families that have ‘Cristobalina’ as a parental cultivar, two of 

which are self-pollinations, to develop genetic maps using the RosBREED Cherry 6K SNP 

array v1. These maps were compared with previous sweet cherry linkage maps and with 

sweet cherry and peach physical maps (Shirasawa et al., 2017; Verde et al., 2017) to 

estimate the degree of similarity and synteny. The two self-pollinated populations derived 

from ‘Cristobalina’ were further used to investigate extent of homozygosity exhibited by 

the self-pollinated progeny. 

 

 

MATERIALS AND METHODS 

 

Plant material 

Three sweet cherry families were used for linkage map construction that all include 

‘Cristobalina’ (S3S6, Mm) in the parentage or ancestry. ‘Cristobalina’ has the S locus 

genotype S3S6; however, it is self-compatible because it is heterozygous for a self-

incompatibility modifier locus (Mm) on LG3 (Cachi and Wünsch, 2011; Ono et al., 2018). 

All self-compatible ‘Cristobalina’ pollen has the m allele and either S3 or S6 (Cachi and 
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Wünsch, 2011; Ono et al., 2018). These three families were an F1 family from the cross of 

cultivars ‘Vic’ (S2S4, MM) × ‘Cristobalina’ (V×C; N = 161), an F2 family from the self-

pollination of ‘Cristobalina’ (C×C, N = 97), and an F2 family derived from the self-

pollination of a progeny (S6S9, Mm) of the cross of ‘Brooks’ (S1S9, MM) × ‘Cristobalina’ 

(B×C2, N = 67). These trees come from crosses and self-pollinations made from 2008 to 

2010 and are grown at the experimental orchards of CITA de Aragón in Zaragoza (Spain). 

All the parental cultivars belong to the CITA de Aragón sweet cherry cultivar collection. 

‘Vic’ (Dickson, 1959) is a cultivar, derived from the cross of ‘Bing’ × ‘Schmidt’, with late 

blooming and maturity dates and dark large fruits. ‘Brooks’ is a cultivar from the cross of 

‘Rainier’ and ‘Burlat’, which shows early blooming and maturity dates and dark red and 

firm fruits (Hansche et al., 1988). Progeny from three additional sweet cherry populations 

from the crosses ‘Lambert’ (S3S4, MM) × ‘Cristobalina’ (L × C, N = 14), ‘Ambrunés’ (S3S6, 

MM) × ‘Cristobalina’ (A×C, N = 40), and ‘Brooks’ (S1S9, MM) × ‘Cristobalina’ (B×C, N 

= 33) were genotyped using the 6K RosBREED cherry array and used to perform SNP 

clustering. 

 

SNP genotyping 

Genomic DNA was obtained from lyophilized leaves using DNeasy® Plant Mini 

Kit (Qiagen, MD, USA). Genomic DNA was extracted from the parental cultivars and all 

the progeny individuals. A duplicate genotype was included in each 96-plate as a quality 

control to evaluate reproducibility. Initial genomic DNA quantification was carried out 

using Nanodrop® (Thermo Fisher Scientific, Waltham, MA, USA). Genome-wide SNP 

genotyping of the three families and the parental cultivars was done using the RosBREED 

Cherry 6K Illumina Infinium® SNP Array v1 (Peace et al., 2012). Information about the 

SNP array, including the name, SNP type, position on the peach genome, Gbrowse link, 

and flanking sequence for the SNPs, can be downloaded from the Genome Database for 

Rosaceae (https://www.rosaceae.org/species/prunus/cherry) (Jung et al., 2008). 

Genotyping was carried out at CEGEN-PRB2-ISCIII (Madrid, Spain) by quantification 

with Quant-iT™ PicoGreen® (Invitrogen Ltd., Paisley, UK) and array scanning with 

Illumina iSCAN System® (Illumina Inc., San Diego, CA, USA). 

SNP genotypes were analyzed using the Genotyping Module (v1.9.4) of 

GenomeStudio™ (v2011.1; Illumina Inc., San Diego, CA, USA) software. Manifest file 
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providing a description of the SNP and probe content on the array was used for the SNP 

genotype calling. In order to maximize allelic diversity, SNP clustering was performed by 

GenomeStudio™ using 480 sweet cherry genotypes. This sample included 325 genotypes 

corresponding to the three mapping progenies, 45 cultivars from the CITA sweet cherry 

cultivar collection previously genotyped with the same array (Martínez-Royo and Wünsch, 

2014), 87 individuals from the remaining three families described previously, and 23 

genotypes including the parents and technical duplicates. Only samples that had GenCall 

scores above 0.15 were initially clustered using the GenomeStudio™ build-in algorithm 

Gentrain2. Clustering for all the SNPs was also visually checked and adjusted manually if 

needed. Duplicated genotypes in each plate were tested for reproducibility using the 

GenomeStudio™ Replicate analysis function. GenomeStudio™ parent–parent–child (P-P-

C) analysis function was used to test progenies and marker heritability in all the progenies. 

Further SNP quality filtering and data formatting for input in JoinMap were carried out 

using ASSIsT 1.0 (Di Guardo et al., 2015) with default parameters for each of these three 

populations. 

To confirm homozygous LGs, a selected sample of eight individuals from C×C that 

collectively exhibited homozygosity for all LGs with the RosBREED Cherry 6K Illumina 

Infinium® SNPArray v1, was also genotyped with the recently developed RosBREED 

Cherry 15K Illumina Infinium® SNP array. Genotyping and SNP analysis was carried out 

as described previously, but SNP clustering was performed using a smaller sample (183 

individuals) of sweet cherry populations and cultivars from CITA orchards. As the 

additional SNPs on the 15K array had not yet been placed on the linkage map generated 

from the C×C family, the SNP positions used were the physical positions of each SNP 

indicated in the array Manifest file. 

 

Linkage map construction 

Linkage map construction was performed using JoinMap 4.1® (Kyazma B.V., 

Netherlands; van Ooijen, 2006). All individuals with more than 5% missing data and all 

SNPs with more than 10% missing data were excluded from map construction. 

For V×C, a cross-pollination, a Two-step method (Klagges et al., 2013; Tavassolian 

et al., 2010), was used. In the first mapping step, only heterozygous markers in each parent 
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were used to develop parental linkage maps. Minimum independence of LOD (= 10.0) was 

used for marker grouping. All informative markers were included in the parental map 

construction in the first mapping round. In the second round, markers showing segregation 

distortion (p<0.01) were excluded if they were not surrounded by other segregation 

distorted markers. A recombination frequency threshold of 0.6 was selected to prevent 

suspect linkages. False double recombination events were checked using Genotype 

Probabilities option with a threshold of 2.0 [−Log10 (P)]. The Maximum Likelihood 

mapping algorithm with default parameters was used for LG construction (van Ooijen, 

2006), and recombination frequency was converted into genetic distance (centiMorgan, 

cM) using Kosambi’s mapping function (Kosambi, 1944). In the second mapping step, 

heterozygous markers for both parents as well as all the markers previously mapped in 

each parental map were used to create the V×C consensus map. SNP markers with identical 

segregation were included in the linkage maps using the function Assign identical loci to 

their groups. 

For the construction of the C×C and B×C2 linkage maps, in both segregating as F2 

populations, a One-step method was carried out using JoinMap 4.1. This method consisted 

of a single mapping step using all heterozygous markers of the parental tree. Minimum 

independence of LOD (= 10), a recombination frequency of 0.6, and maximum likelihood 

mapping algorithm were used for linkage map construction. As described for V×C 

mapping, markers showing segregation distortion (p<0.01) were excluded when not 

surrounded by other markers exhibiting segregation distortion. MapChart v2.2 was used to 

draw linkage maps (Voorrips, 2002). Deviation from expected Mendelian segregation was 

evaluated in the three families by Chi-square goodness-of-fit at p<0.001 to avoid false 

positives, using JoinMap 4.1. In addition, for each progeny individual, marker data was 

evaluated to identify chromosomes with just monomorphic markers, and these 

chromosomes were presumed to be homozygous. 

 

Comparative mapping 

The genetic positions of the SNPs placed on the genetic maps constructed were 

compared with their physical positions in the cherry genome PAV_r1.0 (Shirasawa et al., 

2017). SNP flanking sequences were searched against the cherry genome PAV_r1.0 using  
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Figure 2.1 ‘Vic’ (V), ‘Cristobalina’ (C), and V × C consensus (V×C) linkage maps. Asterisks indicate deviation from expected Mendelian segregation (*p 

< 0.1; **p < 0.05; ***p < 0.01; ****p < 0.005; *****p < 0.001; ******p < 0.0005) 
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the BLAST function at the Genome Database for Rosaceae (GDR, www.rosaceae.org; 

Jung et al., 2008), and only the best matching sequence was included as a result (Sup Table 

2.1). 

The SNPs mapped in the three maps were also aligned with their physical position 

in the peach genome v2.0.a1 (Verde et al., 2017), and the peach physical and cherry linkage 

map positions were compared. When discrepancies between genetic and physical order 

occurred, the genetic marker order was used, and physical positions for the new marker 

locations were extrapolated using the physical positions of flanking markers in the peach 

genome v2.0.a1 (Campoy et al., 2016). Using this method, the chromosomes of C×C, 

B×C2, ‘Vic’ (V), and ‘Cristobalina’ (C) maps (this work) and those of ‘Regina’ (R), 

‘Lapins’ (L), ‘Black Tartarian’ (BT), and ‘Kordia’ (K) (Klagges et al., 2013) were drawn 

using MapChart v2.2 (Voorrips, 2002). 

 

 

RESULTS 

 

SNP genotyping and linkage map construction 

SNP genotyping of V×C revealed 842 SNPs (14.8%) that were polymorphic in the 

parental cultivars and segregating in the family. The remaining SNPs were either 

monomorphic (4,201 SNPs, 73.7%), showed unexpected segregation (11 SNPs, 0.2%), or 

failed detection (642 SNPs, 11.3%) and were, therefore, discarded. From the 842 

segregating SNPs, 483 (8.5%) were heterozygous in ‘Vic’ and 526 (9.2%) were 

heterozygous in ‘Cristobalina’ with 167 SNPs heterozygous in both cultivars. Using these 

markers, parental linkage maps of ‘Vic’ and ‘Cristobalina’ were constructed that each had 

the expected eight LGs (Table 2.1; Fig 2.1; Sup Table 2.1). The ‘Vic’ map has 313 SNPs 

covering 707.2 cM, with an average distance between markers of 3.1 cM. For 

‘Cristobalina’, 370 SNPs were mapped, spanning 659.6 cM, with an average distance 

between markers of 4.0 cM. The largest numbers of markers were mapped to ‘Vic’ LG1 

(100 SNPs) and ‘Cristobalina’ LG2 (95 SNPs), while ‘Vic’ LG2 (10 SNPs) and 

‘Cristobalina’ LG7 (5 SNPs) were the LGs with least numbers of markers. The V×C 

consensus linkage map has 816 markers distributed along 726.0 cM and an average 

distance between markers of 0.9 cM (Table 2.1; Fig 2.1; Sup Table 2.1). 
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In the C×C family, of 526 SNPs heterozygous in ‘Cristobalina’, 511 were mapped 

to the eight LGs. This map covered 634.1 cM with an average distance between markers 

of 1.7 cM (Table 2.1; Fig 2.2; Sup Table 2.1). Like in the ‘Cristobalina’ parental map, the 

largest and lowest numbers of markers were mapped to LG2 (105) and LG7 (9 SNPs), 

respectively. As expected, the ‘Cristobalina’ linkage map generated from the two 

populations (V×C and C×C) was highly similar and mostly collinear (Fig 2.2); however, 

more SNPs were placed on the C×C map than the ‘Cristobalina’ V×C parental map. This 

difference occurred due to different criteria used for including markers in map 

construction. For C×C, all heterozygous markers in ‘Cristobalina’ could potentially be 

used for linkage map construction. However, the ‘Cristobalina’ parental map from V×C 

was constructed using only markers heterozygous for ‘Cristobalina’ and not with those that 

were heterozygous in both parental cultivars (‘Cristobalina’ and ‘Vic’), as these were only 

used in the construction of the consensus V×C map. This effect is evident in the different 

size observed at the top of LGs 5 and 7 and bottom of LGs 2 and 3, where heterozygous 

SNPs in ‘Cristobalina’ were only used in C×C map construction but not in the 

‘Cristobalina’ parental map. Other differences are also observed between both maps. For 

example, the last SNP (ss490557364) mapped at the bottom of LG7 of ‘Cristobalina’ was 

not present in the C×C map since this marker exhibited a high level of segregation 

distortion and was therefore excluded from the C×C map. Therefore, a big gap spanning 

26.4 cM at the bottom of LG7 in the ‘Cristobalina’ parental map was not detected in the 

C×C map (Fig 2.2). Both maps have similar genetic length in total, and thus, the larger 

number of SNPs mapped in the C×C family resulted in a denser map although the average 

marker distances vary between LGs (Table 2.1). 

SNP genotyping of the parent that was self-pollinated to generate the B×C2 family 

identified 589 (10.3%) heterozygous SNPs, 4,725 (82.9%) homozygous SNPs, and 382 

(6.7%) that failed detection. From genotyping the B×C2 family, a linkage map was 

constructed from 552 SNPs. The resulting map covered a total genetic length of 622.4 cM, 

with a marker density of 1.2 cM (Table 2.1; Fig 2.3; Sup Table 2.1). Like in ‘Vic’, the 

largest number of markers and larger genetic length was observed for LG1 (133 SNPs, 

124.7 cM), and like in the other two maps, LG7 had the lowest number of markers (51). 

Large gaps (>10 cM) were identified on the ‘Vic’ parental map for all LGs, except in LG4    
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Figure 2.2 ‘Cristobalina’ parental map (white) and C×C linkage map (gray)
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and LG7 (Table 2.1; Fig 2.1). The maximum gap on the ‘Vic’ map spanned 50.7 cM and 

was located on LG2. For ‘Cristobalina’, large gaps were detected on six of the eight linkage 

groups (LG1, 4–8), with the largest gap of 43.3 cM found on LG7. Fewer large gaps were 

observed on the V×C, C×C, and B×C2 maps compared to the ‘Vic’ and ‘Cristobalina’ 

maps. Additionally, the largest gaps were smaller in these maps than in the parental maps, 

revealing the generation of denser maps from consensus and the F2 populations compared 

to the F1 parental maps. 

SNP markers showing distortion from the expected Mendelian segregation ratios 

(p<0.001) were identified in all the maps constructed except in the ‘Vic’ parental map. The 

number of skewed markers ranged from 32 in the V×C consensus map to 56 in C×C, being 

most frequent on LG2 and LG3 (Table 2.1). These markers were grouped in segregation 

distortion regions (SDRs; Fig 2.4), such as the bottom of LG2 (26.96–27.58 Mbp) for 

‘Cristobalina’ and C×C maps and the bottom of LG3 (16.41–25.38 Mbp) for the C×C and 

B×C2 maps, where the ‘Cristobalina’ self-compatibility locus is located (Cachi and 

Wünsch, 2011). Segregation distortion also occurred in the C×C map, but not in the other 

maps, at the lower region of LGs 5 and 8 and in B×C2 at the lower part of LG1. Segregation 

distortion in SDRs showed distortion against one homozygous class. 

 

Comparative mapping 

Comparison of the SNPs placed on the three linkage maps with their physical 

position in the sweet cherry genome PAV_r1.0 (Shirasawa et al., 2017) revealed agreement 

in LG assignment and marker order for most of the SNPs (82%; Sup Table 2.1).Within 

each LG, only a few markers were mapped to orders that differed from that of the sweet 

cherry genome. However, some inverted regions were observed. These regions were 

located at the bottom of chromosome 1 and top of chromosomes 5, 6, and 7 (Sup Table 

2.1). Additionally, 5% of the SNPs were mapped to different LGs than predicted by the 

sweet cherry genome sequence (Sup Table 2.2). Specifically, regions of chromosomes 2, 

3, and 4 were mapped to different LGs for all maps (Sup Table 2.2). 

Comparison of the genetic positions of the sweet cherry genetically mapped SNPs 

and their physical location in the peach genome v2.a.01 (Verde et al., 2017) revealed high 

collinearity (Sup Fig 2.1). However, SNPs mapped in different orders within a LG or to 



Chapter 2   

34 
 

different LGs compared to the peach genome v2.0.a1 were observed. SNPs mapped in 

different orders within LGs were observed in all maps at different positions, but the number 

of inconsistencies was highest at the top of LG5, where an inverted region was observed 

for the ‘Vic’, V×C, and B×C2 maps compared to the peach physical map (671,433–

2,722,392 bp; Sup Fig 2.1). Some SNPs were also mapped to different LGs compared to 

the peach genome; some of these occurred in more than one map (Sup Table 2.3). 

 

 

 

Table 2.1 Number of SNP markers, genetic length, average distance between markers, maximum 

gap size and number of markers with expected Mendelian segregation distortion (SD) (p<0.001) 

per linkage group (LG) in ‘Vic’ (V), ‘Cristobalina’ (C), V×C, C×C and B×C2 maps. 

    LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 Total 

Number 

of 

markers 

V 100 10 23 28 44 29 54 25 313 

C 67 95 54 34 32 49 5 34 370 

V×C 185 111 89 100 92 95 68 76 816 

C×C 85 105 66 75 51 71 9 49 511 

B×C2 133 75 70 56 48 66 51 53 552 

Genetic 

length 

(cM) 

V 169.8 65.3 64.2 75.7 79.2 106.7 68.7 77.6 707.2 

C 63.4 75.2 91.1 91.1 72.5 120.5 75.9 70.2 659.9 

V×C 150.3 79.8 89 78.5 71.3 108.9 76.1 72.1 726.0 

C×C 58.9 94.9 100.2 80.9 72.2 111.5 42.9 72.6 634.1 

B×C2 124.7 73.1 52.6 71.8 68.5 86.8 70.4 74.5 622.4 

Average 

marker 

distance 

(cM) 

V 1.7 7.2 2.9 2.8 1.8 3.8 1.3 3.2 3.1 

C 0.9 0.7 1.7 2.8 2.3 2.5 18.9 2.1 4.0 

V×C 0.8 1.2 1.0 0.8 0.8 1.1 1.1 0.9 0.9 

C×C 0.7 0.9 1.5 1.0 1.4 1.6 5.3 1.5 1.7 

B×C2 0.9 0.9 0.7 1.3 1.4 1.3 1.4 1.4 1.2 

Largest 

gap size 

(cM) 

V 18.7 50.7 15.2 8.1 16.9 23.5 7.4 29.9 50.7 

C 10.3 6.6 9.5 16.8 11.9 17.7 43.3 18.6 43.3 

V×C 6.8 5.4 6.1 6.7 7.9 7.6 10.9 5.9 10.9 

C×C 7.8 13.4 10.4 8.6 6.7 11.1 26.4 9.7 26.4 

B×C2 7.5 16.2 3.8 11.8 6.4 9.1 12.7 12.4 16.2 

Number 

of 

markers 

with SD 

(p<0.001) 

V - - - - - - - - 0 

C - 36 - - - - - - 36 

V×C - 32 - - - - - - 32 

C×C - 4 32 - 12 1 1 6 56 

B×C2 15 - 30 - - 1 - 1 47 

 

 

 

The physical positions of the RosBREED cherry 6K SNPs in the peach genome 

v2.a.01 were compared to the genetic positions from the maps in this work and previous 

linkage maps using other cultivars (Klagges et al., 2013). This analysis allowed the 

visualization of the chromosomal regions covered by the mapped SNPs in the different 
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sweet cherry maps (Sup Fig 2.2). For the ‘Cristobalina’ and C×C maps, large regions of 

chromosomes 1 and 7 did not have any segregating markers. These regions could be 

homozygous as no heterozygous markers were detected. Thus, large presumably 

homozygous regions were observed in these maps for these regions. Similarly, ‘Vic’ was 

predicted to be homozygous at the top of chromosomes 2 and 3. The other cultivars also 

showed various regions of suspected homozygosity. This was most noticeable at the top 

and/or bottom of LG2 in ‘Vic’, ‘Black Tartarian’, ‘Kordia’, and ‘Lapins’; in LG4 for 

‘Black Tartarian’ and ‘Kordia’; the top of LG5 in ‘Cristobalina’ and ‘Kordia’; and the top 

of LG7 in ‘Kordia’. 

 

Homozygosity 

Progeny individuals with presumably homozygous LGs based on the absence of 

any heterozygous SNPs on these LGs were identified in the two populations derived from 

self-pollination, C×C and B×C2 (Sup Fig 2.3). For C×C, 38 individuals (38%) had one 

homozygous LG, 13 (13%) had two homozygous LGs, and three (3%) had three 

homozygous LGs. Overall, more than half of the progeny (54 individuals, 54%) had at 

least one homozygous LG. For C×C, LG7 was the LG most often homozygous (28 

individuals), followed by LG1 and LG5 being homozygous in 12 individuals. This is 

consistent with ‘Cristobalina’ being homozygous for the majority of LGs 1 and 7 and a 

portion of LG 5 (Sup Fig 2.2). In B×C2, a similar proportion, nearly half of the family (32 

individuals; 48%), had trees with homozygous LGs. Of these, 23 had one homozygous LG, 

eight had two homozygous LGs, and one individual had four homozygous LGs. The LG 

most frequently homozygous was LG3, occurring for 12 individuals, while the least 

frequent homozygous LG was LG6 in both families. 

To confirm the homozygosity of these LGs, eight individuals of C×C (Table 2.2) 

that collectively exhibited homozygosity for all LGs with SNPs from the RosBREED 

Cherry 6K array were also genotyped with the 15K RosBREED Cherry Illumina 

Infinium® SNP array. A larger number of heterozygous SNPs could be scored with the 

15K array in each LG (Table 2.2). The assay revealed that of the 16 presumably 

homozygous LGs in the eight trees, seven are likely homozygous after the analysis with 

the 15K array, as no heterozygous markers were assigned to these LGs. Furthermore, 

presumably homozygous linkage groups were confirmed in all LGs, except 3, 6, and 7 
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(Table 2.2). The results show that increasing the number of genotyped SNPs reduced the 

number of homozygous LGs, but that homozygosity was confirmed in about half of them. 

In the LGs that were homozygous with the 6K array and not with the 15K array, few 

heterozygous markers were detected indicating that large regions of homozygosity are 

present for these LGs. In LG7, a large number of presumably homozygous LGs were 

detected in the RosBREED cherry 6K array; however, this seems to be due to the low 

number of markers mapped to this LG with this array, as this was not the case after the 

analysis with the 15K array. 

 

 

 

Table 2.2 Heterozygous SNPs identified for eight C×C progeny individuals with RosBREED 

cherry 6K SNP array and the 15K SNP array (6K/15K). 

 LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 

CC05 85/168 71/142 25/55 0/0 11/30 27/95 9/51 14/26 

CC22 85/162 0/0 58/148 0/7 26/58 26/83 5/35 28/76 

CC36 19/48 49/93 20/59 52/124 38/80 0/11 9/36 16/26 

CC43 0/8 104/193 53/138 55/143 13/30 17/55 0/25 0/0 

CC50 85/167 42/72 0/1 75/171 0/0 12/56 0/13 5/16 

CC52 0/0 0/0 20/62 44/87 19/40 35/108 8/48 0/0 

CC79 10/25 2/11 52/142 0/2 44/106 40/131 0/17 5/22 

CC91 71/133 15/33 29/87 51/124 0/2 38/134 0/17 49/10 

 
 

 

DISCUSSION 

 

Linkage maps 

The three populations and linkage maps constructed in this work will be used for 

future QTL analysis for chilling requirement, bloom and maturity time, and fruit size. The 

understanding of the map coverage and regions of segregation distortion and low marker 

density gained from the maps generated will be critical for interpreting the forthcoming 

QTL results. In general, the maps developed in this work and those previously constructed 

using the same SNP array revealed similar numbers of markers, genetic lengths, average 

distances between markers, and gap sizes (Klagges et al., 2013). However, for LG7 from 

‘Cristobalina’ and C×C and LG2 from ‘Vic’, very few markers were heterozygous and met 

the criteria for use in linkage map construction, resulting in regions with large distances 
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between markers. This was noticeable for the ‘Cristobalina’ parental map when compared 

with the C×C map, due to the use of different mapping strategies for the F1 and F2 

populations (Tavassolian et al., 2010). In general, the use of all heterozygous markers to 

develop F2 and consensus maps resulted in higher marker density maps in the F2 

populations and in the consensus maps from the F1 crosses, than in the parental maps. 

The linkage maps constructed also identified regions that are presumably 

homozygous in the parental cultivars and therefore would be uninformative for QTL 

discovery. For example, ‘Vic’ is presumably homozygous for the top of LGs 2 and 3 and, 

therefore, homozygous for any QTL alleles that fall in these regions. Likewise, 

‘Cristobalina’ is presumably homozygous for large portions of LGs 1 and 7, and, therefore, 

QTL analysis would not identify any loci in these regions. In this case, the population 

B×C2 will be particularly useful as it will allow an investigation of ‘Cristobalina’ derived 

alleles for regions that are not segregating in the V×C and C×C populations. Since the 

B×C2 population resulted from self-pollination, it will be possible to compare the effects 

of all three allele classes for SNPs homozygous in ‘Cristobalina’ (i.e., AA, AB, and BB). 

 

Comparison with the sweet cherry and peach physical maps  

Comparisons of the linkage maps developed herein, with the sweet cherry genome 

sequence PAV_r1.0 (Shirasawa et al., 2017), supported the genetic position and marker 

order of most of the markers mapped. However, because almost 30% of the sweet cherry 

genome was not anchored to any chromosome (Shirasawa et al., 2017), a large portion of 

mapped SNPs were not assigned to any chromosome and temporarily located to the cherry 

scaffold identified as Chr_0. In addition, some inconsistencies between linkage maps and 

scaffold positions could be due to minor misassembles in the cherry genome or the 

possibility that our use of the best matching marker position on the cherry scaffolds for 

each SNP did not provide an accurate comparison. 

Comparison between sweet cherry linkage maps and the peach genome v2.0.a1 

revealed extensive collinearity, but some markers mapped in different orders. Most 

noticeable was a group of markers that mapped in inverse order at the top of LG5 in the 

‘Vic’ and B×C2 maps. This apparent inversion between the sweet cherry linkage maps and  
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Figure 2.4 Physical positions of RosBREED cherry 6K SNP array v1 markers on the peach genome 

v2.0.a1 where segregation distortion (p<0.001) was identified in ‘Vic’, ‘Cristobalina’, C×C, and 

B×C2 linkage maps. (SC Locus: Self-Compatibility Locus). 
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peach physical map was also observed in the ‘Black Tartarian’ and ‘Rainier’ maps 

(Klagges et al., 2013; Guajardo et al., 2015). For the ‘Cristobalina’ and ‘Kordia’ maps, this 

LG5 region is presumably homozygous, and therefore, these parental maps were 

uninformative for this region. When the physical positions of these inverted markers were 

aligned with the sweet cherry genome scaffolds (Shirasawa et al., 2017), the region was 

not inverted. This indicates that this region may not be inverted in the cherry genome when 

compared to the peach genome. However, the fact that this region appears inverted in four 

genetic maps from unrelated sweet cherry individuals may also indicate a real inversion 

that has not been correctly assembled with the sweet cherry sequence. 

In the maps developed herein, some SNPs were mapped to different LGs than 

expected based on their positions in the peach genome sequence. Similar inconsistencies 

were also detected in other sweet cherry linkage maps developed using the same 

genotyping platform (two SNPs in ‘Black Tartarian’, three SNPs in ‘Lapins’, and six SNPs 

in ‘Regina’) (Klagges et al., 2013). The presence of markers mapped in different LGs based 

on peach genome may indicate regions that are translocated from one genome to the other 

or duplicated (Dirlewanger et al., 2004; Fresnedo-Ramírez et al., 2013). The position of 

these markers could not be confirmed due to poor alignment with the current sweet cherry 

genome sequence. However, if these differences between the cherry and peach genome are 

eventually verified, they may mark species-specific genomic regions that contributed to 

the evolutionary differences between cherry and peach. 

 

Segregation distortion 

Skewed markers detected in this work were grouped in segregation distortion 

regions (SDRs). SDRs have also been detected in other species like barley (Li et al. 2010), 

eucalyptus (Myburg et al., 2004), oak (Bodénès et al., 2016), maize (Lu et al., 2002), or 

rice (Xu et al., 1997). SDRs detected in this work were also found in other sweet cherry 

maps. A SDR at the lower end of LG1 in B×C2 was also detected in ‘Black Tartarian’, 

‘Kordia’, ‘Regina’, ‘Lapins’, and Prunus davidiana linkage maps (Foulongne et al., 2003; 

Klagges et al., 2013). Similarly, a SDR at the lower end of LG2 in ‘Cristobalina’ and C×C 

was also found in the ‘Emperor Francis’ and ‘New York 54’ maps (Olmstead et al., 2008), 

and a SDR at the lower region of LG8 for C×C was also detected in the ‘Emperor Francis’ 
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linkage map. The presence of these SDRs in different cherry maps for LGs 1, 2, and 8 may 

indicate the presence of lethal and/or sub-lethal alleles in these regions that reduce viability 

or survival (Ward et al., 2013). The SDR identified on LG2 in this study overlaps with a 

QTL hotspot containing fruit and bloom time traits important for sweet cherry breeding 

(Cai et al., 2017); therefore, understanding the basis for segregation distortion at this region 

would be of interest. 

Other regions with segregation distortion identified herein were specific for 

individual linkage maps constructed in this work. This includes the lower part of LG3 in 

C×C and B×C2 maps, where distorted segregation results from the pollen-expressed self-

incompatibility modifier locus that is heterozygous in ‘Cristobalina’ that maps to this 

region (Cachi and Wünsch, 2011; Ono et al., 2018). Only pollen containing the self-fertile 

allele at this locus will be able to achieve fertilization in a self-pollination, and as a result, 

only the self-compatible allele is inherited and segregation distortion is observed in this 

region. The markers with maximum distortion in this region are ss490552038, 

ss490552032, ss490548178, and ss490552064 in C×C (Fig 2.2; Fig 2.4) and are expected 

to map to the location of the self-incompatibility modifier locus that leads to self-

compatibility. An additional region where segregation distortion was observed exclusively 

in C×C was the bottom region of LG5. In this region, one homozygous class was favored 

over the other, and therefore, for this region, deleterious recessive alleles may be selected 

against. 

 

Self-pollination and chromosomal homozygosity 

Sweet cherry evolved as an obligate outcrossing species due to the presence of a 

gametophytic self-incompatibility system. The ‘Cristobalina’-derived C×C and B×C2 

populations, both resulting from self-pollination, will provide a unique opportunity to 

investigate the impact of self-pollination on this heterozygous species. In C×C and B×C2, 

compared to V×C (F1 population), a large number of individuals with one to four 

presumably homozygous LGs were identified in both F2 populations, and, presumably, 

completely homozygous LGs were identified for all LGs in both populations. Recently, a 

next-generation RosBREED Cherry 15K Illumina Infinium® SNP Cherry Array was 

developed that was designed to fill gaps previously identified with the use of the 6K array 

(Illumina, San Diego, CA). This array was used in this work to test whether the degree of 
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homozygosity detected with the 6K array was also confirmed after analyzing a larger 

number of SNPs. This test revealed that the number of homozygous LGs in C×C and B×C2 

was overestimated with the 6K array but confirmed the presence of large homozygous 

regions and homozygous LGs in the families. The finding that LG6 had the lowest level of 

homozygosity when considering both the C×C and B×C2 self-pollinated populations is 

consistent with the presence of the S locus on LG6. It suggests that there may be a high 

genetic load of presumably deleterious recessive alleles linked to the S locus. Taken 

together, these results reveal that high levels of homozygosity (up to four presumably 

homozygous LGs) can be tolerated in sweet cherry. The finding that ‘Cristobalina’ is 

presumably homozygous for large regions on LGs 1 and 7 and a smaller region on LG5 

suggest that it may be derived from self-pollination. If ‘Cristobalina’ is the result of self-

pollination (S2), then the S2 population (C×C) would be an S3. 

Selfing in naturally outcrossing species leads to an increase in homozygosity, 

which may result in a decrease in fitness and fitness-related traits, characterized as 

inbreeding depression (Charlesworth and Charlesworth, 1999). Phenotypic observations 

of individuals from the three mapping populations suggest that inbreeding in sweet cherry 

can be associated with a loss of vigor and fertility (data not presented). Trees in the C×C 

population are generally weak and exhibit a low vegetative vigor. The progeny only began 

fruiting after eight years and only 19% of the trees have fruit after 10 years. In contrast, 

V×C trees began fruited after five years, and 62% of trees have fruit after seven years. 

Furthermore, V×C is younger than C×C but shows higher vigor, measured as trunk 

circumference. 

In conclusion, the genetic maps reported for ‘Cristobalina’ and its derived progeny 

will enable future QTL identification from this important breeding parent. In addition, the 

maps herein provide an opportunity to take a first look at the genome-wide impacts of self-

pollination in sweet cherry. This is especially timely with the increased emphasis on the 

development of self-compatible cultivars using either S4′ or naturally derived self-

compatible mutations, such as the one present in ‘Cristobalina’.
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Supplementary Table 2.1 Position of RosBREED cherry 6K SNP Array v1 SNP markers 

mapped in 'Vic', 'Cristobalina', V×C, C×C and B×C2 linkage maps. 

Document available online at http://hdl.handle.net/10532/4737. (Chapter 2 – 

Supplementary Table 1.xlsx). 

 

 

 

 

Supplementary Table 2.2 SNP markers with genetic map positions that differed from the  

sweet cherry genome PAV_r1.0 (Shirasawa et al. 2017) physical map positions for ‘Vic’ 

(V), ‘Cristobalina’ (C), V×C, C×C and B×C2. Only the best match to the cherry genome 

(PAV_r1.0) sequence is included. 

  
Physical position 

PAV_r1.0 
Genetic position (cM) 

SNP Chr Position LG V C V×C C×C B×C2 

ss490546273 2 8336505 1 - 22.3 40.5 16.4 - 

ss490546037 2 8367857 1 - 21.7 39.6 16.4 - 

ss490546234 2 8496299 1 - 21.7 39.6 16.4 - 

ss490546026 2 8506097 1   21.7 39.6 16.4 - 

ss490546230 2 8508179 1 - 21.7 39.6 16.4 - 

ss490546226 2 8509076 1 - 21.7 39.6 16.4 - 

ss490546222 2 8526221 1 - 21.7 39.6 15.9 - 

ss490546154 2 8802803 1 - 21.1 38.7 14.8 - 

ss490546018 2 9046889 1 - 21.1 38.7 14.8 - 

ss490546174 2 9140231 1 - 21.1 38.7 14.8 - 

ss490546006 2 9338496 1 - 21.1 38.7 14.8 - 

ss490550479 3 10141163 7 8.3 - 8.4 - - 

ss490551611 3 10524955 7 - 0 9.1 6.5 5.3 

ss490550220 4 1781886 6 - 102.4 89.8 96.7 - 

ss490556153 4 1785025 6 - 102.4 89.8 96.7 - 

ss490553068 4 18009325 3 - 41.9 44.6 44.3 21.3 

ss490553089 4 18622407 3 12.4 - 39.9 - 19.8 

ss490553109 4 20043372 1 - 0 17.1 0 - 

ss490553112 4 20073056 1 - - 17.1 0 - 

ss490545817 4 20239148 1 - 0 17.1 0.5 - 

ss490545821 4 20257447 1 - - 17.4 1 - 

ss490558973 4 20260620 1 - 0 17.1 1 - 

ss490553277 4 23408694 2 - 12.6 18.6 24.8 13.7 

ss490548855 4 23410719 2 - 12.6 18.6 24.8 13.7 

ss490553307 4 23927805 2 - 12 17 24.8 13.7 

ss490553313 4 23958350 2 - 12 17 24.8 13.7 

ss490553316 4 23996867 2 - 12 17 24.8 13.7 

http://hdl.handle.net/10532/4737
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Supplementary Table 2.3 SNP markers with genetic map positions that differed from the 

sweet cherry genome PAV_r1.0 (Shirasawa et al., 2017) physical map positions and peach 

v2.0a1 (reference) physical map positions. Only the best match to the cherry genome. 

  
Genetic position in 

sweet cherry maps 

Physical position in 

Peach Genome 

v2.a.01 

Physical position 

in PAV_r1.0 

  Map LG (cM) Chr bp Chr Bp 

ss490549697 V 1 71.3 2 21123343 0  24919707 

ss490548886 V 2 3.9 4 21653711 0 7073922 

ss490548917 

C 2 17.2 

4 24150393 1 23565595 C×C 2 27.5 

B×C2 2 14.4 

ss490556603 V 2 3.9 7 6257451 0 6257451 

ss490551629 
C 4 89.8 

3 17628272 3 11621163 
C×C 4 80.9 

ss490547988 V 4 8.5 3 18327004 7 18979393 

ss490554567 C×C 4 6.9 5 15968737 5 14410135 

ss490548940 V 4 57.3 6 14899178 8 4698421 

ss490546844 
C 6 113.3 

1 25136072 0 73684844 
C×C 6 102.6 

ss490550875 

C 8 58.3 

3 1870601 3 1008029 C×C 8 53.4 

B×C2 8 45.4 

ss490552915 B×C2 8 2.3 4 11102705 4 14089497 

ss490553385 B×C2 8 1.5 4 22008212 4 25141013 

ss490555352 

C 8 57.7 

6 6761904 6 6410629 C×C 8 53.4 

B×C2 8 44.6 

 

 

 

 

 

Supplementary Fig 2.1 Comparison of the genetic map and physical map constructed 

using all the SNPs placed on the linkage maps constructed. The SNPs were ordered 

according to their position in the peach genome v2.0.a1. 

Document available online at http://hdl.handle.net/10532/4737. (Chapter 2 – 

Supplementary Figure 1.tiff) 

 

http://hdl.handle.net/10532/4737
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Supplementary Fig 2.2 Comparison of physical positions of RosBREED cherry 6K SNP 

array v1 markers on the peach genome v2.0.a1 (PGv2) with the genetic maps of sweet 

cherry. ‘Vic’ (V), ‘Cristobalina’ (C), C×C and B×C2 (this work), ‘Black Tartarian’ (BT), 

‘Kordia’ (K), ‘Lapins’ (L), and ‘Regina’ (R) (Klagges et al., 2013). 

 

 

CHROMOSOME 1 
 

 PG_v2     V             C            CxC         BC2          BT            K              L              R   
            

 

CHROMOSOME 2 
 
PG_v2     V             C            CxC         BC2          BT            K              L              R   

 
 

  

CHROMOSOME 3 
PG_v2     V             C            CxC         BC2          BT            K              L              R   

 

CHROMOSOME 4 
 
PG_v2     V             C            CxC         BC2          BT            K              L              R   

 

CHROMOSOME 5 
PG_v2     V             C            CxC         BC2          BT            K              L              R   

 

CHROMOSOME 6 
 
PG_v2     V             C            CxC         BC2          BT            K              L              R   

  

CHROMOSOME 7 
 
PG_v2     V             C            CxC         BC2          BT            K              L              R   

 

CHROMOSOME 8 
 
PG_v2     V             C            CxC         BC2          BT            K              L              R   
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Supplementary Fig 2.3 Distribution of homozygous linkage groups (LGs) identified in 

self-pollinated families C×C and B×C2. 
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INTRODUCTION 

 

Bloom time (BT) is an important horticultural trait in temperate fruit tree species 

like sweet cherry (Prunus avium L.). Cultivar adaptation to climatic conditions in the 

growing area is essential for flower production and fruit set. Early blooming cultivars are 

susceptible to spring frost damage in cold regions (Luedeling, 2012), while late blooming 

cultivars can exhibit irregular floral development and low fruit set due to warm 

temperatures during the flowering period (Mahmood et al., 2000; Atkinson et al., 2013). 

The biological control of BT is complex and is known to depend on environmental signals 

during the winter and spring seasons (Abbott et al., 2015; Fadón and Rodrigo, 2018). Fruit 

trees like sweet cherry require a period of chilling temperatures followed by a period of 

warm temperatures to induce blooming (Lang et al., 1987). In Prunus species, several 

studies indicate that BT is more dependent on chilling than on heat requirement and that 

there is large variation in these requirements among individuals of the same species 

(Campoy et al., 2011; Okie and Blackburn, 2011; Sánchez-Pérez et al., 2012; Castède et 

al., 2014). 

Several genetic studies in Prunus have focused on understanding the genetic 

control of chilling (CR) and heat requirements (HR) contributing to the differences in BT 

(reviewed in Abbott et al., 2015). BT in Prunus is a quantitative trait with high heritability 

(Anderson and Seeley, 1993; Dirlewanger et al., 2012; Castède et al., 2014), and genetic 

approaches have led to the identification of quantitative trait loci (QTLs) associated with 

this trait. BT QTLs have been identified on all Prunus linkage groups (LGs) (reviewed in 

Salazar et al., 2014; Abbott et al., 2015), but major QTLs have been found on LG1 (Fan et 

al., 2010; Zhebentyayeva et al., 2014; Bielenberg et al., 2015) and LG4 (Sánchez-Pérez et 

al., 2012; Dirlewanger et al., 2012; Castède et al., 2014) in all the Prunus crop species 

evaluated to date. In sweet and sour (Prunus cerasus) cherries, several QTLs have been 

identified for BT and CR. In sweet cherry, Dirlewanger et al. (2012) mapped two major 

BT QTLs on LGs 1 and 4 and three minor QTLs on LGs 5, 6 and 7. Castède et al. (2014) 

using three to six years data and two F1 populations identified BT and CR QTLs in all LGs, 

with a major and stable QTL for both traits overlapping on LG4. Castède et al. (2014) also 

detected minor QTLs for both CR and BT on LGs 1 and 7, highlighting the influence of 

CR in BT in this species. In sour cherry, Wang et al. (2000) investigated BT QTL using an 



Chapter 3 

52 
 

F1 population and 3-year data, and two major QTLs were identified on LGs 1 and 2. 

Another QTL study in sour cherry revealed four QTLs for BT on LGs 1, 2, 4 and 5; the 

most significant allele for LG4 QTL was associated with almost three days bloom delay 

(Cai et al., 2018). 

Candidate genes have been reported for the Prunus BT and CR QTL that maps to 

LG1 (Yamane et al., 2011; Zhebentyayeva et al., 2014; Castède et al., 2015). In peach, a 

tandem set of six DORMANCY ASSOCIATED MADS-BOX (DAM) genes have been 

identified in this region (Zhebentyayeva et al., 2014; Romeu et al., 2014; Bielenberg et al., 

2015). Studies of these genes was facilitated by the study of a peach non-dormancy mutant 

termed evergrowing peach mutant (evg) that has a deletion within this QTL region 

(Bielenberg et al., 2008). Of these genes, DAM5 and DAM6 were not expressed under 

chilling temperatures (Jiménez et al., 2010) whereas the expression of DAM4 and -6 were 

activated by short photoperiods (Li et al., 2009) suggesting that DAM5 and -6 are the main 

genes underlying this Prunus LG1 CR QTL (Yamane et al., 2011). For the major Prunus 

BT QTL located on LG4, genes related to temperature sensing (ARP4, EMF2, NUA and 

PIE1) and the gibberellin pathway (GA2ox and KS genes) have been proposed as the most 

promising candidates to control BT (Dirlewanger et al., 2012, Castède et al., 2015). 

Most BT QTL studies in Prunus have been done using a single bi-parental 

population. This strategy is limited because only alleles present and segregating in the two 

parental cultivars can be detected (Bink et al., 2014). However, knowledge of the effects 

of these alleles in different genetic backgrounds and other loci not segregating in the bi-

parental cross are needed to fully implement marker-assisted selection (MAS). The 

development of QTL mapping approaches based on multi-parental populations allow the 

identification a larger number of QTLs and QTL alleles improving the application of these 

results in MAS for a larger number of genetic backgrounds (Pauly et al., 2012). The 

Bayesian QTL mapping approach implemented by FlexQTL™ (Bink et al., 2008 and 2014) 

allows analyzing multiple pedigree-linked progenies at the same time; reducing the 

limitations derived from QTL analyses using single populations. This approach has been 

successfully used in recent years for QTL analyses of different traits in Rosaceae species, 

such as sweet cherry (Rosyara et al., 2013), apple (Bink et al., 2014; Guan et al., 2015; 

Allard et al., 2016; Di Guardo et al., 2017; Howard et al., 2018), peach (Hernández Mora 
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et al., 2017; Fresnedo-Ramírez et al., 2015 and 2016) and strawberry (Roach et al., 2016; 

Mangandi et al., 2017; Anciro et al., 2018). 

Furthermore, previous QTL analyses in sweet cherry were all used cross-pollinated 

F1 populations. Self-pollination is often not possible in sweet cherry due to the 

gametophytic self-incompatibility system operating in this species (Herrero et al., 2017). 

However, natural self-compatible sweet cherry mutants like ‘Cristobalina’ (Wünsch and 

Hormaza, 2004) or other self-compatible sweet cherry accessions can be used to generate 

F2 populations which can be used for genetic mapping studies. The self-compatible local 

cultivar ‘Cristobalina’ and its self-compatible descendant, the selection ‘BC8’, were used 

to develop two self-pollinated populations for genetic analysis. Genetic maps of these 

sweet cherry populations were constructed, and their level of homozygosity was previously 

reported (Chapter 2). These were the first F2 populations used for genetic map construction 

in this species and are now available for QTL analysis. 

The Spanish cultivar ‘Cristobalina’ comes from the Mediterranean area, and in 

addition to being self-compatible (Wünsch and Hormaza, 2004; Cachi and Wünsch, 2011; 

Ono et al., 2018), it has a low CRs (<550 h; Tabuenca, 1983; Alburquerque et al., 2008) 

and extra early flowering and maturity dates. These characteristics make ‘Cristobalina’ an 

interesting breeding cultivar. Cultivars with low CRs often show early flowering 

(Alburquerque et al., 2008) and this low chilling requirement is of high interest for 

extending cherry growing to regions with warmer winters, and in the current context of 

global warming as a source of adaptation to low chilling. In this work, we used six related 

sweet cherry populations that descend from ‘Cristobalina’ and other sweet cherry cultivars 

with mid and late BTs to investigate the genetic basis of BT and low chilling in different 

genetic backgrounds. For this objective, we used a Bayesian QTL mapping approach 

implemented in FlexQTL™, and two self-pollination populations to investigate the genetic 

effects of the QTL alleles. The results obtained broaden the understanding of the genetic 

control of CR and BT in this species and will allow the implementation for MAS of these 

traits from this and related plant material. 
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MATERIALS AND METHODS 

 

Plant materials 

Six related sweet cherry full-sib families (N=406), along with six parental cultivars 

and five ancestor cultivars, were used in this study (Fig 3.1). Four of these families come 

from cross-pollinations (F1), namely ‘Vic’ × ‘Cristobalina’ (V×C; N=158), ‘Ambrunés’ × 

‘Cristobalina’ (A×C; N=40), ‘Brooks’ × ‘Cristobalina’ (B×C; N=29) and ‘Lambert’ × 

‘Cristobalina’ (L×C; N=14). The remaining two populations (F2) come from the self-

pollination of ‘Cristobalina’ (C×C; N=97) and ‘BC8’ (B×C2; N=68), which is a selection 

from the progeny of ‘Brooks’ × ‘Cristobalina’ (Fig 3.1). All these trees derive from 

controlled cross- and self-pollinations made from 2008 to 2010 and are located at the 

experimental orchards of CITA de Aragón in Zaragoza (Spain). 

 

Bloom time phenotyping 

BT was evaluated for each progeny and the parental cultivars during four years 

(2015 to 2018). Blooming was observed in all the trees three days per week (every 2-3 

days) during the flowering season. BT was recorded when approximately 75% of the floral 

buds reached stage F (full bloom; Baggiolini, 1980). BT data were converted to calendar 

days (CD; days from January 1st) and growing degree hours (GDH). GDH were calculated 

as the number of GDH accumulated from January 1st until BT using the linear model 

described by Richardson et al. (1974). The best linear unbiased prediction (BLUP) value 

among years for CD and GDH was calculated using the lme4 package of R 3.4.1 software 

(Bates et al., 2015; R Core Team, 2017). All subsequent BT analyses were done using both 

the CD and the GDH conversions. 

Mean, minimum and maximum values and the distribution of BTs were estimated 

in each population per year and for the BLUP values. Mean BTs were then compared 

between families using analysis of variance (ANOVA) and Tukey post-hoc test (p<0.05) 

for BLUP values. Pearson correlation coefficient of BTs between years and BLUP values 

were also estimated. Statistical analyses were carried out using SPSS statistics v21.0.0 

software (IBM, Chicago, IL, USA).
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Figure 3.1 Families, parental and ancestor cultivars used in this work with their known pedigrees (Red and blue lines indicate female and male 

parent, respectively). Color code (from Pedimap software; Voorrips 2007) indicates the BLUP (Best linear unbiased prediction) of bloom time 

values expressed in calendar days (CDs). In the families, the number of individuals (N), mean value of bloom time in both CDs and growing 

degree hours (GDHs), and significant differences of bloom time among different families (ANOVA and Tukey Test; P < 0.05) are also shown 
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Broad-sense heritability (H2) was calculated using the equation: H2 = 
𝜎𝑔
2

𝜎𝑔
2+

𝜎𝑒
2

𝑛

, where 

𝜎𝑔
2 is the variance of genotype effect, 𝜎𝑒

2 is the variance of the residual term and n is the 

number of years. H2 were calculated using R v3.4.1 (R Core Team, 2017). 

 

Genotyping and QTL analysis 

Genotypes of 417 individuals that include the six populations described above, their 

parental and ancestor cultivars (Fig 3.1) were used for QTL analysis. All these plant 

material had been previously genotyped using the RosBREED Illumina cherry 6K SNP 

array v1 (Chapter 2). For QTL mapping using FlexQTL™ (Bink et al., 2014), the genotyped 

SNPs of all plant materials were previously filtered. SNPs monomorphic in all populations, 

that had null alleles, with MAF<0.05, with more than 5% of missing data, and showing 

errors in various genotypes were discarded. The selected markers were further checked by 

analyzing their genetic segregation using FlexQTL™ and by visual inspection when a 

double recombination event occurred within an interval smaller than 10 cM. A consensus 

genetic map from the selected SNPs was constructed. Those SNPs previously mapped in 

V×C (Chapter 2) were assigned their genetic position. Those SNPs not previously mapped 

in the V×C map were integrated in the map by using their physical position on the peach 

genome v2.0.a1 (Verde et al., 2017). 

QTL mapping for the two parameters, CD and GDH, each year and for BLUP 

values, using all the plant material, was carried out using a Bayesian multiple QTL model 

implemented in FlexQTL™ (Bink et al., 2014). In this work, only additive effects with 

normal prior distribution were considered. The models were set with a prior distribution of 

number of QTLs of 1 and 3 in order to assess sensitivity of posterior inference to the prior 

assumptions. Markov chain Monte Carlo (MCMC) simulation with minimum of 500,000 

iterations for each prior number of QTL were performed until at least 100 effective chain 

samples (ECS) were reached for overall mean (μ), the residual variance (𝜎𝑒
2), the number 

of QTLs (NQTL) and the variance of QTLs (VQTL) (Gelman and Rubin, 1992; Sorensen and 

Gianola, 2002). A total of 1,000 samples (500,000 iterations with thinning value of 500) 

were stored for further posterior inferences. The inference in the number of QTLs was 

estimated using twice the natural log of Bayes factors (2lnBF) (Kass and Raftery, 1995) 

obtained after a pairwise comparison of models differing by one QTL from each other. 
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Values of 2lnBF higher than 2, 5 and 10 indicate positive, strong and decisive QTL 

evidences, respectively. Only QTLs with strong and decisive evidences were considered 

in this work. The percentage of variation explained (PVE) by each QTL was estimated as 

[(wVAt1 / PV) × 100], where wVAt1 is the weighted variance and PV is the total 

phenotype variation (Mangandi et al., 2017). The genomic breeding value (GBV) for each 

individual and parent was predicted using QTL genotype probabilities, intensity and effect 

size (Bink et al., 2014). 

 

Haplotype analysis 

SNP haplotypes of the two most significant QTLs detected with an average 2lnBF 

higher than 10, were constructed for the parental cultivars and theirs ancestors. The 

haplotypes were designed to span the confidence interval with 2lnBF>10 for these QTLs 

using BLUP model. The SNP haplotypes were estimated using SNP phase estimation of 

FlexQTL™ for all the cultivars, except for ‘Bing’ and ‘Napoleon’ that were estimated 

manually (for QTL on LG2) based on pedigree information and the availability of 

previously phased haplotypes (Cai et al., 2017). SNP haplotypes were also confirmed 

based on segregation. Mean phenotypic values of each of these QTL haplotypes and their 

combined effects, for CD and GDH, were estimated in each segregating class of each 

population. Individual progenies with recombination events within these QTL regions 

were excluded from the analysis. For mean comparison of the phenotypic values within 

each population, Kruskal-Wallis, two-tailed Student’s t test and Tukey test (p<0.01) post-

hoc analysis were used. All statistical analysis were done using SPSS statistics v21.0.0 

software (IBM, Chicago, IL, USA). 

 

 

RESULTS 

 

Bloom time phenotyping, segregation and heritability 

BT was evaluated in the parental cultivars and populations during four consecutive 

years (Fig 3.1; Sup Table 3.1). The parental cultivar ‘BC8’ was phenotyped only the first 

year as the tree was in poor health in subsequent years. ‘Cristobalina’ was the earliest 
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parental cultivar to bloom in all of the years [BLUP value: 69 CDs and 5,999 GDHs; Fig 

3.1 and 3.2]. ‘Ambrunés’,‘BC8’ and ‘Brooks’ showed mid-season flowering (Fig 3.1 and 

3.2), while ‘Vic’ and ‘Lambert’ exhibited late blooming with BLUP values of 95 and 97 

CDs (9,841 and 10,259 GDHs), respectively (Fig 3.1 and 3.2). CR were fulfilled for 

‘Cristobalina’ (550 h; Tabuenca, 1983) between mid-December to the first week of January 

during the four years of analysis (Sup Fig 3.1). The rest of the parental cultivars, 

‘Ambrunés’, ‘Brooks’ and ‘Lambert’, all had higher CR (900 to 1,100 h; Tabuenca, 1983; 

Alburquerque et al., 2008). During the four years evaluated, the CR of these three cultivars 

were not fulfilled until mid-January to late February (Sup Fig 3.1).  

The same blooming order (extra-early, mid and late blooming) was observed for 

the parental cultivars each year, but differences in the BTs were observed between years 

(Sup Table 3.1). BT was earliest in 2017 for the mid and late cultivars, which bloomed 16 

to 17 days earlier than the average date of the rest of the years. However, for ‘Cristobalina’, 

the earliest bloom period occurred in 2016 (Sup Table 3.1), while the latest bloom period 

for all parental cultivars occurred in 2018 (Sup Table 3.1). In 2016, fulfilment of the CR 

and HR for ‘Cristobalina’ occurred early resulting in an early bloom. However, this was 

followed by a period of cold temperatures that delayed the flowering of the rest of the 

cultivars extending the blooming season (Sup Fig 3.1). In 2017, a high accumulation of 

chill hours during the early winter followed by a period of warmer temperatures in the 

beginning of February resulted in an earlier bloom for all the cultivars and a shorter 

blooming period (Sup Fig 3.1). In 2015 and 2018, although large amounts of chill were 

accumulated during the early winter, cold temperatures in February delayed bloom. Years 

2017 and 2018 were colder and CR were fulfilled earlier in the year, but BT was earlier in 

2016.  

In the populations, different numbers of offspring were phenotyped each year, 

ranging from 258 (64%) in 2015 to 367 (90%) in 2018 (Sup Table 3.1). Only individuals 

(N=360) with phenotypic data from two or more years were used to estimate BLUP values. 

The bloom period varied between years and populations, from 7 to 24 days. On average 

A×C, B×C and L×C showed shorter bloom periods (10 to 12 days) than B×C2, C×C and 

V×C (16 to 18 days) (Sup Table 3.1). ‘Cristobalina’ self-pollination (C×C) was the earliest 

population to bloom (Fig 3.1 and 3.2), as on average, it bloomed 11 to 14 days earlier than 

the rest of populations (Fig 3.1 and 3.2). The mean BTs of A×C, B×C and B×C2 were 
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similar, while V×C and L×C were the latest populations to bloom (Fig 3.1 and 3.2). 

Differences in the mean BT of the populations was observed between years. For all the 

populations, the earliest bloom period was in 2017 and latest in 2018 (Sup Table 3.1). It 

was especially noticeable in 2017 when warm temperatures resulted in earlier flowering 

for all genotypes and the shortest bloom period (18 days) of all years. In 2016, warm 

temperatures in mid-February, resulted in very early bloom of some individuals from C×C 

population, but a cold period later on delayed the flowering of the rest of the population, 

resulting in the largest bloom period in all years evaluated. 

 

 

 

 

Figure 3.2 (a) Frequency distribution of bloom time BLUP values of plant materials analyzed 

expressed in GDHs and CDs. Letters with arrows indicate parents’ bloom times; ‘Ambrunés’ (A), 

‘Brooks’ (B), ‘B×C-08’ (BC8), ‘Cristobalina’ (C), ‘Lambert’ (L) and ‘Vic’ (V). (b) Blooming 

period of each population (boxes). Bold line in the boxplot indicates the median value, the left and 

right sides of the box represent the 25th and 75th percentile, respectively. Whiskers represent the 

lower and upper extreme values. 
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BT distribution varied between populations and years. Only the smallest 

populations (B×C and L×C) fitted a normal distribution for all evaluated years and for 

BLUP values in both models, CDs and GDHs (Shapiro-Wilk test; Prob < W: 0.083-0.263). 

Populations B×C2 and A×C fitted a normal distribution only two of the years also for both 

models (Shapiro-Wilk test; Prob<W: 0.085-0.664), whereas the remaining two populations 

(C×C and V×C), which are the largest, did not fit normal distributions in any of the years, 

neither for CD nor GDH. BT of all the progenies together also did not show normal 

distribution for any of the years or BLUP, or for CD or GDH (Fig 3.2). In all cases, skewed 

distributions towards medium and late BT were observed. In fact, only some C×C offspring 

were extra-early blooming, and only some B×C2 offspring were early blooming. The rest 

of the plant materials were medium to late blooming, even though all populations (except 

B×C2) had ‘Cristobalina’ (extra-early blooming) as one of the parental cultivar. 

Transgressive segregation towards late blooming was also observed in the four years and 

for BLUP values for all populations except L×C. On the other side, transgressive 

segregation towards early blooming was only observed in the self-pollinated populations 

(C×C and B×C2; Fig 3.2; Sup Table 3.1).  

Highly significant (p<0.01) and positive correlations were observed for BTs 

between years and BLUP value (r = 0.897 to 0.966), and between CD and GDH data (r = 

0.984 to 0.997; Sup Table 3.2). BT broad-sense heritability (H2) was estimated for all 

populations together and for each population. H2 was high for BT using both, GDH (0.94) 

and CD (0.97). In the populations, H2 was also high, with values ranging from 0.87 to 0.96 

for GDH and from 0.85 to 0.96 for CD (Sup Table 3.1). 

 

QTL analysis 

Quality filtering of the SNP markers resulted in 1,269 (22.3%) SNPs selected for 

map construction (Sup Tables 3.3 and 3.4) and QTL analyses. These selected SNPs 

covered a total genetic length of 721.98 cM with an average marker density of 0.57 cM (1 

SNP per 176 kb) and a maximum gap between markers of 10.95 cM (1.43 Mbps) located 

on LG 7 (Sup Table 3.4). 
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Table 3.1 Summary of BT QTLs identified with strong evidence (2lnBF > 5) in multiyear analysis 

(BLUP values) for GDHs and CDs. Bold indicates decisive evidence for a QTL (2lnBF > 10). 

Trait QTL LG1 cM2 

QTL 

peak 

(cM) 

Physical 

position* 

(Mbp) 

Max 

2lnBF 

Average 

2lnBF 

Mean 

Additive 

effect 

PVE 

(%) 

GDH qP-GDH1.1m 1 4-11 8 1.73 - 3.44 9.6 7.1 272 1.6 

qP-GDH1.2m 1 137-139 137 43.28 - 43.54 13.5 11.8 1403 50.1 

qP-GDH2.1m 2 73-75 75 26.96 - 29.68 22.0 22.0 840 12.8 

qP-GDH3.1m 3 37-52 45 9.41 - 15.75 9.4 7.3 290 1.9 

qP-GDH4.1m 4 5-21 13 1.19 - 5.15 8.8 7.1 744 11.9 

qP-GDH5.1m 5 66-71 69 16.42 - 18.10 11.8 9.3 181 0.8 

CD qP-CD1.1m 1 137-139 137 43.28 - 43.54 10.9 9.5 7.4 32.4 

qP-CD2.1m 2 73-75 75 26.96 - 29.68 18.8 18.8 5.9 15.2 

qP-CD4.1m 4 4-23 19 0.92 - 5.44 5.1 4.6 3.6 6.0 
1LG: Linkage group. 2cM: centiMorgan. *: Physical position on Peach Genome v2.0.a1 (Verde et al., 2017) 

 

 

 

QTL analysis using BLUP values of the four years in all the populations revealed 

six significant BT QTLs for GDH and three for CD (Fig 3.3). QTLs for GDH were 

identified on LGs 1, 2, 3, 4 and 5 (Table 3.1; Fig 3.3). For both these traits, QTLs with 

decisive evidences (2lnBF>10), were found on LG1 (qP-GDH1.2m) and LG2 (qP-

GDH2.1m) (Table 3.1). qP-GDH1.2m explained the largest percentage of phenotypic 

variation (PVE; 50.1%) and was associated with a mean additive effect of 1,403 GDH 

(Table 3.1; Fig 3.3). The other decisive QTL, qP-GDH2.1m, had a PVE of 12.8% and an 

additive effect of 840 GDH (Table 3.1). Four additional QTLs with strong evidence 

(2lnBF>5) were detected for GDH on LGs 1, 3, 4 and 5 (Table 3.1; Fig 3.3). From these, 

the QTL on LG4 (qP-GDH4.1m) showed higher PVE (11.9%) while the remaining three, 

showed minor effects (PVE: 1-2%; Table 3.1). For CD, the two QTLs with decisive 

evidence (qP-CD1.1m and qP-CD2.1m) had equivalent positons as those identified for GDH 

(Table 3.1; Fig 3.3). As for GDH, qP-CD1.1m showed a larger PVE (32.4%) and mean 

additive effect (7.4 days) than qP-CD2.1m (15.2% PVE and additive effect of 5.9 days; 

Table 3.1). Also a QTL on LG4 (qP-CD4.1m) with strong evidence was identified that 

spanned the same region as that for GDH (Table 3.1; Fig 3.3). 

In the QTL analyses for individual years, the two major QTLs detected on LGs 1 

and 2 in the 4-year analysis were also detected in every year, with strong or decisive 

evidence, for both CD and GDH (Sup Table 3.5). However, in 2016, two of these QTLs 

(qP-GDH1.2m and qP-CD1.1m) showed lower PVE than other years. Also in 2016, the 

major QTL on LG2 exhibited larger PVE than the QTL on LG1 (Sup Table 3.5). The 
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significance of the minor effect QTLs varied between years, and were located on LGs 3, 

4, 5 and 7 (Sup Table 3.5). The main difference between the 4-year and single year analyses 

were for the QTLs on LG4 using BLUP (qP-GDH4.1m/qP-CD4.1m), as they were only 

detected in 2017. Additionally, in 2016, a GDH QTL on LG7 (qP-GDH7.1) was detected 

that showed a high PVE (12.1%; Sup Table 3.5), but this QTL was not detected in the 4-

year analysis. 

 

 

 

 

Figure 3.3 (a) Posterior probabilities of QTL positions along the genome with a 2 cM bin 

resolution. (b) Trace plot of Markov chain Monte Carlo samples for QTL position. (c) Posterior 

mean (blue dots) and 90% credible region (gray shade) for estimate additive QTL effects for 

chromosomal regions of 2 cM bins with positive evidence (2lnBF10>2) for QTL presence. Vertical 

dashed lines identify the starts and ends of chromosomes. CD: Calendar Days; GDH: Growing 

Degree Hours. 
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Estimation of QTL genotypes and genomic breeding value 

QTL genotype estimation was carried out for QTL regions with either strong or 

decisive evidence using BLUP value (Fig 3.4) for the parental cultivars and the ancestors 

in the collection (Fig 3.1). For the major QTL on LG1 (qP-GDH1.2m/qP-CD1.1m) and LG2 

(qP-GDH2.1m/qP-CD2.1m), ‘Cristobalina’ was predicted to be homozygous for alleles 

associated with early bloom (qq= low phenotype value) for the LG1 QTL and predicted to 

be heterozygous (Qq) for the LG2 QTL (Fig 3.4). ‘BC8’, an offspring from the cross of 

‘Brooks’ and ‘Cristobalina’, was heterozygous for the early bloom allele for the LG1 QTL 

(qP-GDH1.2m/qP-CD1.1m). No other parental cultivar was predicted to have early BT 

alleles for these two QTL, instead the remaining parental cultivars were predicted to be 

homozygous (QQ) for LG1 and LG2 QTL alleles for later BT (Fig 3.4). This indicates that 

‘Cristobalina’ is the only cultivar that contributed early BT alleles for the major QTLs in 

all the plant materials. For the QTL on LG4 (qP-GDH4.1m/qP-CD4.1m), only ‘Rainier’ and 

its offspring ‘Brooks’, were predicted to be heterozygous for early BT alleles. For the QTL 

on LG3, ‘Burlat’, ‘Cristobalina’ and ‘Ambrunés’ were predicted to be homozygous for 

alleles associated with early bloom, while for the QTL on LG5 (qP-GDH5.1m) early bloom 

alleles were predicted to heterozygous in ‘Cristobalina’ and ‘Vic’ (Fig 3.4). 

Differences in the predicted genotypes were used to estimate genome breeding 

value (GBV) of parents and ancestors (Fig 3.4). Differences of as much as 26.8 CD (4,394 

GDH) between the GBV of the earliest and latest blooming cultivar were observed (Fig 

3.4). All but ‘Cristobalina’ had GBV associated with delayed flowering. ‘Cristobalina’ had 

the lowest GVB, due to the relative abundance of alleles predicted to result in earlier 

flowering by 8.9 CD and 1,210 GDH. In contrast, ‘Vic’ and ‘Lambert’ cultivars had the 

GBV most associated with late flowering (17.0 CD/3,050 GDH and 17.9 CD/3,184 GDH, 

respectively; Fig 3.4).  

 

QTL haplotype and genotype analysis 

The estimation of the mean phenotypic values of these QTL haplotypes in the F2 

populations (C×C and B×C2) revealed that for the QTL on LG1 (qP-GDH1.2m/qP-

CD1.1m), those individuals that were homozygous for H1-c, like ‘Cristobalina’ (cc), 

showed the earliest BTs (Fig 3.5). In C×C, this QTL was not segregating and all the 
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progeny were ‘cc’, with a mean BT of 75 CDs (6,729 GDH). In B×C2, this QTL was 

segregating but segregation distortion was observed as no ‘aa’ individuals were identified. 

In the two remaining segregating classes, individuals with the ‘cc’ genotype showed a 

mean difference of almost 7 CDs earlier blooming that those with ‘ac’ genotype (Fig 3.5). 

 

 

 

 

Figure 3.4 Posterior estimates of parental QTL genotype probabilities for GDH (a) and CD (b) in 

QTL regions with strong and decisive QTL evidences (2lnBF>5) for BLUP values. Red, green and 

blue colors represent positive evidence for QTL genotypes QQ, Qq and qq genotypes, respectevely. 

‘Q’ and ‘q’ denote alleles with high and low phenotype values, respectively. Grey colors indicate 

unclear genotype estimation. Genome breeding value (GBV) for each cultivar is indicated at right. 

 

 

 

For the QTL on LG2 (qP-GDH2.1m/qP-CD2.1m), H2-f was associated with early 

flowering. In C×C (‘Cristobalina’; ‘ef’), this QTL segregated in three classes, with 
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offspring that were ‘ef’ and ‘ff’ flowering on average 7 CD (945 GDH) earlier that those 

that were ‘ee’ (Fig 3.5). As no significant differences were observed between these two 

classes, H2-f appeared to be dominant to H2-e (Fig 3.5). B×C2 also segregated in three 

classes for this QTL, but no significant differences were observed among them (Fig 3.5). 

Since H2-f was not inherited in ‘BC8’ (ce), the effect of this haplotype could not be 

investigated in this population. 

The interaction of two major QTLs on LGs 1 and 2 showed that those individuals 

homozygous for H1-c were the earliest to bloom for both populations. Within these, those 

that also had H2-f showed the earliest BT (Fig 3.5). 

In the F1 populations, for the LG1 QTL, ‘ac’ genotypes were always earlier 

blooming (approx. 2 to 3 days that those that are ‘bc’; Sup Fig 2 and 3), indicating that H1-

a was associated with earlier BT compared to H1-b. For the LG2 QTL, genotypes with 

H2-f showed earlier BT (1 to 7 CDs) compared to individuals without it. In addition, 

segregation distortion against H2-f was observed in all the populations, being most evident 

in B×C, as none of the progeny had this haplotype (Sup Fig 2 and 3). The genotype 

interaction of both QTLs in the F1 populations showed that individuals heterozygous for 

H1-a/H2-f, showed earlier BT than those individuals with other genotype combinations 

(Sup Fig 2 and 3). 

 

 

DISCUSSION 

 

‘Cristobalina’, the earliest blooming parental cultivar, has a low CR (176-550 h 

under 7ºC; Tabuenca, 1983; Alburquerque et al., 2008); which is consistent with its native 

origin close to the Mediterranean coast in eastern Spain (Herrero, 1964). Plant’s CR are 

typically correlated to the climate in the area of origin (Abbott et al., 2015). In our 

experimental location, which experiences a higher chilling accumulation, it is likely that 

the early blooming of ‘Cristobalina’ is due to its low CR, as earlier blooming has been 

observed in cultivars with lower CR (Alburquerque et al., 2008; Castède et al., 2014). 

‘Cristobalina’ is also self-compatible (Wünsch and Hormaza, 2004) due to a single 

mutation affecting pollen tube growth (Cachi and Wünsch, 2011; Ono et al., 2018). Natural 

self-compatible mutations are rare in sweet cherry; however, this mutation may be 
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especially beneficial in this low chill cultivar because mating partners with overlapping 

flowering times would be scarce (Cachi et al., 2014). 

The same BT (CD) order, early, mid- and late bloom, of the parental cultivars in 

the four years, independently of the year temperatures, confirms the genetic determination 

of this trait. As previously demonstrated, BT in cherries is a quantitative trait with high 

heritability (Dirlewanger et al., 2012; Castède et al., 2014; Cai et al., 2018). High 

heritability values for this trait were also observed in this work for the four years (0.85 to 

0.96 for CD, 0.89 to 0.96 for GDH), and these values are in the same range as those 

estimated previously for sweet and sour cherry (0.88 to 0.96; Wang et al., 2000; 

Dirlewanger et al., 2012; Castède et al., 2014; Cai et al., 2018; Piaskowski et al., 2018). 

However, BT differences between years are highly dependent on environmental conditions 

and how these conditions impact CR fulfillment. For example, the coldest winters did not 

result in the earliest BT.  

Within the populations, only individuals from F2 populations (C×C and B×C2) 

showed transgressive segregation towards early blooming, whereas F1 populations showed 

transgressive segregation and skewed distribution towards late flowering, revealing 

possible dominance of the late bloom alleles in this plant material. In sweet cherry, skewed 

segregation in F1 populations towards high CR, but not late bloom, was also observed 

(Castède et al., 2014). This was also the case in almond, where Late bloom (Lb) is dominant 

(Ballester et al., 2001), and in Japanese plum and apricot F1 populations from low CR 

cultivars (Campoy et al., 2011; Salazar et al., 2016; Kitamura et al., 2018). However, 

transgressive segregation towards both early and late blooming was observed in peach F2 

populations (Fan et al., 2010; Bielenberg et al., 2015). The effect of (recessive) alleles in 

the homozygous state will be possible to detect in F2 populations (like C×C and B×C2), 

which may explain why transgressive segregation towards early bloom in our plant 

material is only observed in the F2 populations. The extended bloom period observed in 

the larger populations (C×C, V×C) may also have resulted from additional climatic 

variation experienced during this longer BT duration. This effect was also observed by 

Castède et al. (2014). 
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Figure 3.5 BT mean values of CD and GDH for offspring based on the haplotypes for the major 

QTLs detected on LG1 and LG2 individually and the two QTLs together. The offspring are from 

the two F2 populations (C×C and B×C2). Significant differences between genotypes are indicated 

by different letters (P<0.05). 

 

 

 

In this work, BT was evaluated using the variables CD and GDHs for QTL analysis. 

Both are based on the recorded BT of each individual, but differ in that CDs refer only to 

the recorded date while GDHs consider the temperature effect within a range (4.5 to 25 ºC; 

Richardson et al., 1974). As previously reported (Chavoshi et al., 2014), there is a large 

correlation between both parameters, suggesting that both models can be used for genetic 

analysis of BT. As temperature requirements for blooming are similar between years, 

GDHs should provide a more consistent measure of BT, whereas BT expressed as CD 

would be more dependent on the climatic conditions. In fact, QTL mapping results from 

this work were very similar for both variables, but a larger number of QTLs were detected 
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for GDH than for CDs. QTLs detected were more robust (higher Bayes Factor) when using 

GDH than when using CDs, and the same QTLs explained a larger PVE for GDH than for 

CD. Thus, in this work, BT expressed as GDH, provided a better ability to describe the 

genetic variation compared to the same bloom data expressed as CD. 

 

Two major BT QTLs on LG1 (qP-CD1.1m/qP-GDH1.2m) and LG2 (qP-CD2.1m/qP-

GDH2.1m) 

The major QTL identified on LG1 (qP-CD1.1m/qP-GDH1.2m) has been previously 

detected in sweet cherry (Dirlewanger et al., 2012; Castède et al., 2014). However, in these 

works, the variation explained and additive effect of this QTL were lower than observed 

herein. Dirlewanger et al. (2012) first identified the LG1 QTL in ‘Lapins’ with a PVE 

ranging from 9.3 to 17.5% and an additive effect of 2.5 days. Castède et al. (2014) reported 

the same QTL region for two of three years for a ‘Regina’ × ‘Garnet’ population, with 

similar additive effect (1.4 days) and mean PVE (8%). In our work, this QTL represented 

50.1 and 32.4 of PVE and has an additive effect of 1,403 GDH or 7.4 CD. These results 

indicate that BT of our plant material, in our environmental conditions, was determined by 

this QTL in a larger proportion than in earlier works in sweet cherry.  

A CR QTL overlapping with this LG1 BT QTL was also identified in sweet cherry 

(Castède et al., 2014), confirming the correlation between both traits and the relevance of 

CR for BT in the species. This BT and CR QTL has also been described in other Prunus 

species like peach, apricot and almond, as a main QTL controlling these traits (Olukolu et 

al., 2009; Fan et al., 2010; Dirlewanger et al., 2012; Sánchez-Pérez et al., 2012; Salazar et 

al., 2013; Zhebentyayeva et al., 2014; Romeu et al., 2014; Bielenberg et al., 2015). In our 

work, the high significance and effect of this QTL in our work indicates that, in our 

conditions, the BT of the plant material analyzed is probably more dependent on CR than 

other materials analyzed in different environments.  

Candidate genes of the LG1 QTL have been described in peach and sweet cherry 

(Bielenberg et al., 2008; Fan et al., 2010; Castède et al., 2015). The position of this QTL 

overlaps with the region where six DORMANCY ASSOCIATED MADS-box (DAM1-6) 

genes have been identified as major genes controlling CR and BT in peach (Bielenberg et 

al., 2008; Fan et al., 2010). In the evergrowing peach mutant, that lacks response to winter 
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cold, four of these genes are deleted and the other two are not expressed (Bielenberg et al., 

2008). Castède et al. (2015) mapped two of these DAM genes (DAM 5 and 6) within the 

interval of this QTL in ‘Lapins’ sweet cherry. It is likely that the ‘Cristobalina’ alleles of 

these genes are contributing to low CR and early blooming, and the large effect of this 

QTL in the plant material analyzed. ‘Cristobalina’ contributed H1-c for this QTL, which 

was associated with earlier flowering, as BT is earliest (7 days) when H1-c is homozygous, 

as is the case for ‘Cristobalina’ and in all the C×C population. Previously, a large amount 

of homozygosity was observed in ‘Cristobalina’ and therefore also in the self-pollinated 

population (Chapter 2). More specifically, a large homozygous region at the bottom of 

LG1 (26.23 to 47.81 Mbp), overlapping with this BT QTL was observed (Chapter 2). A 

smaller difference (approx. 2 to 3 days) observed between the two remaining haplotypes 

(H1-a, -b) is in agreement with the finding that this QTL was detected at lower PVE in 

other works (Dirlewanger et al., 2012; Castède et al., 2014), where the allele H1-c was 

probably not present. 

The second major QTL was identified on LG2 (qP-CD2.1m/qP-GDH2.1m). This 

QTL also overlaps with a CR and BT QTL previously described in sweet cherry (Castède 

et al., 2014). The PVE and additive effect of this QTL in previous work (3.6-6.5% PVE; 

0.8-2.8 day; Castède et al., 2014) was also lower than observed in our study (12.8-15.2%; 

5.5 CD). This QTL has also been identified in apricot and in the interspecific cross of peach 

and P. davidiana, but explained a lower PVE than herein (Quilot et al., 2004; Olukolu et 

al., 2009; Dirlewanger et al., 2012). SOC1, a MADS-box gene, has been identified as a 

strong candidate gene for CR and BT underlying this QTL in sweet cherry and apricot 

(Trainin et al., 2013; Castède et al., 2015). However, the physical position of this gene 

(Castède et al., 2015) is not within the interval of the QTL detected in this work. Among 

other candidate genes identified in this region in sweet cherry (Castède et al., 2015), only 

the candidate gene, FAR-RED IMPAIRED RESPONSE 1 (FAR1) is within the interval of 

this QTL in our work. FAR1 has been described as a negative regulator of seasonal growth 

and flowering time in Arabidopsis and the loss of function of this gene resulted in plants 

with early flowering (Ritter et al., 2018). Therefore, this gene seems a good candidate gene 

for BT regulation in the genus and further work to characterize this gene in this plant 

material is ongoing. A larger number of haplotypes (10) were detected for this QTL, maybe 

due to the haplotypes being constructed across a larger genomic region, and only H2-f from 
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‘Cristobalina’ was shown to associate with earlier bloom (7 days). As observed for the 

QTL detected on LG1, ‘Cristobalina’ alleles for the underlying genes are likely responsible 

for the higher effect of this QTL in this plant material. 

Segregation distortion was observed for some populations in both major QTLs on 

LGs 1 and 2. Segregation distortion in these genomic regions was previously detected in 

these populations (Chapter 2) and in other Prunus species (Fan et al., 2010; Bielenberg et 

al., 2015). This distortion may be associated with segregation of lethal recessives alleles. 

However, since a relationship between seed and bud dormancy control has been reported 

(Leida et al., 2012; Abbot et al., 2015; Wang et al., 2016), it is possible that differences in 

seed dormancy may have affected seed germination and survival resulting in segregation 

distortion.  

 

Other minor QTLS 

Other QTLs identified by BLUP values in this work are located on LG4, for both 

GDH and CDs, and on LGs 1, 3 and 5 only for GDH. The QTL on LG4 (qP-GDH4.1m, 

qP-GDH4.1m) has also been previously detected in cherries (Dirlewanger et al., 2012; 

Castède et al., 2014; Cai et al., 2018) and other Prunus species (Fan et al., 2010; Sánchez-

Pérez et al., 2012; Zhebentyayeva et al., 2014; Bielenberg et al., 2015; Kitamura et al., 

2018). This QTL has been reported as the major QTL controlling CR and BT (17.5 to 

47.2% PVE) in sweet (Dirlewanger et al., 2012; Castède et al., 2014) and sour cherry (Cai 

et al., 2018), almond (Sanchez-Pérez et al., 2012) and Japanese apricot (Kitamura et al., 

2018). However in our work, this QTL explained a smaller part of the variation (6.0% for 

CD and 11.9% for GDH) (Table 3.1) and was not detected all years. Several works 

indicated that the LG4 QTL had a larger effect on BT of high chill cultivars (Castède et 

al., 2014; Kitamura et al., 2018), while in low chill cultivars, as in this work, the variation 

in BT is more dependent in the QTL on LG1 (Fan et al., 2010; Sanchez-Pérez et al., 2012; 

Zhebentyayeva et al., 2014; Salazar et al., 2016). LG1 candidate genes (DAM1-6) are 

related to CR, and therefore these genes may have a larger contribution to BT of low 

chilling cultivars. In contrast, BT for high CR cultivars may be less dependent on CR, and 

the underlying gene(s) for the LG4 QTL has yet to be determined (Zhebentyayeva et al., 

2014; Castède et al., 2015). 
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For the remaining minor QTLs (qP-GDH1.1m; qP-GDH3.1m, qP-GDH5.1m) 

identified by the BLUP analysis, qP-GDH1.1m and qP-GDH3.1m have also been reported 

previously in sweet cherry with small effects (Dirlewanger et al., 2012; Castède et al., 

2014). However, QTL qP-GDH5.1m, identified herein has not been previously reported in 

any QTL analysis of flowering time in sweet and sour cherries, but it has been described 

in peach (Bielenberg et al., 2015). ‘Cristobalina’ was the only cultivar in this work which 

is heterozygous for this region, and thus the identification of this QTL was probably due 

to the presence of this cultivar, and is probably associated with a rare allele in 

‘Cristobalina’. In general, the major QTLs were more stable and less influenced by the 

environment than minor QTLs that were detected only some years. 

 

Breeding and genome breeding value 

The predicted genotypes for the QTL identified were used to calculate breeding 

value. This estimation for the parental and ancestor cultivars studied offers powerful 

information for breeding with these cultivars. ‘Cristobalina’ can be used for breeding for 

low CR cultivars as this work shows it is the only evaluated cultivar that exhibited early 

flowering due to the presence of early bloom and low chill requirements alleles in the two 

major QTLs affecting these traits. A similar situation was observed in peach (Hernández 

Mora et al., 2017), where the lowest breeding values correlated with early flowering were 

identified in peach landraces. This highlights the benefits of introducing exotic germplasm 

in breeding programs to widen the range of trait variation. Specifically for breeding for 

low CR cultivars with ‘Cristobalina’, selecting for H1-c and H2-f from QTLs 1 and 2, 

respectively, is predicted to result in earlier blooming offspring. However, recovery of both 

haplotypes (H1-c/H2-f) together, may require a large number of progeny, as segregation 

distortion against the earlier haplotype H2-f was observed. At the same time, embryo 

rescue and in vitro embryo culture may be required to obtain low chilling descendants from 

crosses with ‘Cristobalina’ as the maternal parent. 

If breeding for late blooming, allele H1-b rather than H1-a, should be selected for 

the QTL on LG1. As this QTL interval has been much narrowed in this work, and a good 

representation of sweet cherry breeding founders and parental cultivars is included herein, 

this information will also be useful for sweet cherry breeding of other plant material that 

do not include ‘Cristobalina’. For the QTL on LG2, no conclusive evidence of late 
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blooming haplotypes that were sufficiently predictive to be used in breeding 

recommendations were observed for the haplotypes detected in the parental and ancestor 

cultivars. For the QTL on LG4 that had a minor effect in this work, but high effect in other 

plant material with higher CR, selecting in offspring from cultivars such as ‘Rainier’ and 

‘Brooks’, which are heterozygous for early and late bloom alleles in this QTL, would be 

useful for introducing an earlier allele. 

Multi-year analysis of multiple pedigree-linked populations from different genetic 

backgrounds that include material with low chilling requirements, has allowed the 

identification of robust BT QTLs that explain this highly heritable trait. BT is an essential 

component of cultivar adaptation to low-chill growing conditions and this trait is currently 

of high interest to breeders to extend sweet cherry growing to warmer areas. The analysis 

of F2 populations, possible with ‘Cristobalina’, was instrumental to characterizing the 

haplotype effects of these QTLs. The identification of the low-chill haplotypes of these 

QTLs will be useful to enable marker-assisted breeding for this trait. The discovery of the 

major QTL on LG1 is consistent with the DAM gene(s) as the CR determinant in Prunus, 

and further suggests that ‘Cristobalina’ is homozygous for a unique early mutant of one or 

more of the DAM genes. 
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Supplementary Table 3.1 a) Bloom time (BT) of parental cultivars in calendar days (CD) and growing degree hours (GDH) per year. 

b) BT mean, standard deviation (SD), minimum (Min) and maximum (Max) values, and number of individuals phenotyped each year 

(N), per year and family. Broad-sense heritability (H2) of each family for the 4 years. 

a) 

 ‘Ambrunés’ ‘BC8’ ‘Brooks’ ‘Cristobalina’ ‘Lambert’ ‘Vic’ 

CD GDH CD GDH CD GDH CD GDH CD GDH CD GDH 

2015 92 8748 96 9601 92 8748 74 5902 101 10546 97 9783 

2016 92 9909 - - 92 9909 58 5936 103 11810 99 11094 

2017 76 7572 - - 78 7931 64 5279 85 8851 82 8590 

2018 94 9201 - - 98 10067 78 6837 101 10394 101 10394 

 

b) 

    
A×C B×C B×C2 C×C L×C V×C 

CD GDH CD GDH CD GDH CD GDH CD GDH CD GDH 

2015 

Mean ± SD 92.2±3.7 8769±787 93.6±3.9 9072±816 88.4±4.5 8016±894 78.0±4.4 6366±514 94.0±3.2 9178±689 92.0±3.5 8742±765 

Min 87 7576 84 7050 80 6629 71 5485 88 7815 85 7131 

Max 99 10107 100 10312 96 9601 87 7576 97 9783 102 10786 

N 36   24   28   81   13   76   

2016 

Mean ± SD 89.1±3.2 9384±583 88.9±3.3 9343±609 90.8±4.5 9681±826 71.2±8.7 7088±765 93.4±3.6 10137±621 94.4±4.0 10318±687 

Min 82 8116 83 8255 83 8255 60 6065 88 9190 87 9033 

Max 95 10450 96 10609 98 10959 84 8410 100 11216 105 12208 

N 30   21   28   84   14   76   

2017 

Mean ± SD 76.4±2.4 7657±419 74.5±2.6 7323±443 75.5±4.2 7493±755 67.4±2.7 5952±544 79.1±3.1 8101±488 78.5±2.4 8015±411 

Min 71 6782 70 6500 68 6053 62 5081 75 7404 73 7084 

Max 82 8590 80 8335 83 8672 74 7244 85 8851 87 9176 

N 39   24   45   90   14   141   

2018 

Mean ± SD 92.4±3.5 8907±682 91.6±2.3 7689±438 94.4±4.7 9286±881 83.6±4.6 7437±587 94.9±3.2 9377±642 95.5±2.5 9506±499 

Min 87 7823 87 7823 86 7613 73 6326 89 8277 89 8277 

Max 99 10179 94 9201 104 10787 93 8903 100 10304 104 10787 

N 39   21   50   91   14   152   

 H2 0.90 0.91 0.85 0.87 0.96 0.96 0.95 0.89 0.96 0.96 0.91 0.91 
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Supplementary Table 3.2 Pearson correlation coefficients of BT among years (2015 to 2018) and BLUP values, in CD and GDH. 

 CD 15 CD 16 CD 17 CD 18 CD BLUP GDH 15 GDH 16 GDH 17 GDH 18 GDH BLUP 

CD 15 1 0.934* 0.904* 0.897* 0.962* 0.989* 0.940* 0.909* 0.891* 0.963* 

CD 16  1 0.916* 0.948* 0.984* 0.904* 0.984* 0.925* 0.930* 0.965* 

CD 17   1 0.938* 0.955* 0.895* 0.935* 0.997* 0.945* 0.968* 

CD 18    1 0.966* 0.876* 0.945* 0.942* 0.989* 0.965* 

CD BLUP     1 0.941* 0.982* 0.961* 0.955* 0.992* 

GDH 15      1 0.928* 0.895* 0.882* 0.957* 

GDH 16       1 0.937* 0.945* 0.983* 

GDH 17        1 0.946* 0.971* 

GDH 18         1 0.968* 

GDH BLUP          1 

* indicates significant correlation at P<0.01. 
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Supplementary Table 3.3 Number of polymorphic SNPs mapped per progeny and used 

for QTL analysis. 

 A×C B×C B×C2 C×C L×C V×C Total 

Chr 1 231 216 135 85 211 257 307 

Chr 2 131 126 71 99 141 140 156 

Chr 3 77 97 57 56 85 79 130 

Chr 4 95 107 55 72 95 98 137 

Chr 5 66 72 47 50 53 93 128 

Chr 6 86 97 61 59 102 110 137 

Chr 7 69 43 48 7 50 62 131 

Chr 8 88 75 50 44 86 74 143 

WG* 843 833 524 472 823 913 1269 
*WG: Whole Genome

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Table 3.4 Genetic map used for QTL analysis. 

Document available online at http://hdl.handle.net/10532/4737. (Chapter 3 – 

Supplementary Table 4.xlsx). 

http://hdl.handle.net/10532/4737
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Supplementary Table 3.5 Blooming time QTLs identified with strong evidence (2lnBF > 

5) in single years for growing degree hours (GDH) and calendar days (CD). Bold indicates 

decisive evidence for a QTL (2lnBF > 10). 

Trait Year QTL LG1 cM2 

QTL 

peak 

(cM) 

Physical 

position* 

(Mbp) 

Max 

2lnBF 

Average 

2lnBF 

Mean 

Additive 

effect 

PVE 

(%) 

GDH 2015 qP-GDH1.2m 1 137-141 139 42.28-43.99 12.2 10.1 1488 61.1 

2015 qP-GDH2.1m 2 73-75 75 26.96-29.68 14.5 11.6 760 9.9 

2015 qP-GDH3.1m 3 39-51 47 10.02-15.76 8.7 7.4 534 5.9 

2016 qP-GDH1.2m 1 137-149 149 42.28-46.59 7.4 6.0 581 8.9 

2016 qP-GDH2.1m 2 73-75 75 26.96-29.68 20.6 20.6 956 14.3 

2016 qP-GDH3.2 3 5-11 11 21.19-36.04 6.1 5.7 776 8.7 

2016 qP-GDH4.2 4 53-57 55 11.47-13.03 5.9 5.8 621 2.1 

2016 qP-GDH7.1 7 51-57 51 17.29-18.88 5.3 5.2 1106 12.1 

2017 qP-GDH1.2m 1 135-139 137 43.06-43.54 12.9 9.5 1302 66.6 

2017 qP-GDH2.1m 2 73-75 75 26.96-29.68 18.6 11.4 571 11.5 

2017 qP-GDH4.1m 4 11-21 15 2.56-5.23 6.6 5.7 545 4.3 

2017 qP-GDH4.3 4 37-49 41 7.70-10.24 8.8 7.3 346 5.6 

2017 qP-GDH5.1m 5 57-69 57 13.62-17.15 8.9 7.0 170 1.2 

2017 qP-GDH7.1 7 45-57 51 16.68-17.45 7.8 6.7 205 1.6 

2018 qP-GDH1.1m 1 5-11 7 1.95-3.46 7.6 9.4 305 2.2 

2018 qP-GDH1.2m 1 131-137 135 42.50-43.28 11.1 8.9 1453 57.9 

2018 qP-GDH2.1m 2 73-75 75 26.96-29.68 18.0 11.2 743 14.3 

2018 qP-GDH4.3 4 31-41 37 6.71-8.99 7.5 6.8 566 5.2 

2018 qP-GDH5.1m 5 67-71 69 16.78-18.41 12.1 10.0 249 2.1 

2018 qP-GDH7.1 7 39-53 47 15.34-17.45 7.0 6.0 213 1.1 

CD 2015 qP-CD1.1m 1 137-141 139 43.28-44.09 12.2 9.8 9.6 57.6 

2015 qP-CD2.1m 2 73-75 75 26.96-29.68 19.6 11.8 5.1 15.0 

2016 qP-CD1.1m 1 137-147 139 43.28-46.10 9.6 7.3 7.3 14.2 

2016 qP-CD2.1m 2 73-75 75 26.96-29.68 32.8 32.7 10.8 23.0 

2016 qP-CD7.1 7 55-61 57 17.40-18.88 5.7 5.4 6.6 3.9 

2017 qP-CD1.1m 1 133-139 137 42.77-43.53 12.3 9.0 7.3 25.6 

2017 qP-CD2.1m 2 73-75 75 26.96-29.68 16.7 11.6 3.0 15.7 

2017 qP-CD4.2 4 31-49 39 6.71-10.24 8.4 6.5 2.7 4.1 

2017 qP-CD5.1m 5 54-71 69 13.08-18.41 9.0 6.3 1.0 0.4 

2017 qP-CD7.1 7 39-61 51 15.34-18.88 6.8 5.9 1.1 1.4 

2018 qP-CD1.2 1 5-21 7 2.11-6.42 9.6 6.1 1.6 2.4 

2018 qP-CD1.1m 1 133-139 135 42.77-46.10 10.6 9.1 7.6 60.9 

2018 qP-CD2.1m 2 73-75 75 26.96-29.68 19.4 19.4 5.5 23 

2018 qP-CD4.2 4 33-37 35 6.82-7.83 6.3 5.9 3.1 3.2 

2018 qP-CD5.1m 5 67-71 69 16.78-18.41 12.1 10.2 1.4 2.5 

2018 qP-CD7.1 7 37-57 51 14.84-18.16 7.1 6.1 1.3 1.5 
1LG: Linkage group. 2cM: centiMorgan. *: Physical position on Peach Genome v2.0.a1 (Verde et al. 2017)
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Supplementary Table 3.6 QTLs (qP-GDH1.2m/qP-CD1.1m and qP-GDH2.1m/qP-CD1.2m) haplotypes in parental cultivars and ancestors.  

  Haplotypes 

QTL SNP 

'Ambrunés' 'BC8' 'Bing' 'Brooks' 'Burlat' 'Cristobalina' 'Lambert' 'Napoleon' 'Rainier' 'Van' 'Vic' 

H1-a H1-b H1-a H1-c H1-a H1-a H1-a H1-a H1-b H1-a H1-c H1-c H1-b H1-a H1-a H1-b H1-a H1-a H1-a H1-b H1-a H1-b 

qP-

GDH1.2m / 

qP-CD1.1m 

ss490548667 A B A B A A A A B A B B B A A B A A A B A B 

ss490546979 B B B A B B B B B B A A B B B B B B B B B B 

ss490548655 B A B B B B B B A B B B A B B A B B B A B A 

ss490548643 B B B A B B B B B B A A B B B B B B B B B B 

                        

                        

                        

  Haplotypes 

QTL SNP 

'Ambrunés' 'BC8' 'Bing' 'Brooks' 'Burlat' 'Cristobalina' 'Lambert' 'Napoleon' 'Rainier' 'Van' 'Vic' 

H2-g H2-a H2-c H2-e H2-b H2-d H2-d H2-c H2-b H2-c H2-e H2-f H2-i H2-d H2-d H2-k H2-a H2-d H2-a H2-d H2-b H2-h 

qP-

GDH2.1m / 

qP-CD1.1m 

ss490559076 B B B B B A A B B B B B B A A B B A B A B B 

ss490550443 A A A A A B B A A A A B A B B A A B A B A B 

ss490550465 A A A A B A A A B A A A A A A B A A A A B A 

ss490550493 B A B B A B B B A B B B B B B A A B A B A B 

ss490550497 B B B B B A A B B B B B B A A B B A B A B B 

ss490550501 B A B B A B B B A B B B B B B A A B A B A B 

ss490550517 B B B A B B B B B B A B B B B B B B B B B B 

ss490550521 A B A A B A A A B A A A B A A B B A B A B B 

ss490550529 A B B A B B B B B B A B A B B B B B B B B A 

ss490550577 A B A A B B B A B A A A B B B B B B B B B B 

ss490550588 B B B B B A A B B B B B B A A A B A B A B B 

ss490550626 B A B B B A A B B B B B B A A A A A A A B B 

ss490550731 B B B B B A A B B B B B B A A A B A B A B B 

ss490547648 B A B B A A A B A B B B A A A A A A A A A A 
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Supplementary Fig 3.1 Accumulated winter chilling (hours below 7 ºC1), and bloom dates 

of parental cultivars during the four years of analysis. ‘Ambrunés’ (A), ‘Brooks’ (B), 

‘Cristobalina’ (C), ‘Lambert’ (L), ‘Vic’ (V) and ‘BC-08’ (BC8). 1Data from: ‘Estación 34-

Montañana’, ‘Datos Meteorológicos’, ‘Oficina del Regante’, ‘Sociedad Aragonesa de 

Gestión Agroambiental (Sarga)’, ‘Gobierno de Aragón’. 

http://aplicaciones.aragon.es/oresa/datosMeteorologicos. inicio.do?sm= 2060

http://aplicaciones.aragon.es/oresa/datosMeteorologicos.%20inicio.do?sm=%202060
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Supplementary Fig 3.2 BT (in CDs) mean genotype values of major QTLs detected and 

their interaction (qP-CD1.1m, qP-CD2.1m and both) in segregating classes of F1 

populations analysed. Significant differences between genotypes are indicated by different 

letters (P<0.05). 
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Supplementary Fig 3.3 BT (in GDHs) mean genotype values of major QTLs detected and 

their interaction (qP-GDH1.2m, qP-GDH2.1m and both) in segregating classes of F1 

populations analysed. Significant differences between genotypes are indicated by different 

letters (P<0.05).  
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INTRODUCTION 

 

 Adequate blooming and pollination are essential for fruit set in sweet cherry 

(Prunus avium L.) and other fruit tree species. Temperate climate fruit trees such as sweet 

cherry go through a dormancy period in which meristem growth is inactive (Lang et al., 

1987; Rohde and Bhalerao, 2007). This occurs before the blooming season to prevent 

winter damage due to frost and low temperatures. Dormancy is divided into three stages: 

paradormancy and endodormancy, in which bud growth is inhibited during autumn and 

winter seasons, and ecodormancy, in which bud growth is resumed under favorable 

climatic conditions in late winter and early spring (Lang et al., 1987). The length of the 

dormant period is dependent on the environmental temperatures since determined amounts 

of chill and heat [Chilling Requirements (CR) and Heat Requirements (HR)] are needed to 

complete endodormancy and ecodormancy before bud burst (Cooke et al., 2012). These 

requirements are specific of each genotype and vary depending on the environmental 

conditions (Alburquerque et al., 2008). Both CR and HR have influence in blooming, 

however several studies in Prunus species have reported that CR is the major determinant 

of bloom time (BT) (Alburquerque et al., 2008; Fan et al., 2010; Campoy et al., 2011; 

Castède et al., 2014). 

Dormancy release, CR and BT are relevant traits for cultivar adaptation to the 

growing area and to ensure an adequate fruit set. Blooming at the correct time will avoid 

spring frosts in cold regions and will ensure pollination by overlapping BT with other 

cultivars. Cultivars with low CR will be useful to adapt to temperature rise in the actual 

climate change context, and can be used to extend cultivation to warmer areas; whereas in 

cold regions, cultivars with high CR should be more adapted. Several works have 

investigated the physiology and the genetics of these traits in sweet cherry and other fruit 

tree species (reviewed in Abbott et al., 2015; and Fadón and Rodrigo, 2018). In sweet 

cherry, genetic analysis have revealed that BT is a quantitative trait with very high 

heritability (Dirlewanger et al., 2012; Castède et al., 2014; Chapter 3). In this species, 

major quantitative trait loci (QTLs) associated to this trait have been identified on linkage 

group (LG) 4 (Dirlewanger et al., 2012; Castède et al., 2014), and LGs 1 and 2 (Chapter 

3). In other Prunus species, like almond (Prunus amygdalus L.), peach [Prunus persica 

(L). Batsch] and Japanese apricot (Prunus mume L.), main BT QTLs have also been 
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mapped on the orthologous regions of LG1 (Fan et al., 2010; Zhebentyayeva et al., 2014; 

Bielenberg et al., 2015) and LG4 (Sánchez-Pérez et al., 2012; Dirlewanger et al., 2012; 

Kitamura et al., 2018). In the same region of LG1 stable and significant QTLs associated 

to CR in almond, peach and sweet cherry have also been detected (Fan et al., 2010; 

Sánchez-Pérez et al., 2012; Castède et al., 2014; Bielenberg et al., 2015). This LG1 QTL 

region overlaps with a deleted region identified in the evergrowing (EVG) peach mutant, 

which is a genotype that does not enter dormancy (Rodriguez et al., 1994). In this deleted 

region, a tandem repeat of six MADS-box genes, named dormancy-associated MADS-box 

(DAM) were identified (Bielenberg et al., 2008), reveling the potential involvement of 

these genes in dormancy control of Prunus species. In sweet cherry, DAM5 and -6 have 

also been mapped on LG1, overlapping with the main BT and CR QTL of this LG (Castède 

et al., 2014 and 2015). In other Rosaceous species, like apple and pear, a variable number 

of DAM gene have also been reported (Saito et al., 2013; Mimida et al., 2015), some of 

them overlapping with regions in which BT QTLs were found (Allard et al., 2016).  

In different plant species, MADS-box transcription factors have been reported as 

strong candidate genes for the genetic control of blooming and temperature responses 

(Gramzow and Theissen, 2010). MADS-box genes play fundamental roles in pathways 

involved in the transition from vegetative to reproductive phases, growth, floral organ 

determination and other processes related to root, leaf, fruit and gametophyte development 

(Messenguy and Dubois, 2003; Becker and Theissen, 2003; Smaczniak et al., 2012). The 

DAM genes reported in peach and Japanese apricot belong to MIKCc Type II of MADS-

box and are phylogenetically related to Arabidopsis SHORT VEGETATIVE PHASE (SVP) 

and AGAMOUS-LIKE 24 (AGL24) genes, which have been reported as main floral 

regulators (Jiménez et al., 2009; Sasaki et al., 2011). Analysis of DAM genes expression 

levels in these species have shown similar pattern in different years and correlation with 

photoperiod and temperatures changes (Falavigna et al., 2019), suggesting that these genes 

are main regulators of the dormancy cycle in Prunus species (Yamane, 2014). Maximum 

expression levels of DAM1 to -4 were observed during bud set suggesting a role in the 

regulation of growth cessation and bud formation in peach and Japanese apricot (Li et al., 

2009; Sasaki et al., 2011; Zhang et al., 2018). On the other side, DAM5 and -6 showed the 

highest expression level in winter season during induction and maintenance of dormancy 

and minimal or absent expression during the budbreak and BT (Jiménez et al., 2010; 
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Yamane et al., 2011; Leida et al., 2012). Therefore, down-regulation of DAM5 and -6 

during winter season, with minimum expression level when CRs are fulfilled, is 

compatible with the role of dormancy release repressor of DAM genes in Prunus species 

(Sasaki et al., 2011). Epigenetic modification and the evolution of transcript levels during 

dormancy were evaluated for DAM3 and -5 in the sweet cherry cultivar ‘Bing’ (Rothkegel 

et al., 2017), revealing the involvement of siRNAs and DNA methylations in the silencing 

of DAM3 during chilling accumulation and dormancy release. 

In Chapter 3, BT in sweet cherry was evaluated using a multi-family QTL approach 

that included populations of parental cultivars from very low to high CRs, and data from 

four years. The populations used derive from self- and cross-pollinations of ‘Cristobalina’, 

a cultivar with very low CR (<550 h) and extra-early flowering and maturity dates 

(Tabuenca, 1983; Alburquerque et al., 2008; Chapter 3). BT QTL analysis revealed that 

the highest percentage of phenotypic variation was explained by QTLs on LGs 1 (qP-

CD1.1m/qP-GDH1.2m) and 2 (qP-CD2.1m/qP-GDH2.1m). The QTL detected on LG1 

overlaps with a CR QTL previously reported on Prunus LG1 (Fan et al., 2010; Sánchez-

Pérez et al., 2012; Castède et al., 2014; Bielenberg et al., 2015) and with DAM genes 

mapped in this region in sweet cherry, Japanese apricot and peach (Bielenberg et al., 2008; 

Sasaki et al., 2011; Castède et al., 2015). Moreover, haplotype analysis of this QTL showed 

that ‘Cristobalina’ was the only cultivar with alleles contributing to early blooming in the 

plant material evaluated (Chapter 3). Since early blooming in this plant material is believed 

to be due to low CR in ‘Cristobalina’, candidate genes for these QTLs may be involved in 

CR control. Following with those results, the objective of this work is to investigate 

candidate genes in the main BT QTL detected on LG1, qP-CD1.1m/qP-GDH1.2m, 

including DAM genes, in ‘Cristobalina’ and in other medium-late blooming cultivars with 

the aim of identifying polymorphisms that may be associated with low CR and early 

blooming of ‘Cristobalina’. These results may help understanding genetic dormancy 

regulation and developing markers for assisted selection of this trait in sweet cherry. 
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MATERIALS AND METHODS 

  

Candidate genes identification 

The coding DNA sequences of predicted genes within a region of 326,596 bp 

(Chr01_49296241:49622837) were extracted from ‘Regina’ sweet cherry genome (Le 

Dantec et al., 2019). This region spans the main BT QTL (qP-GDH1.2m/qP-CD1.1m), 

identified in low and high chilling sweet cherry plant material (Chapter 3). The 

corresponding protein sequences of the predicted genes were blasted against the National 

Center for Biotechnology Information (NCBI) non-redundant protein sequences (nr) 

database using BLASTP algorithm to obtain the respective gene ontologies. For each gene, 

we searched for bibliographic evidences (annotation and predicted function) that led to any 

information associated with their potential involvement in BT and chilling requirements.  

Validation of the structural annotation was performed using BLAST analysis and 

motif detection. The assigned name to predicted genes in the ‘Regina’ sweet cherry 

genome followed the nomenclature PAV0x_gy; where x corresponded to chromosome 

number and y to gene number in chromosome. The first predicted gene in chromosome 1 

was named as PAV01_g0000001, second as PAV01_g0000011, third as 

PAV01_g0000021, and so on. 

 

Phylogenetic analysis 

 Evolutionary analyses of sweet cherry, peach and Japanese apricot dormancy-

associated MADS-box genes (DAM1 to 6) were conducted using MEGA X (Kumar et al., 

2018). Sweet cherry DAM genes sequences were obtained from ‘Regina’ sweet cherry 

genome and a GFF (General File Format) annotation file containing the exon-intron 

structure of these genes (Le Dantec et al., 2019). These files were uploaded into the 

Integrative Genomics Viewers (IGV) software (Thorvaldsdóttir et al., 2012) to double-

check structure with their ortholog genes in peach genome v2.0.a1 (Verde et al., 2017).  

Manual sequence editing was done to correct the automatic annotation if needed, 

conserving an adequate intron splicing prediction. Nucleotide sequences of peach 

(ABJ96361, ABJ96363, ABJ96364, ABJ96358, ABJ96359, ABJ96360) and Japanese 

apricot (BAK78921, BAK78922, BAK78923, BAK78924, BAK78920, BAH22477) DAM 
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genes used for the phylogenetic analysis were retrieved from NCBI GenBank. Multiple 

sequence alignment was carried out prior to tree construction using MUSCLE algorithm 

(Edgar, 2004). The evolutionary history was inferred by using the Maximum Likelihood 

method and Tamura-Nei model (Tamura and Nei, 1993). Phylogenetic analysis were 

estimated using a bootstrap value of 1000, and the tree with the highest log likelihood was 

selected. Heuristic search for initial tree was automatically obtained by using Neighbor-

Join and BioNJ algorithms to a matrix of pairwise distances estimated by the Maximum 

Composite Likelihood (MCL) approach, and then the topology with superior log likelihood 

value was selected.  

  

Cultivar sequence reads mapping on the reference genome 

Sequences of 13 sweet cherry cultivars from different origins (‘Ambrunés’, 

‘Brooks’, ‘Cristobalina’, ‘Ferrovia’, ‘Hedelfingen’, ‘Lambert’, ‘Napoleon’, ‘Rainier’, 

‘Sam’, ‘Satonishiki’, ‘Sue’, ‘Summit’ and ‘Vic’) were used for sequence alignment. 

Genomic DNA-seq libraries (100 bp or 150 bp paired-end reads) of these cultivars, 

previously generated using the Illumina HiSeq 2500 and 4000 systems (Ono et al., 2018), 

were downloaded from DNA Data Bank of Japan (DDBJ; project number PRJDB6734). 

Genome alignment was done using the Galaxy software framework (Afgan et al., 2018). 

Raw sequence data was processed using SLIDINGWINDOW operation from 

Trimmomatic v0.36.6 (Bolger et al., 2014) to remove adapter sequences and to obtain clean 

sequence data. A FASTQ file for each cultivar containing clean reads was aligned to 

‘Regina’ sweet cherry genome (Le Dantec et al., 2019). Whole sweet cherry genome was 

targeted for alignment using Bowtie 2 tool (Langmead and Salzberg, 2012) with default 

parameters. The consensus sequence of each cultivar was extracted from Binary Alignment 

Map (BAM) file using Geneious 11.1.5 software (Biomatters Ltd, Auckland, NZ). 

A target region of 69,179 bp in ‘Regina’ cultivar spanning the PavDAM genes 

(1,500 bp upstream from PavDAM1 start codon and 1,500 bp downstream from PavDAM6 

stop codon) was considered for cultivar comparison. The full-length amino acid sequence 

of six DAM genes from the aligned cultivars and reference genome (‘Regina’) were 

deduced and compared. Multiple amino acid sequence alignment was done using ClustalW 

algorithm implemented in Geneious 11.1.5 software (Biomatters Ltd, Auckland, NZ). The 
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percentage of identity between DAM genes of each cultivar was calculated as the 

percentage of identical amino acids between each pair of cultivars. 

 

Promoter analysis 

 Genomic DNA from sweet cherry cultivars used for sequence alignment (13) and 

from ‘Regina’ was extracted from young leaves. Leaf samples were collected from trees 

belonging to CITA de Aragón sweet cherry germplasm and cultivar collection in Zaragoza 

(Spain). Genomic DNA extraction was carried out using DNeasy Plant Mini kit (Qiagen, 

MD, USA), and quantity and quality of extracted DNA was quantified using NanoDrop 

ND-1000 spectrophotometer (Thermo Scientific, DE, USA). Primers flanking a putative 

deletion in the promoter region of ‘Cristobalina’ sweet cherry DAM genes (DPD; DAM 

Promoter Deletion), were designed on conserved regions based on multiple cultivar 

alignment for this region. PCR amplification with these primers; DPDf (5’ to 3’: 

CCATCTCTCTCCCATCTCGT) and DPDr (5’ to 3’: TGCAGGCAAGTTGTCAATCT), 

was carried out for all the cultivars studied. PCR was carried out in a total volume of 20 

µL as described in Cachi and Wünsch (2014). The PCR was completed using the following 

program: 4 min at 94ºC; 35 cycles of 45 sec at 94ºC, 45 sec 57ºC and 2 min at 72ºC; and a 

final step of 7 min at 72ºC. PCR products were analyzed by agarose gel electrophoresis in 

1.7% TBE and stained with GelRed® Nucleic Acid Stain (Biotium, CA, USA). 

Sanger sequencing of ‘Cristobalina’ and ‘Regina’ PCR products of amplification 

with DPDf/DPDr primers was carried out. PCR reactions were performed in a final volume 

of 30 µL, with the same concentrations as described above. Ten µL of the PCR reactions 

were visualized in an agarose gel to confirm amplification, and the remaining 20 µL were 

purified and sequenced by STAB VIDA (Lisbon, Portugal). Sequencing of PCR products 

of each cultivar (‘Regina’ and ‘Cristobalina’) was repeated three times with each primer 

(DPDf and DPDr). Sequences from each PCR reaction were analyzed using Geneious 

11.1.5 (Biomatters Ltd, Auckland, NZ). All sequences were trimmed to eliminate low 

quality reading regions, and sequences from each cultivar were aligned to construct the 

consensus PCR fragment sequence of each cultivar. The ‘Cristobalina’ and ‘Regina’ 

sequences obtained were then aligned for comparison. All sequence visualizing, editing 

and alignments were carried out using Geneious 11.1.5 (Biomatters Ltd, Auckland, NZ). 
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PavDAM promoter deletion (DPD) analysis in a segregating population 

Sixty-four individuals of the F2 population B×C2 were genotyped with DPDf/DPDr 

primers. This family derives from the self-pollination of the selection ‘BC8’ (‘Brooks’ × 

‘Cristobalina’) and is expected to segregate for the DAM gene promoter deletion (DPD) 

detected in ‘Cristobalina’. Genomic DNA of each individual and the parental cultivar 

(‘BC8’) was extracted from young leaves using DNeasy Plant Mini kit (Qiagen, MD, 

USA). B×C2 genotyping with DPDf/DPDr primers was carried by PCR and agarose gel 

electrophoresis as described above. Deviation of marker segregation from expected 

Mendelian segregation was evaluated by Chi-square goodness-of-fit (χ2). Mean phenotypic 

BT value of the DPD segregating classes were compared with those in the main BT QTL 

(qP-GDH1.2m/qP-CD1.1m; Chapter 3) using Student’s T test. Statistical analysis were done 

using SPSS statistics v21.0.0 software (IMB, IL, USA). 

 

 

 

 

Figure 3.1 Caracterization of sweet cherry PavDAM genes. a) Shematic overview of intron-exon 

structure of MADs-box genes and M, I, K and C domains. b) Position of PavDAM genes in the 

sweet cherry genome. c) Distribution of exons (blue boxes) and introns in the six PavDAM genes 

in ‘Regina’ sweet cherry genome. 

 



Chapter 4 

92 
 

RESULTS 

 

Candidate gene identification 

 In order to identify potential candidate genes for BT and CR, we performed 

functional analysis in the genomic region of LG1 corresponding to the BT QTL qP-

CD1.1m/qP-GDH1.2m (Chapter 3). This region is located between bps 49,296,241 and 

49,622,837 of chromosome 1 in ‘Regina’ sweet cherry genome sequence (Le Dantec et al., 

2019). Forty-seven predicted genes (Sup Table 3.1) were retrieved from this sequence. 

From these, 7 (14.9%) deduced amino acid sequences had BLAST hits in the NCBI gene 

database with uncharacterized proteins and 6 (12.8%) had no significant similarity with 

any other sequences (Sup Table 3.1). For the rest of predicted genes (34; 72.3%), diverse 

amino acid sequences involved in different pathways were detected. Amongst them, 8 

consecutive protein sequences were the most relevant. They were localized very close to 

the QTL peak and correspond to genes sequentially annotated as PAV01_g0075081, 

PAV01_g0075091, PAV01_g0075101, PAV01_g0075111, PAV01_g0075121, 

PAV01_g0075131, PAV01_g0075141 and PAV01_g0075151 (Sup Table 3.1). Using 

blastx, these genes matched to MADS-box proteins (query covering ranging from 51 to 

99%), with percentages of similarity ranging from 86 to 100% (Sup Table 3.1). Due to 

their genetic similarity with type II SVP subclass of MADS-box proteins sequences, these 

8 sequences may correspond to DAM genes in sweet cherry (PavDAM) and are therefore 

strong candidate genes for CR and BT regulation in this QTL region. 

 

PavDAM genes structural annotation and phylogenetic analysis 

Sequence inspection and MADS-box motif search in the eight candidate genes 

retrieved revealed incorrect annotation of the initial gene models when compared to peach 

gene models. Also, the expected presence and structure of MADS-box domains was not 

complete. Of the eight selected gene sequences, only in two of them, PAV1_g0075081 and 

PAV1_g0075151, the predicted proteins contained the domains MADS (M), Intervening 

(I), Keratin-like (K) and C-terminal (C) characteristics of type II MADS-box genes (Fig 

3.1a). In another gene sequence, PAV01_g0075091, exon 3 was not annotated, and in 

PAV01_g0075121, two additional exons before the M domain were present. Similarly, 
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PAV01_g0075101 and PAV01_g0075111 were automatically annotated as two different 

MADS-box, although domain structure revealed that both sequences were two separated 

fragments of same MADS-box protein. The same was observed for PAV01_g0075131 and 

PAV01_g0075141 sequences, which correspond to the same MADS-box gene, but had 

been automatically annotated as two different gene sequences. 

 

 

 

 

Figure 3.2 Maximum likelihood phylogenetic tree of nucleotide DAM sequences of sweet cherry 

(PavDAM1, PavDAM2, PavDAM3, PavDAM4, PavDAM5 and PavDAM6) and its orthologues in 

Japanese apricot (PmuDAM1, PmuDAM2, PmuDAM3, PmuDAM4, PmuDAM5 and PmuDAM6) 

and peach (PpeDAM1, PpeDAM2, PpeDAM3, PpeDAM4, PpeDAM5 and PpeDAM6). The 

numbers at branch nodes indicate percentage of bootstrap support at 1000 replicates.  

 

 

 

The corrected annotation of the retrieved sequences revealed six MADS-box genes 

instead of the eight automatically predicted in the ‘Regina’ sweet cherry genome (Sup 

Table 3.2), which is the same number of DAM genes reported in peach and Japanese 

apricot. Thus, the six MADS-box sequences were identified as PAV1_g0075081, 

PAV1_g0075091, PAV1_g0075101, PAV1_g0075121, PAV1_g0075131 and 
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PAV1_g0075151, named in this work from PavDAM1 to -6, respectively (Fig 3.1; Sup 

Table 3.2). These genes are tandemly located in the ‘Regina’ sweet cherry genome (Chr01_ 

49458239:49524418 bp) with a gap of 12,035 bp between PavDAM2 and -3 (Fig 3.1b). 

Gene structure analysis of the 6 genes revealed an identical structure of 8 exons and 7 

introns in each gene, as well as, the conserved M, I, K and C domains (Fig 3.1c). Genomic 

gene length ranged from 6536 (PavDAM6) to 9794 nt (PavDAM3), whereas the predicted 

genes coding regions ranged from 667 (PavDAM4) to 730 (PavDAM5) nt, with variable 

intron size for the six sequences and conserved exon sizes (Fig 3.1c). 

A phylogenetic analysis of peach, Japanese apricot (Bielenberg et al., 2008; Sasaki 

et al., 2011) and the sweet cherry (this work) DAM genes was carried out using maximum 

likelihood of the gene coding sequences (Fig 3.2). Orthologue DAM genes (DAM1 to 

DAM6) of the three species clustered together with a high bootstrap value (99; Fig 3.2). 

Within these sub-clades, in all cases, peach and Japanese apricot DAM genes were 

phylogenetically closer to each other than to sweet cherry DAM genes (Fig 3.2). 

Additionally, two major clades of DAM orthologs were observed, one includes DAM1, -2 

and -3; and the other includes DAM4, -5 and 6, suggesting a common ancestor for each of 

them (Fig 3.2). Within these clades, DAM1, and -2 were closer to each other than to DAM3, 

and -4, and -6 were closer to each other than to DAM5.  

 

Cultivar PavDAM sequence mapping and similarity 

The whole sweet cherry genome (Le Dantec et al., 2019) was used for mapping the 

sequence reads of 13 sweet cherry cultivars, with CR and BT variability (Chapter 3), that 

had been previously sequenced (Ono et al., 2018). The complete amino acid sequence of 

the six PavDAM was deduced from the consensus sequences generated for each of the 13 

cultivars (Sup Fig 3.1). Comparison of these sequences in the different cultivars revealed 

a high degree of conservation (Table 3.1; Sup Fig 3.1; Sup Table 3.3). The exon-intron 

structure was conserved in the six genes in all the cultivars. Also, the similarity between 

cultivars for the six PavDAM amino acid sequences was very high, ranging from 98.8 to 

100% identity (Table 3.1). ‘Cristobalina’ was the cultivar with lower similarity to the rest 

(98.8 - 99.0%, Table 3.1). The remaining cultivars had a similarity of 99.7 to 100%.      .
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Table 3.1 Percentage of identity between cultivars amino acid sequences of six PavDAM genes.  

 Brooks Cristobalina Ferrovia Hedelfingen Lambert Napoleon Rainier Regina Sam Satonishiki Sue Summit Vic 

Ambrunés 99.7 98.9 99.7 99.7 99.8 99.9 99.7 99.9 99.9 99.7 99.9 100 99.7 

Brooks  98.9 99.7 99.9 99.8 99.8 99.9 99.8 99.8 99.9 99.8 99.7 100 

Cristobalina   98.9 98.9 98.8 99.0 98.8 99.0 99.0 98.9 99.0 98.9 98.9 

Ferrovia    99.7 99.7 99.8 99.7 99.8 99.8 99.7 99.8 99.7 99.7 

Hedelfingen     99.8 99.8 99.8 99.8 99.8 99.9 99.8 99.7 99.9 

Lambert      99.7 99.7 99.9 99.9 99.8 99.9 99.8 99.8 

Napoleon       99.7 99.9 99.9 99.8 99.9 99.9 99.8 

Rainier        99.7 99.7 99.8 99.7 99.7 99.9 

Regina         100 99.8 100 99.9 99.8 

Sam          99.8 100 99.9 99.8 

Satonishiki           99.8 99.7 99.9 

Sue            99.9 99.8 

Summit             99.7 
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Complete amino acid identity (100% similarity) was observed for PavDAM sequences of 

‘Ambrunés’ and ‘Summit’; ‘Vic’ and ‘Brooks’; and ‘Regina’, ‘Sam’ and ‘Sue’ (Table 3.1). 

Alignment of the PavDAM amino acid sequences of all the cultivars (Sup Fig 3.1) 

revealed 24 polymorphisms in the form of amino acid substitutions (Sup Fig 3.1; Sup Table 

3.3). Of these, 20 were unique to a specific cultivar, and the remaining 4 were common to 

various cultivars. ‘Cristobalina’ was the cultivar with the largest number of amino acid 

substitutions (15), of which 14 were unique in this cultivar (Sup Fig 3.1; Sup Table 3.3). 

‘Ferrovia’, ‘Lambert’, ‘Hedelfingen’, ‘Satonishiki’ and ‘Rainier’ showed 1 to 2 unique 

amino acid substitutions (Sup Table 3.3). PavDAM1 and PavDAM4 presented the largest 

number of polymorphisms (Sup Fig 3.1; Sup Table 3.3). Unique amino acid substitutions 

were found on all domains, with a large number of unique substitutions found on domain 

C. Only ‘Cristobalina’ presented a substitution in M domain (PavDAM2). No INDELs 

were observed in the coding region of any of the cultivars (Sup Fig 3.1). 

 

Promoter region analysis 

 The PavDAM genes promoter sequence (estimated in 1,500 bp upstream of 

PavDAM1) of the 13 sweet cherry cultivars was also analyzed. This analysis allowed to 

detect a putative deletion in ‘Cristobalina’ promoter region, revealed as a region where no 

sequence reads were mapped (Fig 3.3). This region spanned ~700 bp between 49,456,800 

to 49,457,500 bp of chromosome 1 (Fig 3.3). 

To investigate the suspected deletion in ‘Cristobalina’, PCR primers flanking this 

DAM promoter deletion (DPD) were used to analyze genomic DNA of all the cultivars 

studied, including ‘Regina’. A fragment of the expected size (~1,600 bp) was amplified in 

all the sweet cherry cultivars, except in ‘Cristobalina’, in which a shorter fragment (~900 

bp) was obtained (Fig 3.4). The amplification of a smaller fragment in ‘Cristobalina’ 

supports the presence of a deletion of approximately 700 bp in this region. To confirm this 

deletion, PCR products amplified using DPD primers in ‘Cristobalina’ and ‘Regina’ were 

sequenced and aligned obtaining a consensus sequence of this PCR product for each 

cultivar (Sup Fig 3.2 and 3.3). Comparison of both sequences revealed a deletion 

‘Cristobalina’ of 696 bp that covered from 725 to 1,371 bp upstream of PavDAM1 start 

codon in the ‘Regina’ sweet cherry genome (Sup Fig 3.4). Two alleles for ‘Cristobalina’ 
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and one for ‘Vic’ were observed in this region from the sequenced fragments (Sup Fig 3.2). 

A schematic representation of this deletion is shown in Fig 3.5. 

 

 

 

 

Figure 3.3 Alignment of gDNA sequences of ‘Cristobalina’, ‘Hedelfingen’, ‘Lambert’, 

‘Napoleon’, ‘Rainier’ and ‘Satonishiki’ to ‘Regina’ sweet cherry genome in the promoter region 

of PavDAM genes (49,455,295 to 49,459,399 bp). 
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DPD marker analysis in a segregating population 

 As expected, ‘BC8’ (‘Brooks’ × ‘Cristobalina’) analysis with DPD primers showed 

that this selection is heterozygous for this marker (Fig 3.6). Genotyping of 64 individuals 

of B×C2 population that derives from ‘BC8’ self-pollination, revealed, as expected, three 

segregating classes for this marker (Fig 3.6). These classes include genotypes homozygous 

for the deletion (dd), like ‘Cristobalina’; genotypes heterozygous for the deletion (dp), like 

‘BC8’; and genotypes homozygous for the complete promoter sequence (pp), like ‘Brooks’ 

(Fig 3.6). Segregation of the three classes occurred in the proportion 20:24:4 (dd:dp:pp), 

which significantly differs from expected 1:2:1 ratio (χ2=21.33; Sup Table 3.4).  

DPD genotypes identified herein and QTL (qP-CD1.1m/qP-GDH1.2m) genotypes 

previously reported for same individuals (Chapter 3) were compared (Sup Table 3.4). 

Comparison revealed that individuals with QTL haplotypes cc, ac and aa (Chapter 3) were 

the same as those belonging to DPD segregating classes dd, dp and pp, respectively. (Sup 

Table 3.4). These results confirm that DPD marker is valid for identifying the different 

QTL haplotypes. Additionally, DPD genotyping allowed identifying the genotype in this 

region of 17 individuals that are recombinant for the QTL haplotypes. DPD marker 

analysis revealed that of the 17 recombinants, 8 individuals corresponded to genotype dd, 

and 9 to dp (Sup Table 3.4).  

 

 

 

 

Figure 3.4 DPD analysis in 13 sweet cherry cultivars. 
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Estimation of the mean BT phenotypic value, in CD and GDH, of the three 

segregating classes of DPD, in B×C2 population, revealed a significant difference of 7 

days and 1,434 GDH between classes dd and dp (p<0.001; Student’s T test), being dd 

genotypes (82.9 days; 7,833 GDH), earlier than dp genotypes (90.1 days; 9,267 GDH). No 

phenotype data for pp individuals was available to estimate the phenotypic value of this 

segregating class. 

 

 

 

DISCUSSION 

 

PavDAM characterization and phylogenetic analysis 

In this study, six MADS-box proteins, PavDAM, were identified in the main BT 

QTL previously detected in populations derived from the low CR and extra-early BT 

cultivar ‘Cristobalina’ (qP-CD1.1m/qP-GDH1.2m; Chapter 3). This genome region is 

critical in the genetic control of CR and BT in the species, as QTLs for these traits were 

also previously reported on the same location, in other sweet cherry populations with 

different genetic backgrounds (Dirlewanger et al., 2012; Castède et al., 2014). Six 

tandemly arranged MICKc–type MADS-box, denoted DAM genes, have been previously 

identified in the syntenic region of qP-CD1.1m/qP-GDH1.2m in the peach and Japanese 

apricot genomes (Xu et al., 2014; Wells et al., 2015). DAM genes have been reported to be 

the strongest candidate genes for dormancy release and BT in fruit trees species of the 

Rosaceae such as apple, peach, and Japanese apricot based on several evidence (Falavigna 

et al., 2019). DAM genes have been reported to overlap within the main BT and CR QTLs 

detected in peach and apple (Fan et al., 2010; Zhebentyayeva et al., 2014; Bielenberg et 

al., 2015; Allard et al., 2016). The quantification of DAM transcript levels in peach and 

Japanese apricot during the season has shown expression patterns that correlate with 

different dormancy phases (Li et al., 2009; Zhang et al., 2018; Zhao et al., 2018). The 

evergrowing peach mutant, lacking dormancy, has a deletion in the genomic region 

containing DAM genes (Bielenberg et al., 2008). DAM genes are phylogenetically close to 

SVP and AGL24 (Falavigna et al., 2019), which, respectively, are the main repressor and 

activator genes of flowering in Arabidopsis (Jiménez et al., 2009). SVP inhibits 

FLOWERING LOCUS T (FT) in Arabidopsis, and it is believed that in perennial species, 
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DAM genes may act also as FT repressors (Falavigna et al., 2019). Although previous 

works have reported the relationship of DAM genes and dormancy release and BT in sweet 

cherry (Castède et al. 2015; Rothkegel et al. 2017), this work characterizes for first time 

the six PavDAM genes. Each characterized gene comprises eight exons that include the 

four characteristic domains of MIKC type II MADS-box, as reported earlier in peach and 

Japanese apricot (Jiménez et al., 2009; Xu et al., 2014). Furthermore, the genomic structure 

of the six genes is very similar in the three species; peach, Japanese apricot and sweet 

cherry (Jiménez et al., 2009; Sasaki et al., 2011; this work). Thus, the six MADS-box 

(PavDAM) genes identified within the BT QTL in this work are solid candidate genes for 

BT and CR regulation in sweet cherry. 

 

 

 

 

Figure 3.5 Schematic overview of DPD, PavDAM1 promoter deletion found in ‘Cristobalina’. 

 

 

 

Phylogenetic analysis revealed that PavDAM are orthologs to the peach and 

Japanese apricot corresponding DAM genes. Within each DAM gene clade, peach and 

Japanese apricot genes appeared phylogenetically closer to each other than to sweet cherry 

genes, reflecting the species phylogeny. Peach and Japanese apricot, belonging 

respectively to Amygdalus and Prunus subgenus, are phylogenetically closer to each other 

than sweet cherry (Cerasus subgenus), which is phylogenetically more distant (Potter et 

al., 2007). The detection of six clades of DAM ortholog groups indicates that DAM 

diversification occurred before Prunus speciation, additionally the six DAM genes may be 

paralogs (outparalogs), as earlier duplication events may have led to the six tandemly 

arranged genes (Koonin, 2005). As suggested before (Jiménez et al., 2009; Li et al., 2009), 
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posterior subfunctionalization and/or neofunctinalization may have resulted in their actual 

function. The clustering of the DAM orthologs in two major clades, namely DAM1, -2 and 

-3 and DAM4, -5 and -6, agrees with previous transcriptomic studies of DAM genes in 

peach and Japanese apricot, in which two different expression patterns have been observed 

for the two groups of genes. DAM1, -2 and -3 have a maximum expression during bud set, 

while DAM4, -5 and -6 show maximum expression when CR are satisfied (Falavigna et 

al., 2019).   

 

 

 

 

Figure 3.6 DPD analysis in a selected sample (12 individuals) of B×C2 population showing the 

three segregating classes. DPD analysis in selection ‘BC8’ and in its parental cultivars (‘Brooks’ 

and ‘Cristobalina’) is also showed.  

 

 

 

PavDAM variation in ‘Cristobalina’ 

The re-sequencing, and alignment to the ‘Regina’ sweet cherry reference genome 

(Le Dantec et al., 2019), of thirteen sweet cherry cultivars from different genetic 

backgrounds and showing CRs and BTs variability has allowed the identification of 

polymorphisms in the PavDAM sequences. These polymorphisms could be related with 

different BT behavior in the different cultivars. ‘Cristobalina’ PavDAM genes showed 

lowest similarity with the PavDAM genes of the rest of cultivars, and accumulated the 

larger number of unique amino acid substitutions. ‘Cristobalina’ was the only cultivar that 

has a unique amino substitution in the M domain of PavDAM2, whereas for the rest of 

cultivars large number of substitutions were observed in its C domain. It has been reported 
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that M is the most conserved of all MADS-box domains; and C, that is related to protein 

complex formation and transcriptomical activation, the most variable (Honma and Goto, 

2001; Kaufmann et al., 2005). ‘Cristobalina’ shows low CR and extra-early BT (Tabuenca, 

1983; Alburquerque et al., 2008; Chapter 3), and it has been observed that enters 

endodormancy later, and fulfills its chilling requirements before than medium to late BT 

cultivars (Fadón et al., 2018). The differences observed in PavDAM genes of ‘Cristobalina’ 

may be associated to these phenotypic differences in CR and BT with the rest of cultivars. 

Alternatively, these differences may be due to a different genetic origin and a different 

evolutionary history of ‘Cristobalina’ and the rest of cultivars. Analysis of the genetic 

similarity of sweet cherry cultivars (Wünsch and Hormaza, 2002; Martínez-Royo and 

Wünsch, 2014) revealed that ‘Cristobalina’ is more similar to other cultivars from southern 

Europe like ‘Ambrunés’ (another Spanish landrace from a different region also analyzed 

here) than to the other analyzed cultivars. Further research of PavDAM genes in these 

cultivars is needed to confirm either of the two hypothesis. 

Additionally, a 696 bp deletion (DPD, DAM Promoter Deletion), 725 bp upstream 

of PavDAM1 coding sequence, in the putative promoter region, was observed. This 

deletion was detected in ‘Cristobalina’ by sequence reads mapping to the ‘Regina’ 

reference genome (Le Dantec et al., 2019), and confirmed by sequencing of DPD PCR 

fragments. Analysis of DPD in the F2 segregating population B×C2, revealed complete 

correlation of the segregating classes with BT QTL qP-CD1.1m/qP-GDH1.2m genotypes 

(Chapter 3). Additionally, analysis of the phenotype of the DPD segregating classes 

showed association with early blooming (7 days earlier), for individuals homozygous for 

the DPD. These evidences indicate that this deletion may be the causal mutation of 

phenotypic differences associated to main BT QTL (qP-CD1.1m/qP-GDH1.2m; Chapter 3). 

The location of DPD mutation in the putative promoter region of the PavDAM genes, may 

affect the regulation of their expression in ‘Cristobalina’. Differences in PavDAM 

expression in ‘Cristobalina’ may, therefore, being the cause of the phenotypic differences 

observed in ‘Cristobalina’ CR and BT. Detailed study of the expression pattern of these 

genes in the period preceding flowering (dormancy) within cultivar of contrasted 

genotypes and phenotypes would help confirming this hypothesis. 

Segregation distortion in DPD resulted in few genotypes of the class pp, not 

allowing investigating the phenotypic value of pp genotypes. Large segregation distortion 
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has been previously observed in this genomic region in this population (Chapter 2), as well 

as, in homolog regions of other sweet cherry and peach linkage maps (Foulongne et al., 

2003; Klagges et al., 2013). Previous studies suggested that BT genes in this region, also 

possibly involved in seed dormancy, may be the cause of this distortion (Leida et al., 2012; 

Abbott et al., 2015; Chapter 2). However, the peak of this distortion is about 10 cM away 

(Chapter 2) from PavDAM genes characterized herein, suggesting, therefore, that other 

genes in this region may be the cause of this distortion. 

 

DPD, a marker for breeding for early blooming and low chilling requirements 

‘Cristobalina’ is a relevant cultivar for breeding, due to self-compatibility, low CRs 

and extra-early BT. The DPD marker, developed here, is a useful tool for sweet cherry 

breeding of low CR and early BT from ‘Cristobalina’ using marker-assisted selection. This 

marker revealed a complete correlation with the haplotypes of BT QTL (qP-CD1.1m/qP-

GDH1.2m), which accounts for up to 50.1% of the phenotypic variation in ‘Cristobalina’ 

derived populations (Chapter 3). The large correlation between QTL and marker 

genotypes, as well as, the large amount of phenotypic variation explained by this QTL 

makes DPD marker a useful tool for discriminating individuals with lower CR and earlier 

blooming, which will be associated to the presence of the deletion DPD in homozygosity 

or heterozygosity. Earlier blooming is expected to be associated to the presence of the 

deletion in homozygosity and later blooming and higher CR will be associated to the 

absence of the deletion. 

 

In the present study, the analysis of candidate genes in the region of a previously 

detected main BT QTL, has allowed the identification and characterization of PavDAM 

genes, thus confirming PavDAM genes as main candidate genes for CR and BT in sweet 

cherry. Protein sequence polymorphisms in ‘Cristobalina’ PavDAM genes, and a large 

promoter deletion could be cause of the phenotypic differences exhibited by ‘Cristobalina’, 

low CR and extra-early BT. The correlation between DPD genotypes and phenotype value 

in a segregating population confirmed the association of the deletion mutation with the 

phenotypic differences, and will allow the use of this marker for selection of low CR and 

early blooming from ‘Cristobalina’.
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Supplementary Table 3.1 Predicted genes of the ‘Regina’ sweet cherry genome (Le Dantec et al., 2019) in Chromosome 1: 49,296,241- 

49,622,837. Sequence description of protein sequences in NCBI database and statistical significance of highest matches from BLAST. 

Candidate DAM genes are shown in bold. 

Predicted gene Description 
Max 

score 

Total 

score 

Query 

cover 
E value Identity 

PAV01_g0074801 rho GTPase-activating protein REN1 isoform X1 [Prunus yedoensis var. nudiflora] 1524 1524 99% 0 91% 

PAV01_g0074811 mitochondrial uncoupling protein 5-like [Prunus avium] 647 647 99% 0 100% 

PAV01_g0074831 probable pectinesterase/pectinesterase inhibitor 7 [Prunus avium] 1162 1162 99% 0 100% 

PAV01_g0074851 probable pectinesterase/pectinesterase inhibitor 20 [Prunus avium] 1162 1162 99% 0 99% 

PAV01_g0074861 cytochrome b561 and DOMON domain-containing protein At5g47530-like [Prunus avium] 715 715 99% 0 99% 

PAV01_g0074871 uncharacterized protein LOC110751910 [Prunus avium] 327 327 99% 8.00E-110 100% 

PAV01_g0074881 aspartyl protease AED3 [Prunus avium] 763 763 99% 0 90% 

PAV01_g0074891 universal stress protein PHOS34 [Prunus avium] 276 276 99% 1.00E-92 79% 

PAV01_g0074901 eukaryotic translation initiation factor 3 subunit C-like isoform X1 [Prunus avium] 1941 1941 99% 0 99% 

PAV01_g0074911 ubiquitin carboxyl-terminal hydrolase 16-like [Prunus avium] 2228 2228 99% 0 98% 

PAV01_g0074921 AT-hook motif nuclear-localized protein 17 [Prunus avium] 387 387 99% 3.00E-134 100% 

PAV01_g0074931 hypothetical protein KK1_049021 [Cajanus cajan] 52.4 52.4 57% 3.00E-07 60% 

PAV01_g0074941 AP-4 complex subunit mu [Prunus avium] 921 921 99% 0 100% 

PAV01_g0074951 putative methyltransferase At1g22800 isoform X2 [Prunus avium] 705 705 99% 0 100% 

PAV01_g0074961 cytochrome b561 and DOMON domain-containing protein At5g47530-like [Prunus avium] 715 715 99% 0 99% 

PAV01_g0074971 uncharacterized protein LOC110765872 [k] 197 197 71% 4.00E-61 79% 

PAV01_g0074981 No significant similarity found - - - - - 

PAV01_g0074991 hypothetical protein PRUPE_4G104600 [Prunus persica] 97.4 97.4 97% 1.00E-24 79% 

PAV01_g0075001 small heat shock protein chloroplastic [Prunus yedoensis var. nudiflora] 314 314 99% 1.00E-106 84% 

PAV01_g0075011 putative DNA helicase [Rosa chinensis] 102 153 58% 6.00E-23 77% 

PAV01_g0075021 beta carbonic anhydrase 5, chloroplastic-like isoform X2 [Prunus avium] 648 648 99% 0 99% 

PAV01_g0075031 transcription factor bHLH30-like [Prunus avium] 491 491 99% 1.00E-175 100% 

PAV01_g0075041 uncharacterized protein LOC110751898 [Prunus avium] 488 808 99% 1.00E-170 83% 

PAV01_g0075051 uncharacterized protein Pyn_34535 [Prunus yedoensis var. nudiflora] 662 662 99% 0 100% 
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 Supplementary Table 3.1 Continued 
 

PAV01_g0075061 No significant similarity found - - - - - 

PAV01_g0075071 No significant similarity found - - - - - 

PAV01_g0075081 MADS-box protein JOINTLESS-like isoform X5 [Prunus avium] 472 472 99% 2.00E-168 100% 

PAV01_g0075091 MADS-box protein JOINTLESS-like [Prunus avium] 424 424 99% 2.00E-149 91% 

PAV01_g0075101 MADS1 [Prunus avium] 230 230 99% 1.00E-74 100% 

PAV01_g0075111 MADS1 [Prunus avium] 246 246 99% 1.00E-80 99% 

PAV01_g0075121 MADS-box protein JOINTLESS-like isoform X4 [Prunus avium] 446 717 76% 1.00E-153 99% 

PAV01_g0075131 MADS-box protein JOINTLESS-like isoform X7 [Prunus avium] 129 129 51% 2.00E-34 86% 

PAV01_g0075141 MADS-box protein JOINTLESS-like isoform X6 [Prunus avium] 317 317 93% 4.00E-108 100% 

PAV01_g0075151 MADS-box protein JOINTLESS-like isoform X5 [Prunus avium] 479 479 99% 9.00E-171 100% 

PAV01_g0075161 No significant similarity found - - - - - 

PAV01_g0075171 O-fucosyltransferase 31 [Rosa chinensis] 930 930 99% 0 87% 

PAV01_g0075181 mechanosensitive ion channel protein 3, chloroplastic-like isoform X1 [Prunus avium] 1457 1457 99% 0 99% 

PAV01_g0075191 No significant similarity found - - - - - 

PAV01_g0075201 kinesin-like protein KIN-4C isoform X1 [Prunus avium] 2633 2633 99% 0 100% 

PAV01_g0075211 No significant similarity found - - - - - 

PAV01_g0075231 kinesin-like protein KIN-4C [Prunus avium] 1126 1126 99% 0 99% 

PAV01_g0075241 argininosuccinate lyase, chloroplastic [Prunus avium] 1077 1077 99% 0 100% 

PAV01_g0075251 uncharacterized protein LOC110772580 isoform X3 [Prunus avium] 344 344 99% 8.00E-120 100% 

PAV01_g0075261 protein NETWORKED 2A-like [Prunus avium] 2024 2024 99% 0 100% 

PAV01_g0075271 pentatricopeptide repeat-containing protein At2g37230 [Prunus avium] 1542 1542 96% 0 99% 

PAV01_g0075281 uncharacterized protein LOC110772590 isoform X2 [Prunus avium] 557 557 99% 0 100% 

PAV01_g0075291 uncharacterized protein LOC110772590 isoform X1 [Prunus avium] 698 698 95% 0 100% 
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Supplementary Table 3.2 GFF file of correct annotation of PavDAM genes in the ‘Regina’ sweet cherry genome. Automatic (EuGene) and 

Manual intro-exon prediction is indicate.  

###         

PAV01_REGINA EuGene gene 49457863 49465728 . + . ID=gene:PavDAM1;Name=PavDAM1 

PAV01_REGINA EuGene mRNA 49457863 49465728 . + . ID=mRNA:PavDAM1;Name=PavDAM1;Parent=gene:PavDAM1 

PAV01_REGINA EuGene exon 49457863 49457952 . + . ID=exon:PavDAM1.utr0;Parent=mRNA:PavDAM1;Ontology_term=SO:0000204 

PAV01_REGINA EuGene exon 49458233 49458426 . + . ID=exon:PavDAM1.1;Parent=mRNA:PavDAM1;Ontology_term=SO:0000200 

PAV01_REGINA EuGene exon 49462000 49462078 . + 1 ID=exon:PavDAM1.2;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49463597 49463658 . + 0 ID=exon:PavDAM1.3;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49463744 49463843 . + 1 ID=exon:PavDAM1.4;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49464102 49464143 . + 0 ID=exon:PavDAM1.5;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49464295 49464336 . + 0 ID=exon:PavDAM1.6;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49464452 49464636 . + 0 ID=exon:PavDAM1.7;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49464942 49465728 . + 1 ID=exon:PavDAM1.8;Parent=mRNA:PavDAM1;Ontology_term=SO:0000202 

PAV01_REGINA EuGene five_prime_UTR 49457863 49457952 . + . ID=five_prime_UTR:PavDAM1.0;Parent=mRNA:PavDAM1;Ontology_term=SO:0000204;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene five_prime_UTR 49458233 49458238 . + . ID=five_prime_UTR:PavDAM1.2;Parent=mRNA:PavDAM1;Ontology_term=SO:0000204;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49458239 49458426 . + 0 ID=CDS:PavDAM1.1;Parent=mRNA:PavDAM1;Ontology_term=SO:0000196;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49462000 49462078 . + 1 ID=CDS:PavDAM1.2;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49463597 49463658 . + 0 ID=CDS:PavDAM1.3;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49463744 49463843 . + 1 ID=CDS:PavDAM1.4;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49464102 49464143 . + 0 ID=CDS:PavDAM1.5;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49464295 49464336 . + 0 ID=CDS:PavDAM1.6;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49464452 49464636 . + 0 ID=CDS:PavDAM1.7;Parent=mRNA:PavDAM1;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49464942 49464951 . + 1 ID=CDS:PavDAM1.8;Parent=mRNA:PavDAM1;Ontology_term=SO:0000197;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene three_prime_UTR 49464952 49465728 . + . ID=three_prime_UTR:PavDAM1.18;Parent=mRNA:PavDAM1;Ontology_term=SO:0000205;est_cons=100.0;est_incons=0.0 

###         

PAV01_REGINA EuGene gene 49465730 49475605 . + . ID=gene:PavDAM2;Name=PavDAM2 

PAV01_REGINA EuGene mRNA 49465730 49475605 . + . ID=mRNA:PavDAM2;Name=PavDAM2;Parent=gene:PavDAM2 
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 Supplementary Table 3.2 Continued.  

PAV01_REGINA EuGene exon 49465730 49466254 . + . ID=exon:PavDAM2.utr0;Parent=mRNA:PavDAM2;Ontology_term=SO:0000204 

PAV01_REGINA EuGene exon 49466560 49466755 . + . ID=exon:PavDAM2.1;Parent=mRNA:PavDAM2;Ontology_term=SO:0000200 

PAV01_REGINA EuGene exon 49472342 49472420 . + 1 
ID=exon:PavDAM2.2;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004 

PAV01_REGINA Manual exon 49473111 49473173 . + 0 ID=exon:PavDAM2.3;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49473262 49473357 . + 0 ID=exon:PavDAM2.4;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49473853 49473894 . + 0 ID=exon:PavDAM2.5;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49474036 49474077 . + 0 ID=exon:PavDAM2.6;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49474161 49474354 . + 0 ID=exon:PavDAM2.7;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49475376 49475605 . + 1 ID=exon:PavDAM2.8;Parent=mRNA:PavDAM2;Ontology_term=SO:0000202 

PAV01_REGINA EuGene five_prime_UTR 49465730 49466254 . + . ID=five_prime_UTR:PavDAM2.0;Parent=mRNA:PavDAM2;Ontology_term=SO:0000204;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene five_prime_UTR 49466560 49466564 . + . ID=five_prime_UTR:PavDAM2.2;Parent=mRNA:PavDAM2;Ontology_term=SO:0000204;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49466565 49466755 . + 0 ID=CDS:PavDAM2.1;Parent=mRNA:PavDAM2;Ontology_term=SO:0000196;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49472342 49472420 . + 1 ID=CDS:PavDAM2.2;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004;est_cons=69.6;est_incons=0.0 

PAV01_REGINA EuGene CDS 49473111 49473171 . + 0 ID=CDS:PavDAM2.3;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004;est_cons=0.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49473262 49473357 . + 0 ID=CDS:PavDAM2.4;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004;est_cons=0.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49473853 49473894 . + 0 ID=CDS:PavDAM2.5;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004;est_cons=0.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49474036 49474077 . + 0 ID=CDS:PavDAM2.6;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004;est_cons=0.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49474161 49474354 . + 0 ID=CDS:PavDAM2.7;Parent=mRNA:PavDAM2;Ontology_term=SO:0000004;est_cons=80.9;est_incons=0.0 

PAV01_REGINA EuGene CDS 49475376 49475385 . + 1 ID=CDS:PavDAM2.8;Parent=mRNA:PavDAM2;Ontology_term=SO:0000197;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene three_prime_UTR 49475386 49475605 . + . ID=three_prime_UTR:PavDAM2.16;Parent=mRNA:PavDAM2;Ontology_term=SO:0000205;est_cons=100.0;est_incons=0.0 

###         

PAV01_REGINA Manual gene 49486959 49497738 . + . ID=gene:PavDAM3;Name=PavDAM3 

PAV01_REGINA Manual mRNA 49486959 49497738 . + . ID=mRNA:PavDAM3;Name=PavDAM3;Parent=gene:PavDAM3 

PAV01_REGINA Manual exon 49486959 49487610 . + . ID=exon:PavDAM3.1;Parent=mRNA:PavDAM3;Ontology_term=SO:0000200 

PAV01_REGINA Manual exon 49492939 49493017 . + 1 ID=exon:PavDAM3.2;Parent=mRNA:PavDAM3;Ontology_term=SO:0000004 

PAV01_REGINA Manual exon 49495428 49495489 . + 0 ID=exon:PavDAM3.3;Parent=mRNA:PavDAM3;Ontology_term=SO:0000202 

PAV01_REGINA Manual five_prime_UTR 49486959 49487419 . + . ID=five_prime_UTR:PavDAM3.0;Parent=mRNA:PavDAM3;Ontology_term=SO:0000204;est_cons=100.0;est_incons=0.0 
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Supplementary Table 3.2 Continued.  

PAV01_REGINA Manual CDS 49487420 49487610 . + 0 ID=CDS:PavDAM3.1;Parent=mRNA:PavDAM3;Ontology_term=SO:0000196;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49492939 49493017 . + 1 ID=CDS:PavDAM3.2;Parent=mRNA:PavDAM3;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49495428 49495489 . + 0 ID=CDS:PavDAM3.3;Parent=mRNA:PavDAM3;Ontology_term=SO:0000197;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual exon 49495591 49495690 . + 1 ID=exon:PavDAM3.4;Parent=mRNA:PavDAM3;Ontology_term=SO:0000200 

PAV01_REGINA Manual exon 49496003 49496044 . + 0 ID=exon:PavDAM3.5;Parent=mRNA:PavDAM3;Ontology_term=SO:0000004 

PAV01_REGINA Manual exon 49496199 49496240 . + 0 ID=exon:PavDAM3.6;Parent=mRNA:PavDAM3;Ontology_term=SO:0000004 

PAV01_REGINA Manual exon 49496375 49496559 . + 0 ID=exon:PavDAM3.7;Parent=mRNA:PavDAM3;Ontology_term=SO:0000004 

PAV01_REGINA Manual exon 49497205 49497738 . + 1 ID=exon:PavDAM3.8;Parent=mRNA:PavDAM3;Ontology_term=SO:0000202 

PAV01_REGINA Manual CDS 49495591 49495690 . + 1 ID=CDS:PavDAM3.4;Parent=mRNA:PavDAM3;Ontology_term=SO:0000196;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49496003 49496044 . + 0 ID=CDS:PavDAM3.5;Parent=mRNA:PavDAM3;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49496199 49496240 . + 0 ID=CDS:PavDAM3.6;Parent=mRNA:PavDAM3;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49496375 49496559 . + 0 ID=CDS:PavDAM3.7;Parent=mRNA:PavDAM3;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49497205 49497214 . + 1 ID=CDS:PavDAM3.8;Parent=mRNA:PavDAM3;Ontology_term=SO:0000197;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual three_prime_UTR 49497215 49497738 . + . ID=three_prime_UTR:PavDAM3.10;Parent=mRNA:PavDAM3;Ontology_term=SO:0000205;est_cons=100.0;est_incons=0.0 

###         

PAV01_REGINA EuGene gene 49497742 49507821 . + . ID=gene:PavDAM4;Name=PavDAM4 

PAV01_REGINA EuGene mRNA 49497742 49507821 . + . ID=mRNA:PavDAM4;Name=PavDAM4;Parent=gene:PavDAM4 

PAV01_REGINA EuGene exon 49498455 49498645 . + 0 ID=exon:PavDAM4.1;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49502110 49502185 . + 1 ID=exon:PavDAM4.2;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49505693 49505754 . + 0 ID=exon:PavDAM4.3;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49505857 49505956 . + 1 ID=exon:PavDAM4.4;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49506042 49506083 . + 0 ID=exon:PavDAM4.5;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49506193 49506243 . + 0 ID=exon:PavDAM4.6;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49506326 49506468 . + 0 ID=exon:PavDAM4.7;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49506852 49507171 . + 1 ID=exon:PavDAM4.8;Parent=mRNA:PavDAM4;Ontology_term=SO:0000202 

PAV01_REGINA EuGene exon 49507315 49507673 . + . ID=exon:PavDAM4.utr22;Parent=mRNA:PavDAM4;Ontology_term=SO:0000205 

PAV01_REGINA EuGene exon 49507777 49507821 . + . 
ID=exon:PavDAM4.utr24;Parent=mRNA:PavDAM4;Ontology_term=SO:0000205 
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 Supplementary Table 3.2 Continued.  

PAV01_REGINA EuGene five_prime_UTR 49497742 49497869 . + . ID=five_prime_UTR:PavDAM4.0;Parent=mRNA:PavDAM4;Ontology_term=SO:0000204;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49498455 49498645 . + 0 ID=CDS:PavDAM4.1;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49502110 49502185 . + 1 ID=CDS:PavDAM4.2;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49505693 49505754 . + 0 
ID=CDS:PavDAM4.3;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49505857 49505956 . + 1 ID=CDS:PavDAM4.4;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49506042 49506083 . + 0 ID=CDS:PavDAM4.5;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49506193 49506243 . + 0 ID=CDS:PavDAM4.6;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49506326 49506468 . + 0 ID=CDS:PavDAM4.7;Parent=mRNA:PavDAM4;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49506852 49506861 . + 1 ID=CDS:PavDAM4.8;Parent=mRNA:PavDAM4;Ontology_term=SO:0000197;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene three_prime_UTR 49506862 49507171 . + . ID=three_prime_UTR:PavDAM4.20;Parent=mRNA:PavDAM4;Ontology_term=SO:0000205;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene three_prime_UTR 49507315 49507673 . + . ID=three_prime_UTR:PavDAM4.22;Parent=mRNA:PavDAM4;Ontology_term=SO:0000205;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene three_prime_UTR 49507777 49507821 . + . ID=three_prime_UTR:PavDAM4.24;Parent=mRNA:PavDAM4;Ontology_term=SO:0000205;est_cons=100.0;est_incons=0.0 

###         

PAV01_REGINA Manual gene 49507823 49517606 . + . ID=gene:PavDAM5;Name=PavDAM5 

PAV01_REGINA Manual mRNA 49507823 49517606 . + . ID=mRNA:PavDAM5;Name=PavDAM5;Parent=gene:PavDAM5 

PAV01_REGINA Manual exon 49507823 49507839 . + . ID=exon:PavDAM5.utr0;Parent=mRNA:PavDAM5;Ontology_term=SO:0000204 

PAV01_REGINA Manual exon 49508062 49508243 . + . ID=exon:PavDAM5.1;Parent=mRNA:PavDAM5;Ontology_term=SO:0000200 

PAV01_REGINA Manual five_prime_UTR 49507823 49507839 . + . ID=five_prime_UTR:PavDAM5.0;Parent=mRNA:PavDAM5;Ontology_term=SO:0000204;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual five_prime_UTR 49508062 49508064 . + . ID=five_prime_UTR:PavDAM5.2;Parent=mRNA:PavDAM5;Ontology_term=SO:0000204;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual exon 49513443 49513521 . + 1 ID=exon:PavDAM5.1;Parent=mRNA:PavDAM5;Ontology_term=SO:0000200 

PAV01_REGINA Manual exon 49514370 49514431 . + 0 ID=exon:PavDAM5.2;Parent=mRNA:PavDAM5;Ontology_term=SO:0000004 

PAV01_REGINA Manual exon 49514524 49514623 . + 1 ID=exon:PavDAM5.3;Parent=mRNA:PavDAM5;Ontology_term=SO:0000004 

PAV01_REGINA Manual exon 49515144 49515185 . + 0 ID=exon:PavDAM5.4;Parent=mRNA:PavDAM5;Ontology_term=SO:0000004 

PAV01_REGINA Manual exon 49515299 49515340 . + 0 ID=exon:PavDAM5.5;Parent=mRNA:PavDAM5;Ontology_term=SO:0000004 

PAV01_REGINA Manual exon 49515475 49515668 . + 0 ID=exon:PavDAM5.6;Parent=mRNA:PavDAM5;Ontology_term=SO:0000004 

PAV01_REGINA Manual exon 49516580 49516707 . + 1 ID=exon:PavDAM5.7;Parent=mRNA:PavDAM5;Ontology_term=SO:0000202 

PAV01_REGINA Manual exon 49516797 49516858 . + . ID=exon:PavDAM5.utr16;Parent=mRNA:PavDAM5;Ontology_term=SO:0000205 



 

 
 

C
h
ap

ter 4
 

1
1
3
 

Supplementary Table 3.2 Continued.  

PAV01_REGINA Manual exon 49517027 49517606 . + . ID=exon:PavDAM5.utr18;Parent=mRNA:PavDAM5;Ontology_term=SO:0000205 

PAV01_REGINA Manual CDS 49508065 49508243 . + 0 ID=CDS:PavDAM5.1;Parent=mRNA:PavDAM5;Ontology_term=SO:0000196;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49513443 49513521 . + 1 ID=CDS:PavDAM5.2;Parent=mRNA:PavDAM5;Ontology_term=SO:0000196;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49514370 49514431 . + 0 ID=CDS:PavDAM5.3;Parent=mRNA:PavDAM5;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49514524 49514623 . + 1 ID=CDS:PavDAM5.4;Parent=mRNA:PavDAM5;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49515144 49515185 . + 0 ID=CDS:PavDAM5.5;Parent=mRNA:PavDAM5;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49515299 49515340 . + 0 ID=CDS:PavDAM5.6;Parent=mRNA:PavDAM5;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49515475 49515668 . + 0 ID=CDS:PavDAM5.7;Parent=mRNA:PavDAM5;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual CDS 49516580 49516619 . + 1 ID=CDS:PavDAM5.8;Parent=mRNA:PavDAM5;Ontology_term=SO:0000197;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual three_prime_UTR 49516620 49516707 . + . ID=three_prime_UTR:PavDAM5.14;Parent=mRNA:PavDAM5;Ontology_term=SO:0000205;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual three_prime_UTR 49516797 49516858 . + . ID=three_prime_UTR:PavDAM5.16;Parent=mRNA:PavDAM5;Ontology_term=SO:0000205;est_cons=100.0;est_incons=0.0 

PAV01_REGINA Manual three_prime_UTR 49517027 49517606 . + . ID=three_prime_UTR:PavDAM5.18;Parent=mRNA:PavDAM5;Ontology_term=SO:0000205;est_cons=100.0;est_incons=0.0 

###         

PAV01_REGINA EuGene gene 49517608 49524699 . + . ID=gene:PavDAM6;Name=PavDAM6 

PAV01_REGINA EuGene mRNA 49517608 49524699 . + . ID=mRNA:PavDAM6;Name=PavDAM6;Parent=gene:PavDAM6 

PAV01_REGINA EuGene exon 49517608 49517614 . + . ID=exon:PavDAM6.utr0;Parent=mRNA:PavDAM6;Ontology_term=SO:0000204 

PAV01_REGINA EuGene exon 49517878 49518072 . + . ID=exon:PavDAM6.1;Parent=mRNA:PavDAM6;Ontology_term=SO:0000200 

PAV01_REGINA EuGene exon 49521025 49521103 . + 1 ID=exon:PavDAM6.2;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49522143 49522204 . + 0 ID=exon:PavDAM6.3;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49522307 49522406 . + 1 ID=exon:PavDAM6.4;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49523208 49523249 . + 0 ID=exon:PavDAM6.5;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49523384 49523425 . + 0 ID=exon:PavDAM6.6;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49523526 49523722 . + 0 ID=exon:PavDAM6.7;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004 

PAV01_REGINA EuGene exon 49524409 49524699 . + 1 ID=exon:PavDAM6.8;Parent=mRNA:PavDAM6;Ontology_term=SO:0000202 

PAV01_REGINA EuGene five_prime_UTR 49517608 49517614 . + . ID=five_prime_UTR:PavDAM6.0;Parent=mRNA:PavDAM6;Ontology_term=SO:0000204;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene five_prime_UTR 49517878 49517881 . + . ID=five_prime_UTR:PavDAM6.2;Parent=mRNA:PavDAM6;Ontology_term=SO:0000204;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49517882 49518072 . + 0 
ID=CDS:PavDAM6.1;Parent=mRNA:PavDAM6;Ontology_term=SO:0000196;est_cons=88.0;est_incons=0.0 
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 Supplementary Table 3.2 Continued.  

PAV01_REGINA EuGene CDS 49521025 49521103 . + 1 ID=CDS:PavDAM6.2;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49522143 49522204 . + 0 ID=CDS:PavDAM6.3;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49522307 49522406 . + 1 ID=CDS:PavDAM6.4;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49523208 49523249 . + 0 
ID=CDS:PavDAM6.5;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49523384 49523425 . + 0 ID=CDS:PavDAM6.6;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49523526 49523722 . + 0 ID=CDS:PavDAM6.7;Parent=mRNA:PavDAM6;Ontology_term=SO:0000004;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene CDS 49524409 49524418 . + 1 ID=CDS:PavDAM6.8;Parent=mRNA:PavDAM6;Ontology_term=SO:0000197;est_cons=100.0;est_incons=0.0 

PAV01_REGINA EuGene three_prime_UTR 49524419 49524699 . + . ID=three_prime_UTR:PavDAM6.18;Parent=mRNA:PavDAM6;Ontology_term=SO:0000205;est_cons=100.0;est_incons=0.0 

###         
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Supplementary Table 3.3 Amino acid substitutions in each PavDAM domain in each 

cultivar (Sup Fig 1). Unique amino acid substitutions are highlighted in bold. 

 PavDAM1 PavDAM2 PavDAM3 PavDAM4 PavDAM5 PavDAM6 Total 

 M I K C M I K C M I K C M I K C M I K C M I K C (Unique) 

‘Ambrunés’                    1     1 

‘Brooks’    1         1         1   3 

‘Cristobalina’  3  1 1  1   1 1   2  2 1 1  1     15 (14) 

‘Ferrovia’   1 1                    1 3 (2) 

‘Hedelfinger’    1         1 1           3 

‘Lambert’  1           1            2 (1) 

‘Napoleon’    1                     1 

‘Rainier’    1         1         1  1 4 (1) 

‘Regina’                          

‘Sam’                         0 

‘Satonishiki’    1         1       1     3 (1) 

‘Sue’                         0 

‘Summit’                    1     1 

‘Vic’    1         1         1   3 

 

 

 

 

Sup Table 3.4 Mean bloom time value (2015 to 2019) of B×C2 individuals in calendar days 

(CD) and growing degree hours (GDH), and qP-CD1.1m/qP-GDH1.2m (Chapter 3) and DPD 

genotypes of each individual. Rec= Recombinant. 

 

Individual CD GDH 
qP-CD1.1m/qP-

GDH1.2m 
PDF1/PDR1 

B×C2-01 84.28 8058 cc dd 

B×C2-04 85.23 8220 cc dd 

B×C2-05 92.14 9619 ac dp 

B×C2-06 80.27 7375 cc dd 

B×C2-08 91.24 9497 ac dp 

B×C2-09 87.67 8864 ac dp 

B×C2-11 89.91 9344 ac dp 

B×C2-12 - - cc dd 

B×C2-15 85.46 8327 cc dd 

B×C2-16 89.71 9130 ac dp 

B×C2-17 82.31 7823 cc dd 

B×C2-18 83.81 7956 cc dd 

B×C2-19 87.23 8782 ac dp 

B×C2-20 80.04 7302 cc dd 

B×C2-21 88.57 9038 ac dp 

B×C2-22 88.57 9038 ac dp 

B×C2-23 89.46 9243 ac dp 
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Supplementary Table 3.4 Continued. 

 

B×C2-25 90.35 9354 ac dp 

B×C2-26 - - aa pp 

B×C2-28 89.94 9210 ac dp 

B×C2-29 - - Rec dd 

B×C2-30 83.81 7982 cc dd 

B×C2-31 88.12 8986 ac dp 

B×C2-32 90.18 9253 ac dp 

B×C2-33 - - aa pp 

B×C2-34 - - Rec dp 

B×C2-35 85.23 8239 cc dd 

B×C2-36 - - aa pp 

B×C2-37 89.24 9046 ac dp 

B×C2-39 79.64 7231 cc dd 

B×C2-41 - - Rec dp 

B×C2-42 89.46 9243 ac dp 

B×C2-43 85.46 8290 cc dd 

B×C2-44 81.45 7485 cc dd 

B×C2-47 - - Rec dp 

B×C2-48 89.01 9160 Rec dp 

B×C2-49 80.74 7409 cc dd 

B×C2-50 82.31 7861 cc dd 

B×C2-51 89.94 9156 ac dp 

B×C2-53 85.61 8299 cc dd 

B×C2-54 92.58 9657 ac dp 

B×C2-55 93.48 9802 ac dp 

B×C2-56 - - Rec dp 

B×C2-57 - - Rec dp 

B×C2-59 - - Rec dp 

B×C2-60 - - Rec dp 

B×C2-61 82.4 7653 cc dd 

B×C2-62 84.05 7968 cc dd 

B×C2-63 81.22 7532 cc dd 

B×C2-64 - - aa pp 

B×C2-65 - - Rec dd 

B×C2-66 - - Rec dd 

B×C2-67 84.28 8080 cc dd 

B×C2-69 89.71 9136 ac dp 

B×C2-70 91.36 9462 ac dp 

B×C2-72 93.47 9818 ac dp 

B×C2-73 - - Rec dd 

B×C2-74 - - Rec dd 

B×C2-75 89.91 9296 ac dp 

B×C2-76 - - Rec dd 

B×C2-77 - - Rec dp 

B×C2-78 - - Rec dd 

B×C2-80 81.45 7574 cc dd 

B×C2-82 - - Rec dd 
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Supplementary Figure 3.1 Amino acid alignment of deduced amino acid sequences of 

PaDAM genes of 13 sweet cherry cultivars. Discrepancies between sequences are 

highlight in yellow and marked with an asterisk. MADs-box domains are highlighted in 

colors (M: green; I: blue; K: pink and C; grey). 
 
                     1        10        20        30        40        50        60 

                     |        |         |         |         |         |         |  

     Ambrunes_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

       Brooks_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

 Cristobalina_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

     Ferrovia_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

 Helderfinger_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

      Lambert_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

     Napoleon_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

      Rainier_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

       Regina_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

          Sam_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

  Satonishiki_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

          Sue_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

       Summit_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

          Vic_DAM1   MKMMREKIKIKKIDNLPARQVTFSKRRRGIFKKAAELSVLCESEVAVIIFSATGKLFDYS 

                     ------------------------------------------------------------ 

 

     Ambrunes_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

       Brooks_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

 Cristobalina_DAM1   SSSTKDVIERYKAHINGVEQSDEPYVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

     Ferrovia_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSEELGEKSRQLRQMKGEDLEEL 

 Helderfinger_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

      Lambert_DAM1   SSSTKDVIERYKAHINGAEKTDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

     Napoleon_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

      Rainier_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

       Regina_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

          Sam_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

  Satonishiki_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

          Sue_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

       Summit_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

          Vic_DAM1   SSSTKDVIERYKAHINGAEKSDEPSVELQPENENHIRLSKELGEKSRQLRQMKGEDLEEL 

     -----------------*-**---*--------------*-------------------- 

 

     Ambrunes_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

       Brooks_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

 Cristobalina_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

     Ferrovia_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

 Helderfinger_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

      Lambert_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

     Napoleon_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

      Rainier_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

       Regina_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

          Sam_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

  Satonishiki_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

          Sue_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

       Summit_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

          Vic_DAM1   NFDELQKLEQLVDASLGRVIETKDELIMSEIMALERKRSELVEANKQLRQRMLSRRNIGP 

                     ------------------------------------------------------------ 

 

     Ambrunes_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCPSLEDDSDDVTLSLKLGLL 

       Brooks_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCLSLEDDSDDVTLSLKLGLL 

 Cristobalina_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCLSLEDDSDDVTLSLKLGLL 

     Ferrovia_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCLSLEDDSDDVTLSLKLGLL 

 Helderfinger_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCLSLEDDSDDVTLSLKLGLL 

      Lambert_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCPSLEDDSDDVTLSLKLGLL 

     Napoleon_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCLSLEDDSDDVTLSLKLGLL 

      Rainier_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCLSLEDDSDDVTLSLKLGLL 

       Regina_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCPSLEDDSDDVTLSLKLGLL 

          Sam_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCPSLEDDSDDVTLSLKLGLL 

  Satonishiki_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCLSLEDDSDDVTLSLKLGLL 

          Sue_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCPSLEDDSDDVTLSLKLGLL 

       Summit_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCPSLEDDSDDVTLSLKLGLL 

          Vic_DAM1   ALMEPERLNNNIGGGGEEEGMSSESATSTTCNSAPCLSLEDDSDDVTLSLKLGLL 

                     ------------------------------------*------------------ 
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Supplementary Figure 3.1 Continued. 
 

                     1        10        20        30        40        50        60 

                     |        |         |         |         |         |         |  

     Ambrunes_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

       Brooks_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

 Cristobalina_DAM2   MVKMMRKKIKIKKIDHLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

     Ferrovia_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

 Helderfinger_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

      Lambert_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

     Napoleon_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

      Rainier_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

       Regina_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

          Sam_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

  Satonishiki_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

          Sue_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

       Summit_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

          Vic_DAM2   MVKMMRKKIKIKKIDYLPARQVTFSKRRRGIFKKAKELSVLCESEVAVIIFSATGKLFDY 

                     ---------------*-------------------------------------------- 

 

     Ambrunes_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

       Brooks_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

 Cristobalina_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

     Ferrovia_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

 Helderfinger_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

      Lambert_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

     Napoleon_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

      Rainier_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

       Regina_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

          Sam_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

  Satonishiki_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

          Sue_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

       Summit_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

          Vic_DAM2   SSSSTKDVVERYKAHTNSVEKSDELSVELQLEIENHIRLTKELEAKSRQLRMKGEDLEEL 

                     ------------------------------------------------------------ 

 

     Ambrunes_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

       Brooks_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

 Cristobalina_DAM2   NFDELQKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

     Ferrovia_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

 Helderfinger_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

      Lambert_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

     Napoleon_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

      Rainier_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

       Regina_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

          Sam_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

  Satonishiki_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

          Sue_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

       Summit_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

          Vic_DAM2   NFDELHKLEQLVDASLGRAIETEEELNMSEIMALERKEAELVEANNQLRQRMLSRGNIGP 

                     -----*------------------------------------------------------ 

 

     Ambrunes_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

       Brooks_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

 Cristobalina_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

     Ferrovia_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

 Helderfinger_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

      Lambert_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

     Napoleon_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

      Rainier_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

       Regina_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

          Sam_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

  Satonishiki_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

          Sue_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

       Summit_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

          Vic_DAM2   ALMEPERLINNIGGGGEEEGMSSESATNATISSCSSGLSLSLEDDCSDVTLALKLGLP 

                     ---------------------------------------------------------- 
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Supplementary Figure 3.1 Continued. 
 

                     1        10        20        30        40        50        60 

                     |        |         |         |         |         |         |  

     Ambrunes_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

       Brooks_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

 Cristobalina_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

     Ferrovia_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

 Helderfinger_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

     Napoleon_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

      Lambert_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

      Rainier_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

       Regina_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

          Sam_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

  Satonishiki_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

          Sue_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

       Summit_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

          Vic_DAM3   MVKMMRKKIKIKKIDCLPARQVTFSKRRRGIFKKAAELSVLCESKVAVVIFSATGKLFDY 

                     ------------------------------------------------------------ 

 

     Ambrunes_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

       Brooks_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

 Cristobalina_DAM3   SSSSTKDVIERYKAHTNGVKKSDEPSVELQLENENHIGLSKELEEKSHELRQMKAEDLEE 

     Ferrovia_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

 Helderfinger_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

     Napoleon_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

      Lambert_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

      Rainier_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

       Regina_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

          Sam_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

  Satonishiki_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

          Sue_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

       Summit_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

          Vic_DAM3   SSSSTKDVIERYKAHTNGVEKSDEPSVELQLENENHIGLSKELEEKSHQLRQMKAEDLEE 

                     -------------------*----------------------------*----------- 

 

     Ambrunes_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

       Brooks_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

 Cristobalina_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

     Ferrovia_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

 Helderfinger_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

     Napoleon_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

      Lambert_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

      Rainier_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

       Regina_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

          Sam_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

  Satonishiki_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

          Sue_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

       Summit_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

          Vic_DAM3   LNFDELQKLEQLVDASLGRVIETKEELRMSEIMALERKGAELVEANNQLRQTMVMLSGGN 

                     ------------------------------------------------------------ 

 

     Ambrunes_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

       Brooks_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

 Cristobalina_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

     Ferrovia_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

 Helderfinger_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

     Napoleon_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

      Lambert_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

      Rainier_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

       Regina_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

          Sam_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

  Satonishiki_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

          Sue_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

       Summit_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

          Vic_DAM3   TGPELMEPERLNNNTGGGGEEEGMSTESAISTTCNSAHSLGDDSDNVTLSLKLGLP 

                     -------------------------------------------------------- 
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Supplementary Figure 3.1 Continued. 
 

                     1        10        20        30        40        50        60 

                     |        |         |         |         |         |         |  

     Ambrunes_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFDY 

       Brooks_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFYY 

 Cristobalina_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFDY 

     Ferrovia_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFDY 

 Helderfinger_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFYY 

      Lambert_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFYY 

     Napoleon_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFDY 

      Rainier_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFYY 

       Regina_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFDY 

          Sam_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFDY 

  Satonishiki_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFYY 

          Sue_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFDY 

       Summit_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFDY 

          Vic_DAM4   MVKMMREKIKIKKIDYLPARQVTFSKRRRGIFKKAAELSVLCESEVAVVIFSATGKLFYY 

                     ----------------------------------------------------------*- 

 

     Ambrunes_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

       Brooks_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

 Cristobalina_DAM4   SSSSVKDIIERYKARTNGVEKSDESLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

     Ferrovia_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

 Helderfinger_DAM4   SSSSVKDVIESYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

      Lambert_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

     Napoleon_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

      Rainier_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

       Regina_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

          Sam_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

  Satonishiki_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

          Sue_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

       Summit_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

          Vic_DAM4   SSSSVKDVIERYKARTNGVEKSDKSLELQLENENRIKLSKELEEKNRQLRKMKGEDLEEL 

                     -------*--*------------*------------------------------------ 

 

     Ambrunes_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

       Brooks_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

 Cristobalina_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

     Ferrovia_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

 Helderfinger_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

      Lambert_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

     Napoleon_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

      Rainier_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

       Regina_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

          Sam_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

  Satonishiki_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

          Sue_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

       Summit_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

          Vic_DAM4   DLDELLKLEQLVEATLVRVMETKEELIMSDIMVLEKKGTELVEANNQMVMLKERMVMLSK 

                     ------------------------------------------------------------ 

         

     Ambrunes_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

       Brooks_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

 Cristobalina_DAM4   RNTGPAHMEPSESATSTSCNSALSLSLEDDCSDDVILSLKLGRP 

     Ferrovia_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

 Helderfinger_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

      Lambert_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

     Napoleon_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

      Rainier_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

       Regina_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

          Sam_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

  Satonishiki_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

          Sue_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

       Summit_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

          Vic_DAM4   RNTEPAHMEPSESATSTSCNSALSLSGEDDCSDDVILSLKLGRP 

                     ---*----------------------*----------------- 
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Supplementary Figure 3.1 Continued. 
 

                     1        10        20        30        40        50        60 

                     |        |         |         |         |         |         |  

     Ambrunes_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

       Brooks_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

 Cristobalina_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFEYSSSS 

     Ferrovia_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

 Helderfinger_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

      Lambert_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

     Napoleon_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

      Rainier_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

       Regina_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

          Sam_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

  Satonishiki_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

          Sue_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

       Summit_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

          Vic_DAM5   MRNKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDYSSSS 

                     ------------------------------------------------------*----- 

 

     Ambrunes_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

       Brooks_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

 Cristobalina_DAM5   TKDVIEKYNVRMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

     Ferrovia_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

 Helderfinger_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

      Lambert_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

     Napoleon_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

      Rainier_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

       Regina_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

          Sam_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

  Satonishiki_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

          Sue_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

       Summit_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

          Vic_DAM5   TKDVIEKYNVHMNGVEKLNDQEIELQLEHENHIKLSKELEEKSRQLRQMKGDDLEGLNLD 

                     ----------*------------------------------------------------- 

 

     Ambrunes_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

       Brooks_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

 Cristobalina_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

     Ferrovia_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

 Helderfinger_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

      Lambert_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

     Napoleon_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

      Rainier_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

       Regina_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

          Sam_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

  Satonishiki_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

          Sue_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

       Summit_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

          Vic_DAM5   ELLKLEQLVEASLGRVMETKEELIKSEIMALERKGAELVEANNQLRQTMVMLSAGNTGPA 

                     ------------------------------------------------------------ 

 

     Ambrunes_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLENDSSDEVTLSLKLGRLQLRNP 

       Brooks_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRNP 

 Cristobalina_DAM5   HMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRNP 

     Ferrovia_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRNP 

 Helderfinger_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRNP 

      Lambert_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRNP 

     Napoleon_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLENDSSDEVTLSLKLGRLQLRNP 

      Rainier_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRNP 

       Regina_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRNP 

          Sam_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRNP 

  Satonishiki_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRDP 

          Sue_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRNP 

       Summit_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLENDSSDEVTLSLKLGRLQLRNP 

          Vic_DAM5   LMDPERLNNNIEGGGEEEGMSAESAISTTCNSAVSLSLEDDSSDEVTLSLKLGRLQLRNP 

                     *--------------------------------------*------------------*- 
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Supplementary Figure 3.1 Continued. 
 

     Ambrunes_DAM5   DIERG 

       Brooks_DAM5   DIERG 

 Cristobalina_DAM5   DIERG 

     Ferrovia_DAM5   DIERG 

 Helderfinger_DAM5   DIERG 

      Lambert_DAM5   DIERG 

     Napoleon_DAM5   DIERG 

      Rainier_DAM5   DIERG 

       Regina_DAM5   DIERG 

          Sam_DAM5   DIERG 

  Satonishiki_DAM5   DIERG 

          Sue_DAM5   DIERG 

       Summit_DAM5   DIERG 

          Vic_DAM5   DIERG 

                     ----- 

 

 

 

                     1        10        20        30        40        50        60 

                     |        |         |         |         |         |         |  

     Ambrunes_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

       Brooks_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

 Cristobalina_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

     Ferrovia_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

 Helderfinger_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

      Lambert_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

     Napoleon_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

      Rainier_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

       Regina_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

          Sam_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

  Satonishiki_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

          Sue_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

       Summit_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

          Vic_DAM6   MVKMMREKIKIKKIDYLPARQVTFSKRRRGLFKKAAELSVLCESEVAVVIFSATGKLFDY 

                     ------------------------------------------------------------ 

 

     Ambrunes_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

       Brooks_DAM6   SSSSIEDVLERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

 Cristobalina_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

     Ferrovia_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

 Helderfinger_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

      Lambert_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

     Napoleon_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

      Rainier_DAM6   SSSSIEDVLERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

       Regina_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

          Sam_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

  Satonishiki_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

          Sue_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

       Summit_DAM6   SSSSIEDVIERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

          Vic_DAM6   SSSSIEDVLERYKAHTNGVEKSNKQFLELQLENEKHIKLSKELEEKSRQLRQMKGEDLEG 

                     --------*--------------------------------------------------- 

 

     Ambrunes_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

       Brooks_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

 Cristobalina_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

     Ferrovia_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

 Helderfinger_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

      Lambert_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

     Napoleon_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

      Rainier_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

       Regina_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

          Sam_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

  Satonishiki_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

          Sue_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

       Summit_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

          Vic_DAM6   LNLDELLKLEQLVEGSLGRVIETKEELIMSEIMSLEKKGAELVETNNQLRQRMAMLSGGN 

                     ------------------------------------------------------------ 
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Supplementary Figure 3.1 Continued. 
 

     Ambrunes_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

       Brooks_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

 Cristobalina_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

     Ferrovia_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCTDVTLSLKLGLP 

 Helderfinger_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

      Lambert_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

     Napoleon_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

      Rainier_DAM6   TGPALVEPGTLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

       Regina_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

          Sam_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

  Satonishiki_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

          Sue_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

       Summit_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

          Vic_DAM6   TGPALVEPETLNTNIGGGGEDGMSSESATMATSTSCNSALSLSLEDDCSDVTLSLKLGLP 

                     --------*---------------------------------------*-----------
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Supplementary Figure 3.2 Alignment of ‘Cristobalina’ PCR products sequences 

generated from Sanger sequencing with DPDF and DPDR primers. SNPs differentiating 

two alleles are marked in yellow. 
 

                    1        10        20        30        40        50        60 

                    |        |         |         |         |         |         |  

 CristobalinaDPDF   --------------------------------------------TCTTTCTTTCTCTTGG 

 CristobalinaDPDF   -------------------------CTCGTTTCTCTTTC-ATACTCTTTCTTTCTCTTGG 

 CristobalinaDPDF   ---------------------------CGTTTCTCTTTC-ATACTCTTTCTTTCTCTTGG 

 CristobalinaDPDR   -----------ATGGATTCCAATCTCTCGTTTCTCTTTCAATACTCTTTCTTTCTCTTGG 

 CristobalinaDPDR   ------------------------------------------------------------ 

 CristobalinaDPDR   TTTTTCTTTTTATGGATTCCAATCTCTCGTTTCTCTTTCAATACTCTTTCTTTCTCTTGG 

        Consensus   TTTTTCTTTTTATGGATTCCAATCTCTCGTTTCTCTTTCNATACTCTTTCTTTCTCTTGG 

 

 CristobalinaDPDF   TTGACCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCCTCAAAGAATATCACAACAAC 

 CristobalinaDPDF   TTGACCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCCTCAAAGAATATCACAACAAC 

 CristobalinaDPDF   TTGACCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCCTCAAAGAATATCACAACAAC 

 CristobalinaDPDR   TTGACCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCCTCAGAGAATATCACAACAAC 

 CristobalinaDPDR   ------AAAAAAAAAACCTCTTTGATGAATTGTTTGTTCCTCAGAGAATATCACAACAAC 

 CristobalinaDPDR   TTGACCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCCTCAGAGAATATCACAACAAC 

        Consensus   TTGACCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCCTCARAGAATATCACAACAAC 

 

 CristobalinaDPDF   AATAGCAAAACAATGCATGGTAAAAGTGATAAACTACATAGACCAAAAATGATAAAATAG 

 CristobalinaDPDF   AATAGCAAAACAATGCATGGTAAAAGTGATAAACTACATAGACCAAAAATGATAAAATAG 

 CristobalinaDPDF   AATAGCAAAACAATGCATGGTAAAAGTGATAAACTACATAGACCAAAAATGATAAAATAG 

 CristobalinaDPDR   AATAGCAAAACAATGCATGGTAAAAGTGATAAACTACATAGACCAAAAATGATAAAATAG 

 CristobalinaDPDR   AATAGCAAAACAATGCATGGTAAAAGTGATAAACTACATAGACCAAAAATGATAAAATAG 

 CristobalinaDPDR   AATAGCAAAACAATGCATGGTAAAAGTGATAAACTACATAGACCAAAAATGATAAAATAG 

        Consensus   AATAGCAAAACAATGCATGGTAAAAGTGATAAACTACATAGACCAAAAATGATAAAATAG 

 

 CristobalinaDPDF   GCACGTGAGAATTGAACCCGGCGTGGACTGTGGGAGCAACAGAAGAAGTGTCGCATGGTG 

 CristobalinaDPDF   GCACGTGAGAATTGAACCCGGCGTGGACTGTGGGAGCAACAGAAGAAGTGTCGCATGGTG 

 CristobalinaDPDF   GCACGTGAGAATTGAACCCGGCGTGGACTGTGGGAGCAACAGAAGAAGTGTCGCATGGTG 

 CristobalinaDPDR   GCACGTGAGAATTGAACCCGGCGTGGACTGTGGGAGCAACAGAAGAAGTGTCGCATGGTG 

 CristobalinaDPDR   GCACGTGAGAATTGAACCCGGCGTGGACTGTGGGAGCAACAGAAGAAGTGTCGCATGGTG 

 CristobalinaDPDR   GCACGTGAGAATTGAACCCGGCGTGGACTGTGGGAGCAACAGAAGAAGTGTCGCATGGTG 

        Consensus   GCACGTGAGAATTGAACCCGGCGTGGACTGTGGGAGCAACAGAAGAAGTGTCGCATGGTG 

 

 CristobalinaDPDF   AGTTCAATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATA 

 CristobalinaDPDF   AGTTCAATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATA 

 CristobalinaDPDF   AGTTCAATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATA 

 CristobalinaDPDR   AGTTCAATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATA 

 CristobalinaDPDR   AGTTCAATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATA 

 CristobalinaDPDR   AGTTCAATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATA 

        Consensus   AGTTCAATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATA 

 

 CristobalinaDPDF   AAAGCACAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAA 

 CristobalinaDPDF   AAAGCACAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAA 

 CristobalinaDPDF   AAAGCACAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAA 

 CristobalinaDPDR   AAAGCACAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAA 

 CristobalinaDPDR   AAAGCACAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAA 

 CristobalinaDPDR   AAAGCACAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAA 

        Consensus   AAAGCACAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAA 

 

 CristobalinaDPDF   CCATTCACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAG 

 CristobalinaDPDF   CCATTCACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAG 

 CristobalinaDPDF   CCATTCACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAG 

 CristobalinaDPDR   CCATTCACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAG 

 CristobalinaDPDR   CCATTCACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAG 

 CristobalinaDPDR   CCATTCACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAG 

        Consensus   CCATTCACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAG 
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Supplementary Figure 3.2 Continued. 
 

 CristobalinaDPDF   ATCAAATTAATCGAAAAATAGATTTTTTTTTCTTCCATAAAATGGAAAATTGCCTTTGAA 

 CristobalinaDPDF   ATCAAATTAATCGAAAAATAGATTTTTTTTTCTTCCATAAAATGGAAAATTGCCTTTGAA 

 CristobalinaDPDF   ATCAAATTAATCGAAAAATAGATTTTTTTTTCTTCCATAAAATGGAAAATTGCCTTTGAA 

 CristobalinaDPDR   ATCAAATTAATCGAAAAATAGATTTTTTTTTCTTCCATAAAATGGAAAATTGCCTTTGAA 

 CristobalinaDPDR   ATCAAATTAATCGAAAAATAGATTTTTTTTTCTTCCATAAAATGGAAAATTGCCTTTGAA 

 CristobalinaDPDR   ATCAAATTAATCGAAAAATAGATTTTTTTTTCTTCCATAAAATGGAAAATTGCCTTTGAA 

        Consensus   ATCAAATTAATCGAAAAATAGATTTTTTTTTCTTCCATAAAATGGAAAATTGCCTTTGAA 

 

 CristobalinaDPDF   ATCTTCCCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCA 

 CristobalinaDPDF   ATCTTCCCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCA 

 CristobalinaDPDF   ATCTTCCCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCA 

 CristobalinaDPDR   ATCTTCCCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCA 

 CristobalinaDPDR   ATCTTCCCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCA 

 CristobalinaDPDR   ATCTTCCCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCA 

        Consensus   ATCTTCCCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCA 

 

 CristobalinaDPDF   TTCTCTTAGGCTTCAAACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAA 

 CristobalinaDPDF   TTCTCTTAGGCTTCAAACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAA 

 CristobalinaDPDF   TTCTCTTAGGCTTCAAACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAA 

 CristobalinaDPDR   TTCTCTTAGGCTTCAGACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAA 

 CristobalinaDPDR   TTCTCTTAGGCTTCAGACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAA 

 CristobalinaDPDR   TTCTCTTAGGCTTCAGACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAA 

        Consensus   TTCTCTTAGGCTTCARACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAA 

 

 CristobalinaDPDF   CCCAAAATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGT 

 CristobalinaDPDF   CCCAAAATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGT 

 CristobalinaDPDF   CCCAAAATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGT 

 CristobalinaDPDR   CCCAGAATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGT 

 CristobalinaDPDR   CCCAGAATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGT 

 CristobalinaDPDR   CCCAGAATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGT 

        Consensus   CCCARAATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGT 

 

 CristobalinaDPDF   GCTCTGGTACTCTCTAGGCATGTTGTTGTGAACTTGTGACCTATTTTGGTTGGTGGGTTT 

 CristobalinaDPDF   GCTCTGGTACTCTCTAGGCATGTTGTTGTGAACTTGTGACCTATTTTGGTTGGTGGGTTT 

 CristobalinaDPDF   GCTCTGGTACTCTCTAGGCATGTTGTTGTGAACTTGTGACCTATTTTGGTTGGTGGGTTT 

 CristobalinaDPDR   GCTCTGGTACTCTCTAGGCATGTTGTTGTGAACTTGTGACCTATTTTGGTTGGTGGGTTT 

 CristobalinaDPDR   GCTCTGGTACTCTCTAGGCATGTTGTTGTGAACTTGTGACCTATTTTGGTTGGTGGGTTT 

 CristobalinaDPDR   GCTCTGGTACTCTCTAGGCATGTTGTTGTGAACTTGTGACCTATTTTGGTTGGTGGGTTT 

        Consensus   GCTCTGGTACTCTCTAGGCATGTTGTTGTGAACTTGTGACCTATTTTGGTTGGTGGGTTT 

 

 CristobalinaDPDF   TTCTGGGTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACC 

 CristobalinaDPDF   TTCTGGGTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACC 

 CristobalinaDPDF   TTCTGGGTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACC 

 CristobalinaDPDR   TTCTGGGTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACC 

 CristobalinaDPDR   TTCTGGGTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACC 

 CristobalinaDPDR   TTCTGGGTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACC 

        Consensus   TTCTGGGTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACC 

 

 CristobalinaDPDF   CAGAAAATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTT 

 CristobalinaDPDF   CAGAAAATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTT 

 CristobalinaDPDF   CAGAAAATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTT 

 CristobalinaDPDR   CAGAAAATCATTTGTAGTTTTTGAGTGTATGAACATAATATA------------------ 

 CristobalinaDPDR   CAGAAAATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTT 

 CristobalinaDPDR   CAGAAAATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTT 

        Consensus   CAGAAAATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTT 

 

 CristobalinaDPDF   TGAATTTTTTTGAAGGGGACGATGAAAATGATGAGGGA----------- 

 CristobalinaDPDF   TGAATTTTTTTGAAGGGGACGATGAAAATGA------------------ 

 CristobalinaDPDF   TGAATTTTTTTGAAGGGGACGATGAAAATGATGAGGGAGAAGATCAGAT 

 CristobalinaDPDR   ------------------------------------------------- 

 CristobalinaDPDR   TGAA--------------------------------------------- 

 CristobalinaDPDR   TGAATTT------------------------------------------ 

        Consensus   TGAATTTTTTTGAAGGGGACGATGAAAATGATGAGGGAGAAGATCAGAT 
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Supplementary Figure 3.3 Alignment of ‘Regina’ PCR products sequences generated 

from Sanger sequencing with DPDF and DPDR primers. 
 

              1       10        20        30        40        50        60 

              |        |         |         |         |         |         |  

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDF   -------TCTTTCTCTTGGTTGACCCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCC 

 ReginaDPDF   TACTCTTTCTTTCTCTTGGTTGACCCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCC 

 ReginaDPDF   TACTCTTTCTTTCTCTTGGTTGACCCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCC 

  Consensus   TACTCTTTCTTTCTCTTGGTTGACCCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCC 

 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDF   TCAAAGAATATCACAACAACAATAGCAAAACAATCCATATGGGTCATATATCCATGGCTT 

 ReginaDPDF   TCAAAGAATATCACAACAACAATAGCAAAACAATCCATATGGGTCATATATCCATGGCTT 

 ReginaDPDF   TCAAAGAATATCACAACAACAATAGCAAAACAATCCATATGGGTCATATATCCATGGCTT 

  Consensus   TCAAAGAATATCACAACAACAATAGCAAAACAATCCATATGGGTCATATATCCATGGCTT 

 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDF   TTTCTCGCCCGAGTCTCATGTTTGTACAAATCACATGTCTCCCATCCCATACATCAAAAA 

 ReginaDPDF   TTTCTCGCCCGAGTCTCATGTTTGTACAAATCACATGTCTCCCATCCCATACATCAAAAA 

 ReginaDPDF   TTTCTCGCCCGAGTCTCATGTTTGTACAAATCACATGTCTCCCATCCCATACATCAAAAA 

  Consensus   TTTCTCGCCCGAGTCTCATGTTTGTACAAATCACATGTCTCCCATCCCATACATCAAAAA 

 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDF   GCTCTTTTGCACTGAATAGATTGAAAAGAGATGTTATAATCATGCAACCAAGCCAACAAA 

 ReginaDPDF   GCTCTTTTGCACTGAATAGATTGAAAAGAGATGTTATAATCATGCAACCAAGCCAACAAA 

 ReginaDPDF   GCTCTTTTGCACTGAATAGATTGAAAAGAGATGTTATAATCATGCAACCAAGCCAACAAA 

  Consensus   GCTCTTTTGCACTGAATAGATTGAAAAGAGATGTTATAATCATGCAACCAAGCCAACAAA 

 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDF   ACTGGATGAATACAAAACAACAAATAAATGGCAAAAGAATACGAAAGGCACCGATTGAAG 

 ReginaDPDF   ACTGGATGAATACAAAACAACAAATAAATGGCAAAAGAATACGAAAGGCACCGATTGAAG 

 ReginaDPDF   ACTGGATGAATACAAAACAACAAATAAATGGCAAAAGAATACGAAAGGCACCGATTGAAG 

  Consensus   ACTGGATGAATACAAAACAACAAATAAATGGCAAAAGAATACGAAAGGCACCGATTGAAG 

 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDF   TGCCCTCAGTTTTCTCTCATGTCAAAAAGTCAGAAGCTTCATAACGTAATCAAAGAAAAA 

 ReginaDPDF   TGCCCTCAGTTTTCTCTCATGTCAAAAAGTCAGAAGCTTCATAACGTAATCAAAGAAAAA 

 ReginaDPDF   TGCCCTCAGTTTTCTCTCATGTCAAAAAGTCAGAAGCTTCATAACGTAATCAAAGAAAAA 

  Consensus   TGCCCTCAGTTTTCTCTCATGTCAAAAAGTCAGAAGCTTCATAACGTAATCAAAGAAAAA 

 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDF   GAGACGAACCCATCACAGCCCCACCAACAAATTGAAGAGCAGGATCAGAACGACAACGAA 

 ReginaDPDF   GAGACGAACCCATCACAGCCCCACCAACAAATTGAAGAGCAGGATCAGAACGACAACGAA 

 ReginaDPDF   GAGACGAACCCATCACAGCCCCACCAACAAATTGAAGAGCAGGATCAGAACGACAACGAA 

  Consensus   GAGACGAACCCATCACAGCCCCACCAACAAATTGAAGAGCAGGATCAGAACGACAACGAA 

 

 ReginaDPDR   ------GAAGTCCAGTGCCAAATAGCAGTCTCCAACTTCCCTGGCGGCTCCGAGACCTTC 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDF   ATAGAAGAAGTCCAGTGCCAAATAGCAGTCTCCAACTTCCCTGGCGGCTCCGAGACCTTC 

 ReginaDPDF   ATAGAAGAAGTCCAGTGCCAAATAGCAGTCTCCAACTTCCCTGGCGGCTCCGAGACCTTC 

 ReginaDPDF   ATAGAAGAAGTCCAGTGCCAAATAGCAGTCTCCAACTTCCCTGGCGGCTCCGAGACCTTC 

  Consensus   ATAGAAGAAGTCCAGTGCCAAATAGCAGTCTCCAACTTCCCTGGCGGCTCCGAGACCTTC 
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Supplementary Figure 3.3 Continued. 
 

 ReginaDPDR   GAATAGCAGCCAAGTTCATCAAGATCTAGGTGGTGGAGTTTACTGGGTTGGGGAGATTGG 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDR   ------------------------------------------------------------ 

 ReginaDPDF   GAATAGCAGCCAAGTTCATCAAGATCTAGGTGGTGGAGTTTACTGGGTTGGGGAGATTGG 

 ReginaDPDF   GAATAGCAGCCAAGTTCATCAAGATCTAGGTGGTGGAGTTTACTGGGTTGGGGAGATTGG 

 ReginaDPDF   GAATAGCAGCCAAGTTCATCAAGATCTAGGTGGTGGAGTTTACTGGGTTGGGGAGATTGG 

  Consensus   GAATAGCAGCCAAGTTCATCAAGATCTAGGTGGTGGAGTTTACTGGGTTGGGGAGATTGG 

 

 ReginaDPDR   GGTGTGTGTGGTGGTTGGCGGGTGGGCTGGTGAGGGTGGGTTTGGCTGATGGCTTCTCTT 

 ReginaDPDR   ----------------------------------GGTGGGTTTGGCTGATGGCTTCTCTT 

 ReginaDPDR   -----------------------------------GTGGGTTTGGCTGATGGCTTCTCTT 

 ReginaDPDF   GGTGTGTGTGGTGGTTGGCGGGTGGGCTGGTGAGGGTGGGTTTGGCTGATGGCTTCTCTT 

 ReginaDPDF   GGTGTGTGTGGTGGTTGGCGGGTGGGCTGGTGAGGGTGGGTTTGGCTGATGGCTTCTCTT 

 ReginaDPDF   GGTGTGTGTGGTGGTTGGCGGGTGGGCTGGTGAGGGTGGGTTTGGC-------------- 

  Consensus   GGTGTGTGTGGTGGTTGGCGGGTGGGCTGGTGAGGGTGGGTTTGGCTGATGGCTTCTCTT 

 

 ReginaDPDR   CCCCTTATATTTTTCTTCTTTTTAGAAAAGAAAAAATCTTTCTTGTTCTTAGATTTAAAT 

 ReginaDPDR   CCCCTTATATTTTTCTTCTTTTTAGAAAAGAAAAAATCTTTCTTGTTCTTAGATTTAAAT 

 ReginaDPDR   CCCCTTATATTTTTCTTCTTTTTAGAAAAGAAAAAATCTTTCTTGTTCTTAGATTTAAAT 

 ReginaDPDF   CCCCTTATATTTTTCTTCTTTTTAGAAAAAAAAAAATCTTTCTTGTTCTTAGATTTAAAT 

 ReginaDPDF   CCCCTTATATTTTTCTTCTTTTTAGAAAAAAAAAAATCTTTCTTGTTCTTAGATTTAAAT 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   CCCCTTATATTTTTCTTCTTTTTAGAAAARAAAAAATCTTTCTTGTTCTTAGATTTAAAT 

 

 ReginaDPDR   GCCCCTCAACAAGTAACCTCAGTTTAATCTAATTTGATCTAATTTGACAGAAATTGGAGA 

 ReginaDPDR   GCCCCTCAACAAGTAACCTCAGTTTAATCTAATTTGATCTAATTTGACAGAAATTGGAGA 

 ReginaDPDR   GCCCCTCAACAAGTAACCTCAGTTTAATCTAATTTGATCTAATTTGACAGAAATTGGAGA 

 ReginaDPDF   GCCCCTCAACAAGTAACCTCAGTTTAATCTAATTTGATCTAATTTGACAGAAATTGGAGA 

 ReginaDPDF   GCCCCTCAACAAGTAACCTCAGTTTAATCTAATTTGATCTAATTTGACAGAAATTGGAGA 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   GCCCCTCAACAAGTAACCTCAGTTTAATCTAATTTGATCTAATTTGACAGAAATTGGAGA 

 

 ReginaDPDR   TTGAACTTGAATTGCTTAAATTGAAAATCACAAAGGTAAAAATAATTAAATTGAAAACAC 

 ReginaDPDR   TTGAACTTGAATTGCTTAAATTGAAAATCACAAAGGTAAAAATAATTAAATTGAAAACAC 

 ReginaDPDR   TTGAACTTGAATTGCTTAAATTGAAAATCACAAAGGTAAAAATAATTAAATTGAAAACAC 

 ReginaDPDF   TTGAACTTGAATTGCTTAAATTGAAAATCACAAAGGTAAAAATAATTAAATTGAAAACAC 

 ReginaDPDF   TTGAACTTGAATTGCTTAAATTGAAAATCACAAAGGTAAAAATAATTAAATTGAAAACAC 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   TTGAACTTGAATTGCTTAAATTGAAAATCACAAAGGTAAAAATAATTAAATTGAAAACAC 

 

 ReginaDPDR   AGAAATTTTAATGGTAAAAGTGATAAACCACATAGACCAAAAATGATAAAATAGGCACGT 

 ReginaDPDR   AGAAATTTTAATGGTAAAAGTGATAAACCACATAGACCAAAAATGATAAAATAGGCACGT 

 ReginaDPDR   AGAAATTTTAATGGTAAAAGTGATAAACCACATAGACCAAAAATGATAAAATAGGCACGT 

 ReginaDPDF   AGAAATTTTAATGGTAAAAGTGATAAACCACATAGACCAAAAATGATAAAATAGGCACGT 

 ReginaDPDF   AGAAATTTTAATGGTAAAAGTGATAAACCACATAGACCAAAAATGATAAAATAGGCACGT 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   AGAAATTTTAATGGTAAAAGTGATAAACCACATAGACCAAAAATGATAAAATAGGCACGT 

 

 ReginaDPDR   GAGAATTGAACCCGACGTAGACTGTGGGAGCAACCGAAGAAGTGTCGCATGGTGAGTTCA 

 ReginaDPDR   GAGAATTGAACCCGACGTAGACTGTGGGAGCAACCGAAGAAGTGTCGCATGGTGAGTTCA 

 ReginaDPDR   GAGAATTGAACCCGACGTAGACTGTGGGAGCAACCGAAGAAGTGTCGCATGGTGAGTTCA 

 ReginaDPDF   GAGAATTGAACCCGACGTAGACTGTGGGAGCAACCGAAGAAGTGTCGCATGGTGAGTTCA 

 ReginaDPDF   GAGAATTGAA-------------------------------------------------- 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   GAGAATTGAACCCGACGTAGACTGTGGGAGCAACCGAAGAAGTGTCGCATGGTGAGTTCA 

 

 ReginaDPDR   ATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATAAAAGCA 

 ReginaDPDR   ATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATAAAAGCA 

 ReginaDPDR   ATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATAAAAGCA 

 ReginaDPDF   ATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATAAAAGCA 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   ATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATAAAAGCA 
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Supplementary Figure 3.3 Continued. 
 

 ReginaDPDR   CAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAACCATTC 

 ReginaDPDR   CAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAACCATTC 

 ReginaDPDR   CAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAACCATTC 

 ReginaDPDF   CAAATTTTATTTATTTATTT---------------------------------------- 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   CAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAACCATTC 

 

 ReginaDPDR   ACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAGATCAAA 

 ReginaDPDR   ACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAGATCAAA 

 ReginaDPDR   ACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAGATCAAA 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   ACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAGATCAAA 

 

 ReginaDPDR   TTAATCGAAAAATAGATTTTTTTTCTTTCCATAAAATGGAAAATTGCCTTTGAAATCTTC 

 ReginaDPDR   TTAATCGAAAAATAGATTTTTTTTCTTTCCATAAAATGGAAAATTGCCTTTGAAATCTTC 

 ReginaDPDR   TTAATCGAAAAATAGATTTTTTTTCTTTCCATAAAATGGAAAATTGCCTTTGAAATCTTC 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   TTAATCGAAAAATAGATTTTTTTTCTTTCCATAAAATGGAAAATTGCCTTTGAAATCTTC 

 

 ReginaDPDR   CCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCATTCTCT 

 ReginaDPDR   CCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCATTCTCT 

 ReginaDPDR   CCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCATTCTCT 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   CCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCATTCTCT 

 

 ReginaDPDR   TAGGCTTCAGACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAACCCAGA 

 ReginaDPDR   TAGGCTTCAGACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAACCCAGA 

 ReginaDPDR   TAGGCTTCAGACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAACCCAGA 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   TAGGCTTCAGACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAACCCAGA 

 

 ReginaDPDR   ATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGTGCTCTG 

 ReginaDPDR   ATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGTGCTCTG 

 ReginaDPDR   ATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGTGCTCTG 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   ATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGTGCTCTG 

 

 ReginaDPDR   GTACTCTCTAGGCATGTTGTTGTGAACTTGTTACCTATTTTGGTTGGTGGGTTTTTCTGG 

 ReginaDPDR   GTACTCTCTAGGCATGTTGTTGTGAACTTGTTACCTATTTTGGTTGGTGGGTTTTTCTGG 

 ReginaDPDR   GTACTCTCTAGGCATGTTGTTGTGAACTTGTTACCTATTTTGGTTGGTGGGTTTTTCTGG 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   GTACTCTCTAGGCATGTTGTTGTGAACTTGTTACCTATTTTGGTTGGTGGGTTTTTCTGG 

 

 ReginaDPDR   GTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACCCAGAAA 

 ReginaDPDR   GTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACCCAGAAA 

 ReginaDPDR   GTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACCCAGAAA 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   GTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACCCAGAAA 
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Supplementary Figure 3.3 Continued. 
 

 ReginaDPDR   ATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTTTGAATT 

 ReginaDPDR   ATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTTTGAA-- 

 ReginaDPDR   ATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTTT----- 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

 ReginaDPDF   ------------------------------------------------------------ 

  Consensus   ATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTTTGAATT 

 

 ReginaDPDR   TTTTGA 

 ReginaDPDR   ------ 

 ReginaDPDR   ------ 

 ReginaDPDF   ------ 

 ReginaDPDF   ------ 

 ReginaDPDF   ------ 

  Consensus   TTTT-- 
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Supplementary Figure 3.4 Alignment of ‘Cristobalina’ and ‘Regina’ consensus sequences 

generated from DPDf/DPDr PCR fragments sequenced. The base number indicates the base 

nr upstream of PavDAM1 start codon. Deleted region in ‘Cristobalina’ is marked by gaps  

(-). 
 

Cristobalina    671 TACTCTTTCTTTCTCTTGGTTGA-CCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCC 733 

Regina         1515 TACTCTTTCTTTCTCTTGGTTGACCCAAAAAAAAAACCTCTTTGATGAATTGTTTGTTCC 1454 

 

Cristobalina    734 TCARAGAATATCACAACAACAATAGCAAAACAATGC------------------------ 698 

Regina         1455 TCAAAGAATATCACAACAACAATAGCAAAACAATCCATATGGGTCATATATCCATGGCTT 1394 

 

Cristobalina    723 ------------------------------------------------------------ 674   

Regina         1395 TTTCTCGCCCGAGTCTCATGTTTGTACAAATCACATGTCTCCCATCCCATACATCAAAAA 1334  

 

Cristobalina    723 ------------------------------------------------------------ 674  

Regina         1335 GCTCTTTTGCACTGAATAGATTGAAAAGAGATGTTATAATCATGCAACCAAGCCAACAAA 1274  

 

Cristobalina    723 ------------------------------------------------------------ 674  

Regina         1275 ACTGGATGAATACAAAACAACAAATAAATGGCAAAAGAATACGAAAGGCACCGATTGAAG 1214  

 

Cristobalina    723 ------------------------------------------------------------ 674  

Regina         1215 TGCCCTCAGTTTTCTCTCATGTCAAAAAGTCAGAAGCTTCATAACGTAATCAAAGAAAAA 1154  

 

Cristobalina    723 ------------------------------------------------------------ 674  

Regina         1155 GAGACGAACCCATCACAGCCCCACCAACAAATTGAAGAGCAGGATCAGAACGACAACGAA 1094  

 

Cristobalina    723 ------------------------------------------------------------ 674  

Regina         1095 ATAGAAGAAGTCCAGTGCCAAATAGCAGTCTCCAACTTCCCTGGCGGCTCCGAGACCTTC 1034  

 

Cristobalina    723 ------------------------------------------------------------ 674 

Regina         1035 GAATAGCAGCCAAGTTCATCAAGATCTAGGTGGTGGAGTTTACTGGGTTGGGGAGATTGG 974  

 

Cristobalina    723 ------------------------------------------------------------ 674  

Regina          975 GGTGTGTGTGGTGGTTGGCGGGTGGGCTGGTGAGGGTGGGTTTGGCTGATGGCTTCTCTT 914  

 

Cristobalina    723 ------------------------------------------------------------ 674 

Regina          915 CCCCTTATATTTTTCTTCTTTTTAGAAAAGAAAAAATCTTTCTTGTTCTTAGATTTAAAT 854  

 

Cristobalina    723 -----------------------------------------------------------  674   

Regina          855 GCCCCTCAACAAGTAACCTCAGTTTAATCTAATTTGATCTAATTTGACAGAAATTGGAGA 794  

 

Cristobalina    723 ------------------------------------------------------------ 674   

Regina          795 TTGAACTTGAATTGCTTAAATTGAAAATCACAAAGGTAAAAATAATTAAATTGAAAACAC 734  

 

Cristobalina    723 ----------ATGGTAAAAGTGATAAACTACATAGACCAAAAATGATAAAATAGGCACGT 674 

Regina          735 AGAAATTTTAATGGTAAAAGTGATAAACCACATAGACCAAAAATGATAAAATAGGCACGT 674  

 

Cristobalina    675 GAGAATTGAACCCGGCGTGGACTGTGGGAGCAACAGAAGAAGTGTCGCATGGTGAGTTCA 614 

Regina          675 GAGAATTGAACCCGACGTAGACTGTGGGAGCAACCGAAGAAGTGTCGCATGGTGAGTTCA 614  

 

Cristobalina    615 ATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATAAAAGCA 554 

Regina          615 ATCAAGTGAGACGACAGCGCATCACCAGTATCAAGGACCATCCTCCTCCACATAAAAGCA 554 

 

Cristobalina    555 CAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAACCATTC 494 

Regina          555 CAAATTTTATTTATTTATTTTTTATAAAGATATTAAACTTAGATATGGACAAAACCATTC 494  

 

Cristobalina    495 ACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAGATCAAA 434 

Regina          495 ACAAAAGTAAGATGCCACATTTTCTACTGTCACGTTACAAAATCAACGGTGGAGATCAAA 434  

 

Cristobalina    435 TTAATCGAAAAATAGATTTTTTTTTCTTCCATAAAATGGAAAATTGCCTTTGAAATCTTC 374 

Regina          435 TTAATCGAAAAATAGATTTTTTTTCTTTCCATAAAATGGAAAATTGCCTTTGAAATCTTC 374  

 

Cristobalina    375 CCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCATTCTCT 314  

Regina          375 CCTTTCTCGAACAGCTAGCCAGCAGCAGCAGCAGCCAACTCTCCCTCTCTCTCATTCTCT 314  

 

Cristobalina    315 TAGGCTTCARACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAACCCARA 254  

Regina          315 TAGGCTTCAGACCCTGAAACCCGACAAAGGTAAACATTAAACAAAGAGAGGAAACCCAGA 254  
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Supplementary Figure 3.4 Continued. 
 

Cristobalina    255 ATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGTGCTCTG 194  

Regina          255 ATTTAATTAGTTGATTAATTAATGGTTTTCCCTCTTTCTCTTCTTCTTCTTTGTGCTCTG 194  

 

Cristobalina    195 GTACTCTCTAGGCATGTTGTTGTGAACTTGTGACCTATTTTGGTTGGTGGGTTTTTCTGG 134  

Regina          195 GTACTCTCTAGGCATGTTGTTGTGAACTTGTTACCTATTTTGGTTGGTGGGTTTTTCTGG 134  

 

Cristobalina    135 GTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACCCAGAAA 74  

Regina          135 GTTTTATTCACTTAGATCTGGGGGCCATTAAATCTTTAAAATTTACAAGAAACCCAGAAA 74  

 

Cristobalina     75 ATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTTTGAATT 14 

Regina           75 ATCATTTGTAGTTTTTGAGTGTATGAACATAATATATGTGAAAAGTGGTTGGTTTGAATT 14  

 

Cristobalina     15 TTTTTGAAGGGGAC 1  

Regina           15 TTTTTGAAGGGGAC 1  
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INTRODUCTION 

 

Sweet cherry (Prunus avium L.) is mainly cultivated for its edible fruit. Fruit quality 

depends on biochemical and sensory changes in color, flavour and texture during fruit 

development and ripening, as well as during the post-harvest storage (Crisosto et al., 2003; 

Serrano et al., 2005). Consumer survey in diverse geographical regions has demonstrated 

that large fruit, dark skin and uniformity of color, firmness, sweetness, sourness, flavour 

intensity, soluble solid concentration and titratable acidity are the main aspects of 

consumer acceptability (Cliff et al., 1995; Crisosto et al., 2003; Chauving et al., 2009). 

Moreover, not only consumer preferences, but adequate adjustment to the various 

processes involved in the food chain should also be considered as fruit quality (Gallardo 

et al., 2015).  

Most fruit quality traits are quantitative (Lamb, 1953; Fogle, 1961) being size and 

firmness two of these important fruit quality traits in sweet cherry. As sweet cherry is 

mostly sold as a fresh fruit, grower’s profitability directly depends on fruit quality 

attributes like size and firmness (Whiting et al., 2006). Larger fruit reaches higher prices 

in production and retail being an essential trait to be consider in every breeding program 

(Dirlewanger et al., 2009). Fruit diameter and weight are highly correlated, thus larger 

fruits have more weight (Whiting et al., 2006), and it is usual to find the terms weight, 

diameter and length used indistinctly in literature regarding sweet cherry fruit size. Several 

works have studied the genetics of fruit size in sweet cherry. Zhang et al. (2010) identified 

QTLs related to fruit diameter and weight on linkage groups (LGs) 2 and 6 using ‘New 

York 54’ × ‘Emperor Francis’ population. Rosyara et al. (2013) using four sweet cherry 

populations (‘New York 54’ × ‘Emperor Francis’; ‘Regina’ × ‘Lapins’; ‘Namati’ × 

‘Summit’; ‘Namati’ × ‘Krupnoplodnaya’) identified four additional fruit weight QTLs on 

LGs 1, 2, 3 and 6, and validated the two fruit size QTLs described by Zhang et al. (2010). 

Furthermore, using two additional progenies (‘Regina’ × ‘Lapins’ and ‘Regina’ × 

‘Garnet’), Campoy et al. (2015) reported a new major weight QTL located on LG5. 

Fruit firmness is an important aspect of organoleptic quality, and it is an important 

attribute for packing and transport as it contributes to shelf life during postharvest handling 

and shipping (Zoffoli et al., 2017). Fruit firmness increase is achieved by gibberellic acid 

treatment or rapid fruit cooling (< 1ºC; Zoffoli et al., 2017). Campoy et al. (2015) reported 
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the first QTL analysis in sweet cherry (‘Regina’ × ‘Lapins’ and ‘Regina’ × ‘Garnet’ 

populations). Firmness QTLs were found on all LGs (except LG7), with a major QTLs 

found on LG2. More recently, Cai et al. (2019) carried out firmness QTL analyses in three 

sweet cherry populations (‘Fercer’ × ‘X’ F1 population, the INRA sweet cherry germplasm 

collection and RosBREED pedigreed population). A major firmness QTL on LG4 (qP-

FF4.1), explaining 54.0 to 84.6% of phenotypic variation, was found (Cai et al., 2019). 

Additional minor QTLs on LGs 1, 2, 5, 6 and 8 were also detected (Cai et al., 2019). 

Haplotype analysis of qP-FF4.1 revealed a dominant effect of ‘soft’ alleles over ‘firm’ 

ones, being most of bred cultivars homozygous for ‘firm’ alleles whereas mazzards were 

homozygous for ‘soft’ alleles (Cai et al., 2019). In silico firmness candidate gene analyses 

have revealed potential candidate genes related with plant cell wall modification and 

hormone signalling pathways (Campoy et al., 2015; Cai et al., 2019).  

Cultivation and trading of sweet cherry is an important economic activity in 

different regions of Spain, being of highest relevance in the Jerte Valley (Cáceres). The 

tradition of cherry production in this area is based on the cultivation of landraces, which 

are highly adapted to soil and climate conditions. Among these landraces, the cultivar 

‘Ambrunés’ is most extensively cultivated due to its outstanding fruit quality and great 

post-harvest aptitude (Alique et al., 2005; Serradilla et al., 2012). Additionally, this cultivar 

is the basis of the Protected Designation of Origin (POD) ‘Cereza del Jerte’, and is now 

being used in sweet cherry breeding as a source of high fruit quality. ‘Ambrunés’ is a 

vigorous, self-incompatible, early flowering and very late ripening (+31 days after 

‘Burlat’) variety. The fruits are heart-shaped, of medium size, mahogany skin colour and 

orange flesh, collected without peduncle and show high resistance to cracking due to their 

firmness (Gella et al., 2001; Quero-García et al., 2017). Also, fruit firmness is well 

maintained during ripening providing an outstanding post-harvest aptitude (Serradilla et 

al., 2012). However, ‘Ambrunés’ has some disadvantages in modern plantations, like the 

lack of homogeneity among individuals and irregular yields over the years (López-Corrales 

et al., 2003). Because of its adaptation to the Jerte Valley conditions, its fruit quality and 

postharvest behaviour, ‘Ambrunés’ is a very interesting cultivar for sweet cherry breeding, 

and has been extensively investigated using different approaches like physicochemical and 

nutritional composition studies (Bernalte et al., 1999; Serradilla et al., 2011a and 2016; 

Garrido et al., 2014), post-harvest aptitude (Alique et al., 2005; Serradilla et al., 2011b), 
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and to develop biochemical (Serradilla et al., 2008) and genetic protocols for authentication 

(Serradilla et al., 2013).  

The objective of this work is to investigate the genetic basis of fruit firmness from 

‘Ambrunés’ and to determine if fruit firmness and size are correlated in ‘Ambrunés’ 

offspring, with the ultimate goal of enabling marker assisted selection (MAS) of this trait 

in sweet cherry. Given the relationship observed between fruit firmness and size (Campoy 

et al., 2015), fruit size was also investigated. To achieve this goal, an F1 sweet cherry 

population (‘Ambrunés’ × ‘Sweetheart’), along with parental genotypes that come from 

two distinct genetic pools (Wünsch and Hormaza, 2002), was used. This population was 

phenotyped for two years for these quality traits (fruit weight, diameter/size and 

firmness/texture) and genotyped with RosBREED cherry 6K SNP array v1 to construct a 

high-density linkage map that allows carrying out QTL mapping of these fruit quality traits. 

 

 

MATERIALS AND METHODS 

 

Plant material 

In this work, an F1 (N=140) sweet cherry population from the cross of ‘Ambrunés’ 

(S3S6) × ‘Sweetheart’ (S3S4’) (A×S) was used. This family and the parental cultivars are 

maintained in the facilities of Centro de Investigaciones Científicas y Tecnológicas de 

Extremadura (CICYTEX) in the Jerte Valley (Cáceres, Spain). The A×S cross was made 

in 2009 and offspring individuals were planted in 2010. ‘Ambrunés’ is a landrace 

traditionally cultivated in the Jerte Valley and the most cultivated variety in this area. It 

shows both outstanding organoleptic quality and great post-harvest behaviour, based on its 

capacity to maintain firmness through time (Alique et al., 2005). ‘Sweetheart’ is a 

commercial variety from Pacific Agri-Food Research Centre (PARC) cherry breeding 

program in Summerland (BC, Canada) that stands out for self-fertility and late ripening 

(Lane and MacDonald 1996). 
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Figure 5.1 Frequency distribution of fruit weight, diameter and firmness for A×S population in 

two years (Y1 and Y2). Grey and black bars indicate phenotypic values for ‘Ambrunés’ and 

‘Sweetheart’, respectively.  
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Fruit size and firmness phenotyping 

Phenotyping of weight, diameter and firmness was carried out during two 

consecutive years (2015 and 2016) for A×S individuals and the parental cultivars at 

Instituto de Investigaciones Agrarias Finca La Orden – Valdesequera (CICYTEX, 

Extremadura). In the first year (Y1), 10 fruits per tree were phenotyped, while 25 fruits per 

tree were phenotyped in the second year (Y2). Fruits of each tree were weighted and 

measured at its longest axis (perpendicular to suture axis) using a calliper. To evaluate fruit 

firmness, a texturometer (TA.XT2i Texture Analyser, Stable Microsystems, Godalmimg, 

UK) was used (Balas et al., 2019). The texturometer was adjusted to measure the force 

needed to deform a fruit 3% of its diameter (Martínez-Esplá et al., 2014) and provided data 

of the applied force in Newton (N) and the deformation length in millimetres (mm). The 

ratio (N/mm) is defined as the firmness in this study (Serradilla et al., 2011b). Firmness 

measures were performed at two different points of each fruit: on the dorso-ventral axis 

(traversing the suture) and on the medio-lateral axis (perpendicular to suture). The average 

of these two measures was used as the firmness value (Balas et al., 2019). 

The phenotypic data was analysed to estimate the mean, standard deviation and 

distribution of each trait in both years. Additionally, analysis of the linear correlation 

among traits and nonparametric analysis of variance (ANOVA) were carried out. Broad 

sense heritability (H2) was estimated using the equation H2 = 
𝜎𝑔
2

𝜎𝑔
2+

𝜎𝑒
2

𝑛

, where 𝜎𝑔
2 is the genetic 

variance in the F1 family, 𝜎𝑒
2 is the environmental variance and n is the number of years. 

These statistical analyses were performed using SPSS® statistics v21.0.0 (IBM, Chicago, 

IL, USA) and R v3.4.1 (R Core Team, 2017). 

 

SNP genotyping and linkage map construction 

Genomic DNA from the A×S individuals and the parental cultivars was extracted 

using DNeasy Plant Mini Kit® (Qiagen N.V., Hilden, Germany). DNA quantification and 

SNP genotyping of all the individuals and the parental cultivars was carried out at CEGEN-

PRB2-ISCIII (Madrid, Spain). SNP genotyping was carried out using the RosBREED 

cherry 6K SNP array v1 (Peace et al., 2012). The SNP genotypes were clustered, reviewed 

and filtered using the Genotyping Module of GenomeStudio® software, using the build-in 

algorithm ‘Gentrain2’ for all samples with GenCall score above 0.15 (v2011.1, Illumina 
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Inc., San Diego, CA, USA). The SNP data were clustered using the A×S individuals and a 

set of 45 sweet cherry accessions, to maximize allelic diversity (Martínez-Royo and 

Wünsch, 2014). A duplicate individual genotype was included in each 96 plate as control. 

Identical SNP genotypes were identified for replicated individuals, confirming SNP scan 

quality and reproducibility. The SNPs incorrectly clustered for the individuals of A×S 

population were revised and manually edited when possible. Paternity analysis to confirm 

hybrid identity of all the progeny was performed using the P-P-C (Parent-Parent-Child) 

module of GenomeStudio. ASSIsT v1.01 software (Di Guardo et al., 2015) was used to 

filtered SNP markers and assigned input data format prior to linkage mapping.  

Linkage map construction was performed using JoinMap® software (v4.1, Kyazma 

B.V., Wageningen, The Netherlands; van Ooijen, 2006) following the ‘Two-step strategy’ 

described by Tavassolian et al. (2010). Minimum independence of LOD, recombination 

frequency, maximum likelihood mapping algorithm and Kosambi’s mapping function 

(Kosambi, 1944) were used for map construction following the details described in Chapter 

2 for a cross-pollinated population. Markers showing distorted segregation ratios (p<0.01) 

from expected Mendelian segregation were eliminated when they were not surrounded by 

other markers showing the same distortion. The genetic positions of mapped SNPs were 

compared with their physical positions in the peach genome v2.0.a1 (Verde et al., 2017). 

 

QTL mapping and haplotype analysis 

QTL analysis was performed for the three phenotyped traits (weight, diameter, and 

firmness) on the parental maps in both years. QTL mapping was carried out using 

MapQTL® (v.6.0, Kyazma B.V., Wageningen, The Netherlands; van Ooijen, 2009), 

through the interval mapping method (Lander and Botstein 1989) and MQM mapping 

(Jansen, 1993 and 1994; Jansen and Stam, 1994). To establish the LOD significance 

threshold for each QTL in each linkage group (LG), a permutation test was carried out at 

a significance level of 90% (p<0.1) using 10,000 permutations (Lander and Botstein, 1989; 

van Ooijen, 1992). Graphical representations of LGs and QTLs were obtained using 

MapChart software (Voorrips, 2002).  

QTL haplotypes were constructed for those QTLs detected in both years. SNP 

markers spanning the QTL regions were selected to determine parental haplotypes. 
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Progeny showing recombination in these QTL regions were eliminated from the analysis. 

Mean phenotypic values of each QTL haplotype were estimated in the remaining A×S 

population individuals. ANOVA calculations and Student’s t-test (p<0.05) were carried 

out using SPSS® statistics v21.0.0 software (IBM, Chicago, IL, USA) to compare mean 

values of the different haplotypes. 

 

 

 

RESULTS 

 

Phenotype mean, distribution, heritability and correlation 

 Phenotyping of fruit weight, diameter and firmness in A×S was carried out for 94 

(67%) and 99 (71%) individuals each year (Y1 and Y2, respectively), with a total of 117 

trees evaluated in the two years. For both years, ‘Sweetheart’ fruits were larger, heavier 

and firmer than ‘Ambrunés’ fruits (Fig 5.1; Sup Table 5.1). Fruit weight and diameter mean 

values in the progeny were similar both years (Sup Table 5.1) and no significant 

differences were observed between years. However, for fruit firmness, a significant 

difference was observed between Y1 and Y2 (Student’s t-test; p<0.05), with firmness 

being higher in Y1 (1.7 N/mm in Y1 and 1.5 N/mm in Y2; Sup Table 5.1). Broad-sense 

heritability (H2) ranged from 0.63 to 0.75 for the three traits, being largest (H2=0.75) for 

firmness (Sup Table 5.1). 

Progeny distributions for the three traits measured revealed that weight (Shapiro 

Wilk test; Prob<W: 0.345 in Y1; Prob<W: 0.155 in Y2) and diameter (Prob<W: 0.970 in 

Y1; Prob<W: 0.295 in Y2) fitted normality, whereas firmness showed highly skewed 

distribution to softer fruits, and therefore did not fit a normal distribution (Y1 

Prob<W:<0.0001; Y2 Prob<W: <0.0001). Additionally, positive transgressive 

segregations for firmness was observed in both years, while for diameter and weight it was 

only observed in the second year. However, negative transgressive segregation was 

observed for all the traits both years (Fig 5.1). In fact, the population means were lower 

than the parental means for the three traits both years.  

Pearson’s correlation coefficients (r) were calculated amongst the three traits in 

both years (Fig 5.2). As expected, highly significant positive correlation (p<0.01) was 

observed between diameter and weight in both years (r=0.954 in Y1; r=0.962 in Y2). In 
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addition, low significant positive correlation was observed between firmness and diameter 

in the second year (r=0.384, p<0.01 in Y2), indicating that in the second year larger fruits 

were firmer. No significant correlation (p<0.01) was detected between firmness and weight 

(Fig 5.2).  

 

 

 

 

Figure 5.2 Pairwise correlations for fruit weight, diameter and firmness in two years (Y1 and Y2). 

Pearson coefficient (r) and P value (p) are presented for each plot. Asterisk indicates significant 

correlation at p<0.01. 

 

 

 

SNP genotyping and linkage mapping  

 From the total of 5,696 SNPs in the array, 5,360 (94%) and 5,377 (94%) SNPs were 

correctly genotyped in ‘Ambrunés’ and ‘Sweetheart’, respectively. ‘Ambrunés’ showed 
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higher heterozygosity than ‘Sweetheart’, being 641 heterozygous SNPs in ‘Ambrunés’ and 

450 in ‘Sweetheart’. From the genotyped markers in the A×S population, 4,446 (78%) 

were monomorphic, 355 (6%) were failed to be detected, and the remaining 895 (16%) 

were polymorphic and informative, and were used for linkage map construction. 

Linkage parental maps of ‘Ambrunés’ and ‘Sweetheart’ include 463 and 254 SNPs, 

respectively. Both maps had 8 LGs, and covered 867.8 and 529.1 cM, respectively (Table 

5.1; Sup Table 5.2, Sup Fig 5.1). Being ‘Ambrunés’ highly heterozygous, a larger number 

of markers could be mapped, showing larger LGs and larger number of markers in most 

LGs than ‘Sweetheart’ (Table 5.1; Sup Fig 5.1). ‘Sweetheart’ linkage map covered a 

smaller genetic length and showed smaller LG size for all LGs than ‘Ambrunés’ map. 

Some ‘Sweetheart’ LGs, like 3, 4 and 7, with 12 to 14 SNPs, had a very low coverage, 

showing putative large homozygous regions in these chromosomes for this cultivar (Table 

5.1; Sup Fig 5.1). Average marker distance was similar in both parental maps (2.1 and 2.4 

cM for ‘Ambrunés’ and ‘Sweetheart, respectively), and large gaps were detected in both, 

‘Ambrunés’ (33.9 cM on LG2, 28.4 cM on LG2) and ‘Sweetheart’ maps (31.1 cM on LGs 

1 and 7) (Table 5.1; Sup Fig 5.1). A group of SNP markers showing distortion from 

expected Mendelian segregation ratios (p<0.001) were observed at bottom region of 

‘Sweetheart’ LG6 (Sup Fig 5.1). The A×S consensus map included 820 SNPs, with a total 

genetic length of 827.6 cM and an average marker distance of 1.0 cM (Table 5.1; Sup 

Table 5.2; Sup Fig 5.1). Consistent with the parental maps, LG1 was the largest with 185 

SNPs and covering 184.7 cM, while LG5 was the shortest with a genetic distance of 76.2 

cM (Table 5.1; Sup Fig 5.1).  

The SNP order and position in the ‘Ambrunés’, ‘Sweetheart’ and consensus maps 

were compared with the physical position of the same SNPs in the peach genome v2.0.a1 

(Sup Table 5.2). Despite the high degree of collinearity some markers, nine (1.9%) SNPs 

in ‘Ambrunés’, eight (3.1%) in ‘Sweetheart’ and 59 (7.2%) in the consensus map, were 

mapped in a different position compared with their physical position in peach genome (Sup 

Table 5.2). Most noticeable is an inverted region found at top of LG5 that included 8 SNPs 

in ‘Sweetheart’ and 19 in the consensus map (Sup Table 5.2). In addition, nine makers 

were mapped in different LG than in peach genome, three of them in ‘Ambrunés’ map and 

six in ‘Sweetheart’ map (Sup Table 5.3). 
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QTL analyses 

QTL mapping of the three traits (fruit weight, diameter and firmness) in the two 

years identified 21 significant QTLs distributed on all LGs except LG4 (Sup Table 5.4). 

Of these, six QTLs, including one for weight, two for diameter and three for firmness, were 

detected in both years (Table 5.2; Fig 5.3). 

For fruit weight, a total of four QTLs were detected on LGs 1, 2, 3 and 5 of 

‘Ambrunés’ and ‘Sweetheart’ maps (Sup Table 5.4). Of these, the most significant is the 

QTL detected in both years that maps to ‘Ambrunés’ LG1 (qP-Wei1.1m) at the 97.8 to 

119.9 cM, explaining 15.4 to 17.8% of the phenotypic variation (PV) (Table 5.2; Fig 5.3). 

For fruit diameter, six QTLs were identified on LGs 1, 2, 5, 7 and 8 (Sup Table 5.4) also 

in both parental cultivars. From these, the two most significant QTLs across both years 

were also found on ‘Ambrunés’ LG1, qP-Dia1.1m and qP-Dia1.2m (Table 5.2; Fig 5.3). 

qP-Dia1.1m was found between 57.2 to 79.2 cM of ‘Ambrunés’ parental map and explained 

11.0 to 12.9% of PV, while qP-Dia1.2m, was found from 100.7 to 118.9 cM, and it was 

associated with a PV of 10.9 and 10.8% in Y1 and Y2, respectively (Table 5.2; Fig 5.3).  

 

 

 
Table 5.1 Number of SNP markers, genetic length, average marker distance and maximum gap for 

the ‘Ambrunés’ (A), ‘Sweetheart’ (S) and consensus (A×S) maps. (cM; centiMorgan). 

 

 

  Genetic 

map 
LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 Total 

Number of 

markers 

A 108 27 63 46 32 41 83 63 463 

S 47 53 12 14 42 27 12 47 254 

A×S 185 93 85 62 84 91 99 121 820 

Genetic 

length 

(cM) 

A 196.1 105 117.3 93.2 64 109.5 97.9 84.8 867.8 

S 122.2 90.1 25.7 17.9 61.6 84.9 63.9 62.8 529.1 

A×S 184.7 98.6 111.1 92.9 76.2 95.7 91.6 76.8 827.6 

Average 

marker 

distance 

(cM) 

A 1.8 4 1.9 2.1 2.1 2.7 1.2 1.4 2.1 

S 2.2 1.7 2.3 1.5 1.5 3.2 5.7 1.4 2.4 

A×S 1 1.1 1.3 1.5 0.9 1.1 0.9 0.6 1 

Maximum 

gap (cM) 

A 23.4 33.9 28.4 31.1 9 17.7 12.7 19.9 33.9 

S 31.1 8.1 7.2 7.2 15.6 31.1 28.4 9.9 31.1 

A×S 11.9 5.9 12.7 19.9 9.2 7.4 9.9 8.2 19.9 
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For fruit firmness, QTL analysis identified five QTLs on LGs 1, 3 and 6 (Sup Table 

5.4). The most significant QTLs across both years were also detected on LG1 (qP-Fir1.1m 

and qP-Fir1.2m), in both parental cultivars (Table 5.2; Fig 5.3). qP-Fir1.1m explained 12.5 

to 18.8% of PV in ‘Ambrunés’ and qP-Fir1.2m from 10.2 to 22.5% in ‘Sweetheart’ (Table 

5.2). It is noticeable that the QTL in ‘Sweetheart’ (qP-Fir1.2m) shows negative values of 

additive effects (-0.69 and -0.18 N/mm) both years, while these values are positive for 

‘Ambrunés’ (0.20 and 0.33 N/mm for qP-Fir1.1m) (Table 5.2). A second relevant firmness 

QTL was identified on ‘Ambrunés’ LG6, qP-Fir6.1m, explaining 6.7 and 14.3% of PV in 

Y1 and Y2 respectively (Table 5.2; Fig 5.3). 

Some weight, diameter and/or firmness QTLs were found in the same region, this 

was the case of major stable QTLs, qP-Wei1.1m and qP-Dia1.2m (Fig 5.3), that cover the 

same region, and qP-Dia1.1m and qP-Fir1.1m, all of them found both years on ‘Ambrunés’ 

LG1. The same happened with minor and less stable QTLs qP-Wei3.1, qP-Dia3.1 and qP-

Fir3.1 all detected in ‘Sweetheart’ LG3 in Y2 (Sup Table 5.4). 

 

Haplotype analysis 

Haplotype analysis (Table 5.3, Sup Table 5.5) was carried out for the six most 

significant QTLs detected in both years (Table 5.2). For fruit weight QTL qP-Wei1.1m, the 

haplotypes analysis in the segregating parent (‘Ambrunés’) revealed that individuals with 

Wei1.1_H2 haplotype had larger fruit weight (0.9 to 1.1 g) in both years than those with 

Wei1.1_H1 (Table 5.3). For fruit diameter, ‘Ambrunés’ haplotypes of both LG1 QTLs, qP-

Dia1.1m and qP-Dia1.2m, showed fruits larger in those trees with haplotypes Dia1.1_H2 

and Dia1.2_H2, also both years (1.0 to 1.9 mm larger; Table 5.3). For fruit firmness, 

haplotypes of ‘Ambrunés’ and ‘Sweetheart’ for two QTL region on LG1, qP-Fir1.1m and 

qP-Fir1.2m, revealed that individuals with haplotype combination Fir1.1_H2/Fir1.2_H1 

were firmer (from 0.5 to 0.8 N/mm) than those with all other haplotype combinations 

(Table 5.3). For firmness QTL qP-Fir6.1m
, individuals with haplotype Fir6.1_H1 also 

showed higher firmness (0.4 N/mm more) than those with Fir6.1_H2 (Table 5.3). 

Interaction between the two ‘Ambrunés’ firmness stable QTLs (qP-Fir1.1m and qP-

Fir6.1m) was analyzed (Sup Table 5.6). Individuals with the haplotypes that revealed 

higher firmness in each QTL, Fir1.1_H2 and Fir6.1_H1 (Table 5.3) were the most firm in 

both years, with firmness values above 2.0 N/mm (Sup Table 5.6), being this firmness 
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significantly different from that that observed in the other possible genotypes (Sup Table 

5.6). 

 
 
 

 
Figure 5.3 Graphical representation of stable (detected in both years) fruit weight (black), diameter 

(blue) and firmness (red) QTLs identified on ‘Ambrunés’ and ‘Sweetheart’ parental maps. All 

detected QTLs are summarized in Sup Table 5.4. 
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DISCUSSION 

 

In this work, the use of a unique F1 population that combines two unrelated sweet 

cherry genetic pools, to study fruit size and firmness during two years, has allowed 

identifying relevant QTLs for these traits that will be useful for breeding in the species. 

QTLs found in this work were previously reported, validating previous findings in other 

genetic backgrounds and completing the genetic picture of these traits in sweet cherry. 

Most relevant is the validation of relevant stable QTLs on LG1 for the three evaluated 

traits, suggesting multiple closely linked genes controlling these traits and/or a single gene 

with pleiotropic effects. The fact that positive additive effects of these three QTLs are 

found in ‘Ambrunés’ and that the favorable alleles are in coupling phase, reveals the 

potential of this cultivar for breeding for fruit size and firmness. 

 

SNP genotyping and linkage maps 

 The number of heterozygous markers genotyped in ‘Ambrunés’ (641) and 

‘Sweetheart’ (450) was in the range (400-700) observed for other sweet cherry cultivars 

from various origins evaluated (Peace et al., 2012) and genotyped with the same array, like 

‘Cristobalina’ (526), ‘Vic’ (483), ‘Regina’ (603), ‘Lapins’ (515), ‘Black Tartarian’ (634) 

or ‘Kordia’ (526) (Klagges et al., 2013; Chapter 2). A larger number of heterozygous 

markers were detected in ‘Ambrunés’ than ‘Sweetheart’. ‘Ambrunés’ is a landrace and is 

expected to be highly heterozygous, whereas ‘Sweetheart’ is a commercial cultivar that 

may have lost some degree of heterozygosity through breeding (Lane and MacDonald, 

1996). The large number of heterozygous markers in ‘Ambrunés’ was evidenced in the 

total genetic length covered by the genetic map, being the largest of all developed in sweet 

cherry using SNP markers with the RosBREED cherry 6K SNP array (Klagges et al., 2013; 

Castède et al., 2014; Chapter 2) and Genotyping by Sequencing (GBS) (Guajardo et al., 

2015). On the other side, the presence of large putative homozygous regions in 

‘Sweetheart’ may be a problem for QTLs analyses due to the presences of large genomic 

regions that were not covered by any segregating marker. This was most noticeable on 

‘Sweetheart’ LGs 3 and 4, where very few markers were heterozygous. Similarly, in 

…….... 
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Table 5.2 Significance, genetic interval, QTL peak and physical position of main QTLs identified for both years for weight, diameter and firmness in A×S 

population. All detected QTLs are shown in Sup Table 5.4. 

Trait 
Parental 

cultivar 
Year QTL name LG 

QTL  

interval 

(cM) 

Physical 

position* 

QTL peak QTL 

previously 

described 

(Reference) 
SNP LOD Variance 

PVE

(%) 

Additive 

effect 

Weight ‘Ambrunés’ Y1 qP-Wei1.1m 1 118.1-119.9 30.69-31.94 ss490546431 3.26 1.03 15.4 0.43 FW_G1 (1) 

  Y2 qP-Wei1.1m 1 97.8-119.9 27.00-31.94 ss490547198 4.27 1.44 17.8 0.63 fw1.1 (2) 

Diameter ‘Ambrunés’ Y1 qP-Dia1.1m 1 69.1-79.2 15.85-23.82 ss490546727 2.69 2.63 12.9 0.62 fw1.1 (2) 

  Y2 qP-Dia1.1m 1 57.2-71.1 11.55-19.96 ss490546442 2.36 4.01 11.0 0.71  

  Y1 qP-Dia1.2m 1 100.7-115.8 28.21-30.34 ss490547003 2.26 2.69 10.9 0.77 FW_G1 (1) 

  Y2 qP-Dia1.2m 1 103.8-118.9 28.94-30.76 ss490547003 2.32 4.02 10.8 0.82 fw1.1 (2) 

Firmness ‘Ambrunés’ Y1 qP-Fir1.1m 1 64.0-67.1 14.73-15.75 ss490546599 3.25 0.23 12.5 0.20 ff1.1  (2)  

  Y2 qP-Fir1.1m 1 59.3-66.0 12.62-15.11 ss490546554 4.08 0.45 18.8 0.33 (3) 

  Y1 qP-Fir6.1m 6 38.9-47.5 7.94-9.93 ss490555475 1.64 0.42 6.7 0.20 ff6.1 (2) 

  Y2 qP-Fir6.1m 6 39.9-42.8 8.01-8.52 ss490555470 3.67 0.23 14.3 0.22 (3) 

 ‘Sweetheart’ Y1 qP-Fir1.2m 1 16.1-32.1 15.25-24.18 ss490546651 5.00 0.43 22.5 -0.69 ff1.1  (2) 

  Y2 qP-Fir1.2m 1 24.5-27.8 22.30-23.86 ss490559249 2.43 0.26 10.2 -0.18 (3) 

* Physical position (Mbps) of SNP markers in peach genome v2.0.a1 (Verde et al., 2017). References: 1 Rosyara et al., 2013, 2 Campoy et al., 2015, 3 Cai 

et al., 2019. 
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previous sweet cherry linkage maps developed using same array, large homozygous 

regions were also detected in some breeding cultivars and inbreed individuals (Chapter 2).  

 Previous reports have confirmed the collinearity of the cherry and peach genomes 

with few exceptions (Dirlewanger et al., 2004; Illa et al., 2011; Chapter 2). In this study, 

this collinearity was also observed. However, the comparison of the SNP map positions 

and their physical positions in peach genome (Verde et al., 2017) confirmed an inverted 

region on the top of LG5 in ‘Sweetheart’ previously reported in other sweet cherry maps 

(Chapter 2). In addition, as previously observed (Klagges et al., 2013; Chapter 2), three 

markers (ss490550875, ss490548697 and ss490550875) mapped on a different LG than in 

peach genome, suggesting the possible translocation of small genome regions between the 

cherry and peach genomes.  

High segregation distortion was observed at the bottom of LG6 in ‘Sweetheart’ 

(p<0.0001). This distortion overlaps with the S-locus, and it is due to gametophytic self-

incompatibility in sweet cherry (reviewed in Herrero et al., 2017). Due to the presence of 

a common S-haplotype (S3) in the two parental cultivars (‘Ambrunés’, S3S6; ‘Sweetheart’, 

S3S4’) only ‘Sweetheart’ S4’ pollen can grow down the style, as a result, segregation 

distortion against S3 allele and the linked haplotype is observed. A similar segregation 

distortion, due to cross-incompatibility, in the surroundings of the S-locus is common in 

other sweet cherry and Prunus maps (Klagges et al., 2013; Guajardo et al., 2015). 

 

Fruit size 

The fruits of ‘Sweetheart’ had larger diameters and weights than ‘Ambrunés’ fruits 

in both years. These values are expected since ‘Ambrunés’ is a landrace and ‘Sweetheart’ 

is a commercial variety from a breeding program. Neither weight nor diameter values of 

‘Ambrunés’ and ‘Sweetheart’ showed large differences between years, despite the fact that 

different number of fruits were used for phenotyping between years. These results 

indicated that phenotyping of larger number of fruits did not result in a significant 

difference in weight or diameter. In the progeny, normal distribution was observed for 

weight and diameter, as has also been reported in other sweet and sour cherry studies 

(Lamb 1953; Fogle 1961; Wang et al., 2000; Zhang et al., 2010; Campoy et al., 2015). In 

these works, as it happened herein, means of fruit diameter and weight in the population 
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were lower than parental midpoint, showing an apparent dominance of small fruit alleles. 

These results suggest that the identification of alleles linked to large sized fruits are 

extremely helpful for MAS of these traits. 

The broad-sense heritability (H2) values of fruit size traits was moderately high, 

revealing that a significant portion of the phenotypic variation has a genetic nature, and 

that some, but not all of the variation observed in these traits can be selected through MAS. 

Diameter heritability identified herein (0.66) was similar to that estimated by Zhang et al. 

(2010) for fruit diameter also in two harvest seasons (0.69). However, fruit weight 

heritability observed in this work (0.63) was lower than that estimated previously in two 

populations, ‘Regina’ × ‘Garnet’ (R×G; H2=0.76) and ‘Regina’ × ‘Lapins’ (R×L; 

H2=0.88), evaluated during seven years (Campoy et al., 2015). 

Main and stable fruit size (weight and diameter) QTLs identified herein (qP-

Wei1.1m, qP-Dia1.1m and qP-Dia1.2m) were found in the middle region of LG1 of 

‘Ambrunés’ map. Since qP-Wei1.1m and qP-Dia1.2m are overlapping, and both traits are 

highly correlated, these QTLs are probably the same fruit size determinant phenotyped in 

two different ways in this work. Fruit weight QTLs, FW_G1 and fw1.1, in the same region, 

were previously mapped in sweet cherry (Rosyara et al., 2013; Campoy et al., 2015). QTL 

fw1.1 spans the three LG1 size QTLs detected in this study (qP-Wei1.1m, qP-Dia1.1m and 

qP-Dia1.2m), while FW_G1 detected by Rosyara et al. (2013) overlaps only with qP-

Wei1.1m and qP-Dia1.2m. Thus, the large QTL fw1.1 (Campoy et al., 2015) is revealed 

herein as two nearby different QTLs, one of them previously reported by Rosyara et al. 

(2013), and another in a higher position that is associated to diameter and firmness (see 

below). Fruit size QTLs in the same LG1 region have been also found in peach (Da Silva 

Linge et al., 2015; Quilot et al., 2004; Eduardo et al., 2011). In fact, Cell Number Regulator 

(CNR) genes have been proposed as strong candidate genes for fruit size on this LG1 region 

(De Franceschi et al., 2013). This is the case of PavCNR09, PavCNR10 and PavCNR11, 

that were mapped at 30 Mbps in peach chromosome 1 (De Franceschi et al., 2013) 

corresponding to same interval region spanned by qP-Wei1.1m and qP-Dia1.2m (27.00 - 

31.94 Mbp) in this work. 

A larger percentage of the phenotypic variation explained by LG1 size QTLs was 

observed herein (up to 12.9% of diameter, and up to 17.5% of weight) than in earlier works 

(8.1 to 9.1%; Rosyara et al., 2013; Campoy et al., 2015), while similar additive effect was 
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observed (0.4 to 0.8 g ; Rosyara et al., 2013; Campoy et al., 2015). These results indicate 

that the effect of these LG1 QTLs may vary depending on the genetic background and 

environmental conditions, and that ‘Ambrunés’ alleles have a significant positive effect in 

this trait. In fact, haplotype analysis revealed that ‘Ambrunés’ haplotypes Wei1.1_H2, 

Dia1.1_H2 and Dia1.2_H2 are associated with larger sized fruits and should be selected 

when breeding for size using ‘Ambrunés’.  

Other fruit size QTLs previously detected in sweet cherry (Zhang et al., 2010; 

Rosyara et al., 2013; Campoy et al., 2015), were also validated in this work with minor 

and less stable effect. This is the case of weight QTLs qP-Wei2.1, qP-Wei3.1 and qP-

Wei5.1 that corresponded to previously detected QTLs for the same trait, FW_G2c, fw3.2 

and fw5.1, respectively (Rosyara et al., 2013; Campoy et al., 2015). However, the major 

QTL associated with fruit size previously found on LG2 of cherry (Zhang et al., 2010; 

Rosyara et al., 2013) was not detected in this study. Fruit size SSR marker BPPCT034, 

which is located within the QTL region is heterozygous in the parental cultivars 

(‘Ambrunés’ 222/229 and ‘Sweetheart’ 222/332; Cai et al., 2017). Additionally, SNP 

haplotype analysis of this QTL region confirmed that the parental cultivars ‘Ambrunés’ 

and ‘Sweetheart’ are heterozygous for this genomic region and have one allele in common 

(data not shown). Therefore, despite this QTL is segregating in this family, no phenotypic 

differences were observed among the segregating classes (data not shown), explaining why 

the QTL was not detected.  

 

Firmness 

 Firmness in ‘Ambrunés’ and ‘Sweetheart’ was slightly different between years (Y1 

and Y2). This difference may be due to the larger number of phenotyped fruits in Y2, 

which may have achieved a better accuracy, or else environmental conditions of different 

harvest years may have influenced this trait. The values of ‘Ambrunés’ firmness observed 

in this work, are similar of those described before for the same cultivar at different ripening 

stages (1.15 N/mm to 2.35 N/mm; Serradilla et al., 2011b and 2012), but ‘Sweetheart’ 

firmness values observed here were higher than those described previously at the same 

ripening stage (1.60 N/mm; Serradilla et al., 2012). Because firmness is highly dependent 

on the ripening stage (Serradilla et al., 2012) slight differences in the ripening stage during 
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Table 5.3 Mean phenotypic values of fruit weight, diameter and firmness haplotypes of QTLs detected in two years. Haplotypes highlight in bold are 

associated with the increase in phenotype values. 

Trait Parent LG QTL Haplotypes Y1 Y2 

     Mean N Mean N 

Weight ‘Ambrunés’ 1 qP-Wei1.1m Wei1.1_H1 5.2 ± 0.9 a 46 5.5 ± 1.2 a 56 

   Wei1.1_H2 6.1 ± 1.1 b 43 6.6 ± 1.5 b 33 

Diameter ‘Ambrunés’  1 qP-Dia1.1m Dia1.1_H1 21.0 ± 1.5 a 32 20.9 ± 2.1 a 42 

   Dia1.1_H2 22.2 ± 2.0 b 32 22.8 ± 2.3 b 27 

  1 qP-Dia1.2m Dia1.2_H1 21.1 ±1.6 a 46 21.1 ± 2.0 a 56 

   Dia1.2_H2 22.1 ± 1.7 b 44 22.5 ± 2.2 b 34 

Firmness ‘Ambrunés’ / 

‘Sweetheart’ 

1 qP-Fir1.1m / Fir1.1_H1 / Fir1.2_H1 1.4 ± 0.4 a  9 1.5 ± 0.33 a  13 

  qP-Fir1.2m Fir1.1_H1 / Fir1.2_H2 1.4 ± 0.4 a  19 1.3 ± 0.42 a  24 

   Fir1.1_H2 / Fir1.2_H1 2.2 ± 0.8 b 22 2.0 ± 0.6 b 19 

   Fir1.1_H2 / Fir1.2_H2 1.7 ± 0.6 a 20 1.4 ± 0.4 a 19 

 ‘Ambrunés’ 6 qP-Fir6.1m Fir6.1_H1 

Fir6.1_H2 

2.0 ± 0.8 a 

1.6 ± 0.7 b 

34 

52 
1.8 ± 0.6 a 

1.4 ± 0.5 b 

37 

52 

          Different letters indicate significant differences between means at P<0.05 



  Chapter 5 

153 
 

sampling may account for firmness differences. However, most likely the elevate area 

where the plant material is grown (the Jerte Valley at 800 m above sea level) may have 

had a relevant effect in fruit firmness in ‘Sweetheart’, as growing at high altitude has been 

observed to increase fruit firmness (Chagné et al., 2014). However, ‘Ambrunés’ fruits are 

more adequate for post-harvest storage, as firmness in ‘Ambrunés’ fruits is maintained 

through post-harvest storage whereas ‘Sweetheart’ firmness decreases rapidly during 

conservation (Serradilla et al., 2012).  

Previous works on cherry firmness QTLs used a different phenotyping protocol and 

equipment, and therefore it is not possible to compare the firmness values. In the works by 

Campoy et al. (2015) and Cai et al. (2019), Durofel® and BioWorks FirmTech 2, 

respectively, were used for phenotyping, while a texturometer was used in this study. 

Firmness distribution in the populations studied by Campoy et al. (2015) fitted to normal 

distribution in all evaluated years, whereas the A×S population shows a skewed 

segregation to softer fruits in both years, as previously observed in ‘Fercer’ × ‘X’ (Cai et 

al., 2019), probably due to dominance of alleles of softer fruit. Firmness heritability 

identified in this work (0.75) was within the range previously observed in other sweet 

cherry populations for this trait (0.73-0.97) (Campoy et al., 2015; Cai et al., 2019).  

In this work, a major firmness QTL was also detected on LG1, in this case in both 

parental cultivars (qP-Fir1.1m and qP-Fir1.2m). These two QTLs were located nearby and 

they do not overlap, however, since QTL analysis in each parental map was carried out 

using different markers, it is highly likely that both QTLs correspond to the same region 

and it is the same QTL. In fact, a firmness QTL in the same region was previously reported 

by Campoy et al. (2015) in an F1 population, and by Cai et al. (2019) in a genome-wide 

fruit firmness association study of a sweet cherry germplasm collection. Again, as observed 

for fruit size QTLs on LG1, the PVE of this QTL was lower in earlier works (6.4%; 

Campoy et al., 2015) than reported in our population (10.2 to 22.5%). It is relevant to 

notice that for this QTL, a negative additive effect was observed for ‘Sweetheart’ whereas 

a positive additive effect was found in ‘Ambrunés’. Previously, a negative additive effect 

was also observed (Campoy et al., 2015). Thus revealing that ‘Ambrunés’ carries alleles 

which increase firmness while ‘Sweetheart’ and other related cultivars may decrease 

firmness in breeding programs.  
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The other stable QTL associated to firmness was detected on ‘Ambrunés’ LG6 (qP-

Fir6.1m). In prior studies, Campoy et al. (2015) and Cai et al. (2019) reported this same 

QTL on other plant material. An endopolygalacturonase (endoPG) homolog gene, 

implicated in fruit softening by cell wall modifying (Brummell and Harpster, 2001), has 

been proposed as best candidate to fruit firmness control of this QTL (Campoy et al., 2015). 

A major firmness QTL reported on LG4 reported in sweet cherry (Cai et al., 2019) was not 

detected in this work. ‘Ambrunés’ and ‘Sweetheart’ are homozygous for same firm allele 

(H1H1) of this QTL (qP-FF4.1; Cai et al., 2019), explaining why this QTL was not 

detected in this study, and why these two cultivars are quite firm.  

The haplotype analysis of these QTLs allowed identifying favorable haplotypes 

(Fir1.1_H2/Fir1.2_H1 and Fir6.1_H1) for firmness breeding using these cultivars. 

Pyramidal selection of these favorable alleles would lead firmer cultivars. This fact was 

observed in the ‘Ambrunés’ haplotypes of qP-Fir1.1m and qP-Fir6.1m, where individuals 

with the two firmness haplotypes (Fir1.1_H2 and Fir6.1_H2) were associated with a 

firmness increase. In addition, ‘Ambrunés’ haplotypes for QTLs on LG1 associated to fruit 

size and firmness increase were found on coupling phase, allowing to select a unique 

‘Ambrunés’ LG1 haplotype region to gain fruit size and firmness. 

 

Fruit size and firmness correlation and interaction 

 The very high (r=0.95-0.96) significant positive correlation observed between 

weight and diameter in this work indicates that both traits are highly dependent and that 

either of them could be used indistinctly to measure size. Nevertheless, no correlation 

between firmness and weigh was observed, but moderate positive correlation between 

firmness and diameter was observed in Y2, indicating that in certain conditions larger size 

may also be associated to higher firmness in this plant material.  

In fact, in Y2 transgressive positive segregation was observed for the three traits. 

Campoy et al. (2015) described a significant negative correlation between firmness and 

weight for two sweet cherry F1 populations. This negative correlation means that selecting 

for heavier fruits will result in softer fruits, thus providing a complex scenario for fruit 

quality breeding in sweet cherry. As herein, Chavoshi et al. (2014) and Piaskowski et al. 

(2018) observed a moderate positive correlation between fruit firmness and size in the plant 
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material of the RosBREED sweet cherry crop reference set. These results indicate that 

distinct genetic backgrounds show different relationship between size and firmness, 

probably due to the presence of diverse alleles controlling these traits in the different plant 

materials. The absence of a negative correlation between these traits in this work, and the 

observation of slight positive correlation between firmness and diameter, indicates that it 

is possible to select for larger and firmer fruits at the same time in this genetic background 

(A×S). As an example, offspring L35-60, L35-65, L35-70 and L35-72 showed diameter, 

weight and firmness values larger than the parental midpoint in both years. These results 

confirm that ‘Ambrunés’ could be a useful cultivar for firmness and fruit quality breeding. 

The overlapping of main firmness (qP-Fir1.1m) and diameter (qP-Dia1.1m) QTLs 

on LG1 of ‘Ambrunés’ also comes to confirm the correlation between both traits, 

indicating a possible common genetic determinism. Previous co-localizations of fruit size 

and firmness QTLs were also reported in sweet cherry and in peach (Campoy et al., 2015; 

Zeballos et al., 2016).  
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Supplementary Table 5.1 Summary of phenotypic data for fruit weight, diameter and 

firmness for an A×S population in year 2015 and 2016 (Y1 and Y2). 

 
 Weight (g) Diameter (mm) 

Firmness 

(N/mm) 
  Y1a Y2b Y1a Y2b Y1a Y2b 

‘Ambrunés’  5.8 6.8 21.6 22.8 2.0 1.5 

‘Sweetheart’  11.3 9.5 27.7 25.8 2.2 2.1 

A×S mean 5.6 5.9 21.6 21.6 1.7 1.5 

s.d. 1.1 1.3 1.7 2.1 0.7 0.6 

Min. 3.4 2.9 16.8 16.4 0.6 0.7 

Max. 11.3 13.1 25.7 29.1 3.8 3.4 

H2 0.63  0.66  0.75  
a Measures performed on 10 fruits per individual in year 1; b Measures performed on 25 fruits 

per individual in year 2. s.d.: standard deviation; H2: Broad-sense heritability.  

 

 

 

 

 

 

 

Supplementary Table 5.2 Genetic position of RosBREED cherry 6K SNP Array v1 SNPs 

mapped in 'Ambrunés', 'Sweetheart' and consensus map (A×S). 

Document available online at http://hdl.handle.net/10532/4737. (Chapter 5 – 

Supplementary Table 2.xlsx). 

  

http://hdl.handle.net/10532/4737
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Supplementary Table 5.3 SNP markers that were placed on the  ‘Ambrunés’, 

‘Sweetheart’ and A×S genetic maps in different linkage groups compared to their physical 

map locations on the peach genome v2.0.a1. 

  
Physical position Peach 

Genome v2.0.a1 
Genetic position (cM)  

SNP Chr Position LG 'Ambrunés' 'Sweetheart' A×S 

ss490545975 1 7885062 8 54.74 - 52.09 

ss490549697 2 21123343 1 - 37.64 90.73 

ss490547096 2 1599643 8 - 13.66 17.89 

ss490551427 3 8158606 6 64.12 - 59.56 

ss490550875 3 1870601 8 - 47.18 51.52 

ss490548878 4 19842873 7 3.83 - 3.83 

ss490548882 4 21492752 8 - 26.29 30.68 

ss490555342 6 6504161 1 - 18.13 70.34 

ss490557958 8 10717040 2 - 22.77 26.01 
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Supplementary Table 5.4 Significance, genetic intervals, QTL peaks and physical positions of minor QTLs identified for fruit weight, 

diameter and firmness in the A×S population. 

Trait Parental Year QTL name LG 

QTL  

interval 

(cM) 

Physical 

position* 

QTL peak QTL 

previosly 

described 

(Reference) 
SNP LOD Variance 

PV

E 

Additive 

effect 

Weight ‘Ambrunés’ Y1 qP-Wei1.1m 1 118.1-119.9 30.69-31.94 ss490546431 3.26 1.03 15.4 0.43 1, 2 

  Y2 qP-Wei1.1m 1 97.8-119.9 27.00-31.94 ss490547198 4.27 1.44 17.8 0.63  

  Y2 qP-Wei5.1 5 21.2-31.1 8.85-10.23 ss490549133 2.00 1.58 8.7 -0.43 2 

 ‘Sweetheart’ Y2 qP-Wei2.1 2 67.4-70.2 26.16-26.91 ss490550363 1.31 1.56 5.5 0.36 1, 2 

  Y2 qP-Wei3.1 3 21.1-25.7 23.62-24.41 ss490552023 2.77 1.55 11.9 0.59 1, 2 

Diameter ‘Ambrunés’ Y1 qP-Dia1.1m 1 69.1-79.2 15.85-23.82 ss490546727 2.69 2.63 12.9 0.62 2 

  Y2 qP-Dia1.1m 1 57.2-71.1 11.55-19.96 ss490546442 2.36 4.01 11.0 0.71  

  Y1 qP-Dia1.2m 1 100.7-115.8 28.21-30.34 ss490547003 2.26 2.69 10.9 0.77 1, 2 

  Y2 qP-Dia1.2m 1 103.8-118.9 28.94-30.76 ss490547003 2.32 4.02 10.8 0.82  

  Y1 qP-Dia7.1m 7 78.2-84.8 17.46-19.62 ss490559061 1.87 2.23 7.4 0.49 2 

  Y2 qP-Dia7.1m 7 75.9-78.2 17.34-17.46 ss490557256 1.33 3.42 5.2 0.49  

  Y1 qP-Dia8.1 8 82.9-84.8 21.67-22.48 ss490551557 1.63 2.24 6.5 -0.44 2 

 ‘Sweetheart’ Y2 qP-Dia3.1 3 21.1-25.7 23.62-24.41 ss490552064 1.46 3.97 6.6 0.55 1, 2 

  Y1 qP-Dia5.1 5 50.1-56.7 15.81-16.63 ss490554609 1.60 2.78 7.8 0.49 2 

Firmness ‘Ambrunés’ Y1 qP-Fir1.1m 1 64.0-67.1 14.73-15.75 ss490546599 3.25 0.23 12.5 0.20 2, 3 

  Y2 qP-Fir1.1m 1 59.3-66.0 12.62-15.11 ss490546554 4.08 0.45 18.8 0.33  

  Y1 qP-Fir6.1m 6 38.9-47.5 7.94-9.93 ss490555475 1.64 0.42 6.7 0.20 2, 3 

  Y2 qP-Fir6.1m 6 39.9-42.8 8.01-8.52 ss490555470 3.67 0.23 14.3 0.22  

 ‘Sweetheart’ Y1 qP-Fir1.2m 1 16.1-32.1 15.25-24.18 ss490546651 5.00 0.43 22.5 -0.69 2, 3 

  Y2 qP-Fir1.2m 1 24.5-27.8 22.30-23.86 ss490559249 2.43 0.26 10.2 -0.18  

  Y2 qP-Fir3.1 3 16.4-21.1 21.02-23.62 ss490552038 1.36 0.26 5.6 0.14 2, 3 

* Physical position (Mbps) of SNP markers in peach genome v2.0.a1 (Verde et al., 2017). References: 1 Rosyara et al., 2013,  2 Campoy et al., 

2015, 3 Cai et al., 2019.
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Supplementary Table 5.5 Haplotypes for stable fruit weight, diameter and firmness QTLs 

identified in ‘Ambrunés’ and ‘Sweetheart’ cultivars. SNP physical positions (bp) are 

estimated from the Peach Genome v2.0.a1 (Verde et al., 2017). 

 

qP-Dia1.1m 

Parent SNP Chr bp Dia1.1_H1 Dia1.1_H2 

‘Ambrunés’ ss490546442 1 11556023 B A 

 ss490546096 1 12618203 A B 

 ss490546554 1 14735491 B A 

 ss490546591 1 15601111 B A 

 ss490546599 1 15753605 B A 

 ss490546727 1 22976838 B A 

 ss490546746 1 23079385 B A 

 ss490546762 1 23528689 A B 

 

qP-Dia1.2m 

Parent SNP Chr bp Dia1.2_H1 Dia1.2_H2 

‘Ambrunés’ ss490547198 1 30690215 B A 

 ss490546431 1 30764281 A B 

 

qP-Fir1.1m 

Parent SNP Chr bp Fir1.1_H1 Fir1.1_H2 

‘Ambrunés’ ss490546096 1 12618203 A B 

 ss490546554 1 14735491 B A 

 ss490546591 1 15601111 B A 

 ss490546599 1 15753605 B A 

 

qP-Fir1.2m 

Parent SNP Chr bp Fir1.2_H1 Fir1.2_H2 

‘Sweetheart’ ss490546611 1 16036105 A B 

 ss490558902 1 17583149 B A 

 ss490546643 1 17586989 B A 

 ss490546651 1 18545593 B A 

 ss490546675 1 20811017 A B 

 ss490546679 1 20973954 B A 

 ss490559249 1 22747528 B A 

 ss490546811 1 24183767 A B 

 ss490546835 1 24878680 A B 

      

qP-Wei1.1m 

Parent SNP Chr bp Wei1.1_H1 Wei1.1_H2 

‘Ambrunés’ ss490547198 1 30690215 B A 

 ss490546431 1 30764281 A B 
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Supplementary Table 5.5 Continued. 

qP-Fir6.1m 

Parent SNP Chr bp Fir6.1_H1 Fir6.1_H2 

‘Ambrunés’ ss490555431 6 7943753 A B 

 ss490555470 6 8528220 A B 

 ss490555475 6 8612200 A B 

 ss490555481 6 8706130 A B 

 

 

 

 

 

 

 

 

Supplementary Table 5.6 Mean fruit firmness for A×S progeny based on haplotypes for 

two firmness ‘Ambrunés’ QTLs (qP-Fir1.1m and qP-Fir6.1m). 

qP-Fir1.1m  qP-Fir6.1m  
Y1 Y2 

Mean N Mean N 

Fir1.1_H1 Fir6.1_H1 1.6 ± 0.4 a 11 1.5 ± 0.3 a 15 

Fir1.1_H1 Fir6.1_H2 1.3 ± 0.4 a 23 1.3 ± 0.4 a 26 

Fir1.1_H2 Fir6.1_H1 2.3 ± 0.9 c 19 2.0 ± 0.7 b 16 

Fir1.1_H2 Fir6.1_H2 1.8 ± 0.7 ab 24 1.6 ± 0.5 a 23 

Different letters indicate significant differences between classes (P<0.05) 
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            A1     A×S1     S1       A2     A×S2    S2       A3    A×S3    S3        A4    A×S4    S4       A5      A×S5     S5      A6     A×S6      S6        A7     A×S7     S7       A8     A×S8      S8 

        

Supplementary Figure 5.1 Alignment of linkage groups for ‘Ambrunés’ (A), ‘Sweetheart’ (S) and the ‘Ambrunés’ × ‘Sweetheart’ 

(A×S) consensus maps. Asterisks indicate deviation from expected Mendelian segregation (*p<0.1; ** p<0.05; ***p<0.01; **** 

p<0.005; ***** p<0.001; ****** p<0.0001 
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INTRODUCTION 

 

Sweet cherry (Prunus avium L.), being the earliest ripening stone fruit, and due to 

its great acceptance, is a highly demanded fruit. Sweet cherries are mainly consumed as 

fresh fruit, so its market profit is directly related to maturity date and fruit quality (Yue et 

al., 2014). Maturity date is determinant in sweet cherry price, with early ripening cultivars 

reaching the highest prices (Zheng et al., 2016). Additionally, due to their narrow ripening 

period (4 to 5 weeks), extending the harvesting period has become a priority in breeding 

programs (Dirlewanger et al., 2009). As a result, as well as early ripening cultivars, late 

maturing cultivars that extend harvest season are sought. Maturity date is related to bloom 

date and fruit development, with early flowering and short fruit development advancing 

maturity, although not all late ripening cultivars are late blooming. These traits (bloom 

date, maturity date and fruit development) display broad inter-annual variability, but a 

large positive correlation between them has been observed, especially for fruit 

development and maturity date in apricot and peach (Etienne et al., 2002; Salazar et al., 

2016). Although early maturity is a breeding objective, early bloom may not always be a 

desired trait, as in colder regions early blooming may result in damage due to spring freeze. 

Thus, the investigation of fruit development time and maturity date, their relationship, and 

that with bloom time, is of high interest for breeding for early and late maturity in sweet 

cherry, and for cultivar adaptation to different growing areas. 

Quantitative trait locus (QTL) analyses have been conducted in sweet cherry to 

investigate the genetic control of maturity date (Dirlewanger et al., 2012; Quero-Garcia et 

al., 2014; Isuzugawa et al., 2019) but not that of fruit development period. Analysis of 

maturity date in a ‘Regina’ × ‘Lapins’ population during three years (Dirlewanger et al., 

2012; Quero-García et al., 2014) identified three stable QTLs on linkage groups (LGs) 1, 

4 and 5, with a large percentage of variation explained by QTL on LG4 (20.4%), which 

was associated with advancing maturity 5.4 days (Dirlewanger et al., 2012). This main 

QTL for maturity day was also identified by Isuzugawa et al. (2019) in the segregating 

sweet cherry population of ‘Beniyutaka’ × ‘Benikirari’ explaining 48.4% of the variation. 

The same QTL on LG4 has been reported in other Prunus species like apricot (Prunus 

armeniaca L.), peach (Prunus persica L.) and plum (Prunus salicina Lindl.) as the main 

maturity date QTL (Quilot et al., 2004; Dirlewanger et al., 2012; Nuñez-Lillo et al., 2015; 
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Salazar et al., 2016 and 2017). Fruit development time has also been investigated in apricot 

and peach, and a main QTL for this trait was found on the same region detected for maturity 

date on LG4 in these species (Fresnedo-Ramírez et al., 2015; Salazar et al., 2016; 

Hernández Mora et al., 2017). 

The other main trait of sweet cherry marketability is fruit quality, which depends 

on various fruit traits, including fruit size, taste, flavor, firmness, sweetness, acidity, skin 

color and external appearance (Crisosto et al., 2003; Yue et al., 2014; Zheng et al., 2016). 

Within consumer preferences, fruits with large size, sweet, firm, long shelf life and 

adequate balance between soluble solids content and titratable acidity have been identified 

as main attributes to select sweet cherries (Whiting et al., 2006; Chauving et al., 2009). 

Main QTL analyses regarding sweet cherry fruit quality traits have been conducted on fruit 

size (Zhang et al., 2010; Rosyara et al., 2013; Campoy et al., 2015; Chapter 5). Zhang et 

al. (2010) reported fruit size and weight QTLs on LGs 2 and 6 of the population ‘New 

York 54’ × ‘Emperor Francis’. Alike, Rosyara et al. (2013) detected four novel QTLs 

associated with fruit weight on LGs 1, 2 and 3; and Campoy et al. (2015) reported a major 

fruit weight QTL at the bottom region of ‘Regina’ LG5. More recently, main QTLs 

controlling fruit size were found on LG1 of Spanish landrace ‘Ambrunés’, overlapping 

with a fruit firmness QTL (Chapter 5). For fruit firmness, a large number of minor QTLs 

controlling this trait were detected in sweet cherry, although two major QTLs showing the 

largest percentage of variation were found on LGs 2 and 5 (Campoy et al., 2015). However, 

a recent analysis using a large sample of sweet cherry cultivars and populations revealed a 

main QTL controlling fruit firmness on LG4 explaining up to 84.6% of phenotype variation 

(Cai et al., 2019). Additionally, in Chapter 5 using a population derived from the firmness 

cultivars ‘Ambrunés’, we identified two main QTLs on LGs 1 and 6 associated with 

increasing up to 0.33 N/mm in fruit firmness. QTLs analysis of fruit acidity and solid 

soluble content were reported in apricot, peach and plum (Quilot et al., 2004; Eduardo et 

al., 2011; Zeballos et al., 2016; Salazar et al., 2013 and 2017) but not in sweet cherry. Main 

QTLs controlling these traits were located on LGs 1, 2, 4 and 5 for apricot (Salazar et al., 

2013), on LGs 4 and 5 for peach (Quilot et al., 2004; Eduardo et al., 2011; Zeballos et al., 

2016) and on LGs 1 and 6 for plum (Salazar et al., 2017).  

Despite the efforts to understand the genetic control of these traits, the narrow 

genetic diversity used for QTL analyses and mapping strategies based on single bi-parental 
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populations, limits QTL detection and difficult marker assisted selection (MAS) 

implementation in plant material from other genetic backgrounds. Only three major studies 

on fruit size (Rosyara et al., 2013), fruit firmness (Cai et al., 2019) and bloom time (Chapter 

3) have combined a large number of individuals from multiple sweet cherry populations 

for QTL analysis, resulting in the identification of large stable QTLs for these traits. Thus, 

larger studies of other relevant traits are necessary to understand maturity and fruit quality 

genetics in sweet cherry. With this aim, a multi-family approach was used in this work to 

identify QTLs responsible of maturity date and fruit quality traits in sweet cherry, some of 

them primarily considered for this species herein, as fruit development time, solid soluble 

content and titratable acidity. This multi-family approach was carried out using, six F1 and 

two F2 sweet cherry populations, that also descend from local plant material such as 

‘Ambrunés’ or ‘Cristobalina’. The landrace cultivar ‘Ambrunés’ that presents very late 

ripening, is collected without peduncle, and also has excellent organoleptic quality and 

great post-harvest aptitude (Serradilla et al., 2012). The landrace ‘Cristobalina’ is a self-

compatible cultivar with low chilling requirements and extra-early maturity date (Wünsch 

and Hormaza, 2004; Alburquerque et al., 2008; Chapter 3).  

 

 

MATERIALS AND METHODS 

 

Plant materials 

 In this work, 411 sweet cherry genotypes from six full-sib populations (N=406), 

the parental cultivars (N=6) and some ancestors (N=5) were studied (Chapter 3). This 

material include four cross-pollination populations (F1), ‘Vic’ × ‘Cristobalina’ (V×C; 

N=158), ‘Ambrunés’ × ‘Cristobalina’ (A×C; N=40), ‘Brooks’ × ‘Cristobalina’ (B×C; 

N=29) and ‘Lambert’ × ‘Cristobalina’ (L×C; N=14), and two self-pollination populations 

(F2.). One F2 comes from ‘Cristobalina’ self-pollination (C×C; N=97), and the other from 

the self-pollination of selection ‘BC8’ (B×C2; N=68). All the plant material are found at 

CITA de Aragón orchards (Zaragoza, Spain). 
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Trait phenotyping 

 Phenotype data for seven agronomical and fruit quality traits were evaluated during 

two years (2017 and 2018) in all the plant material. The traits evaluated were: maturity 

date (MD), fruit development time (FD), fruit size (FS), fruit weight (FW), fruit firmness 

(FF), fruit titratable acidity (TA) and fruit solid soluble contents (SSC). All fruit traits were 

evaluated at the estimated optimum ripening stage of each tree. Bloom time (BT) data of 

this plant material, the same two years, (data previously reported in Chapter 3), was used 

in correlation tests with traits analyzed in this work. 

 MD was recorded in calendar days from January 1st as the date when 50% of fruits 

reached the optimum ripening stage based on visual inspection of fruit color, taste and 

firmness. FD was the time that the fruit needed to complete development, and it comprised 

the days between BT and MD. For fruit quality traits, 15 fruits per tree were collected with 

peduncle at harvest time, and each trait was measured in each individual fruit. FW was 

measured using a scale, FS was determined on the medio-lateral axis using a calliper and 

FF was assessed on two opposite medio-lateral axis using DuroColor® texture analyser 

(Setop Giraud Technologie, Cavaillon, France) and data was expressed in firmness 

percentage of Durocolor®. TA and SSC data was obtained from juice of the same 15 fruits. 

TA was determined by titrating 5 g of fruit juice with NaOH 0.1 N to pH 8.1 (AOAC, 

1984) using an automatic titrator (Metrohm, Herisau, Swiss). The solid soluble contents 

(SSC) were determined by dropping a fruit juice into a refractometer (Atago, Tokyo, 

Japan) and the data were given in ºBrix. 

  

Statistical analysis 

Statistical analysis of data were performed to estimate the mean, minimum, 

maximum and standard deviation in each population per year and trait. Correlation 

between traits for each year were analyzed using the Pearson correlation coefficient. To 

evaluate whether trait data followed a normal distribution, normality analyses were 

performed per trait and year using the Shapiro-Wilk test. Broad-sense heritability (H2) was 

calculated using the equation: H2 = 
𝜎𝑔
2

𝜎𝑔
2+

𝜎𝑒
2

𝑛

, where 𝜎𝑔
2 is the variance of genotype effect, 𝜎𝑒

2 

is the variance of the residual term and n is the number of years. All statistical analyses 

were performed using R v3.4.1 (R Core Team, 2017). 
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QTL analysis and haplotype construction  

The plant material used in this study were previously genotyped with RosBREED 

cherry 6K SNP array v1 (Chapter 1). For QTL analyses, the Bayesian multiple QTL model 

implemented in FlexQTL™ (Bink et al., 2008 and 2014) software was used, considering 

the parameters and linkage map previously described in Chapter 3. Only additive effect 

with normal prior distribution was considered. Whole-genome QTL analysis was carried 

out four times for each trait varying prior number of QTLs (1 and 3) and seed numbers to 

create independence between iterations. For each simulation, Markov chain Monte Carlo 

(MCMC) simulations with minimum of 500,000 iterations were performed until at least 

100 effective chain samples for the overall mean, the residual variance, the number of 

QTLs and the variance of this number (Bink et al., 2014). Only QTLs with strong and 

decisive (2lnBF>5 and 10, respectively) evidences were reported. The graphical 

representations of LGs and QTLs were obtained using MapChart software (Voorrips, 

2002). 

Parental and ancestor haplotypes were constructed for major stable QTL on LG4 

(50-54 cM) for FD, MD and FF. Haplotypes were obtained from SNP phase estimated by 

FlexQTL™. Mean phenotypic values for each segregating class of each population for 

those individuals without recombination events were considered. Differences between 

mean phenotypic classes of each population were evaluated using ANOVA calculations, 

Kruskal-Wallis and two-tailed Student’s test (p<0.01). Statistical analyses were carried out 

using IBM SPSS v21 (Chicago, IL, USA). 

 

 

RESULTS 

 

Phenotyping 

Phenotyping of the parental cultivars revealed differences for all evaluated traits in 

both years (Sup Table 6.1). These differences were most noticeable for FD (differences of 

17 and 20 days each year, almost 3 weeks), MD (35 and 41 days each year, 5 to 6 weeks), 

FW (5 and 6 g), FS (6 and 8 mm) and FF (17.3 and 22.5%; Sup Table 6.1). For these traits, 

‘Ambrunés’, ‘Lambert’ and ‘Vic’ showed the largest FD (around 11 weeks) and latest MD 

(June 2 to 22nd) whereas ‘Lambert’ and ‘Vic’ presented the lowest FF (33 to 50%). On the 
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other side, ‘Cristobalina’ and ‘Brooks’ exhibited shorter FD (8 to 9 weeks) and largest FF 

(52.1 to 63.4%), with ‘Cristobalina’ showing the earliest MD (May 2nd to 18th; Sup Table 

6.1). For FS and FW, largest values were observed for ‘Brooks’ and ‘Vic’ with values 

……. 

 

 

 

Figure 6.1 Violin plot distribution of phenotyped traits per family in years 2017 (purple) and 

2018 (blue). Black lines indicate median values. 
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around 9 g and 26-27 mm, while ‘Cristobalina’ was by far the smallest with 4 g and 19 

mm (Sup Table 6.1). For SSC and TA, parental values showed smaller variation and the 

results did not reveal any pattern for the same cultivars among years (Sup Table 6.1). 

From the six populations analysed, 197 trees (48% of genotyped trees) were 

phenotyped in 2017 and 257 (63%) in 2018. These data revealed variability in all the 

populations for all the traits (Fig 6.1). Significant inter-annual variation in the mean 

phenotype value was observed for all traits except FD and FF (Student’s t test; p<0.05), 

that were the most consistent traits between years (Fig 6.1, Sup Table 6.1). For all the 

populations, fruits were larger, heavier and matured later in 2018 than in 2017, whereas, 

except in C×C, sweeter and less acid fruits were harvested in 2017 (Fig 6.1; Sup Table 

6.1). 

Within populations, large segregation was observed for most traits (Fig 6.1; Sup 

Table 6.1). For FD, differences larger than a month (36 days, more than 5 weeks) between 

the shortest (48 days, nearly 7 weeks; trees B×C2-51 and V×C-104; 2018) and largest (84 

days, 12 weeks; tree V×C-26; 2017) development period were observed (Fig 6.1; Sup 

Table 6.1). Between populations, individuals of B×C2 accounted for the shortest FD; and 

A×C and L×C individuals had the widest periods (Fig 6.1). MD segregation varied within 

5 to 6 weeks each year, (120 to 163 days in 2017, and 138 to 173 days in 2018), taking 

place from early May to late June in both years (Fig 6.1; Sup Table 6.1). C×C population, 

followed by B×C2 showed the earliest MD, ripening on average 16 days earlier than 

individuals of other populations (A×C and L×C; Fig 6.1; Sup Table 6.1). 

Regarding FS and FW, large variation was also observed within populations, with 

differences of up to 5.3 g / 7.4 mm, and 8.5 g / 11.4 mm, in the dimension of smaller and 

larger fruits in 2017 and 2018, respectively (Fig 6.1; Sup Table 6.1). The smallest cherries 

correspond to C×C individuals, whereas populations derived from bred cultivars (B×C and 

V×C) had the largest cherries (Fig 6.1). FF displayed broad variation with values ranging 

from 26.2 to 86.7%, and 15.2 to 87.4%, each year (Sup Table 6.1). Among populations, 

similar mean FF was observed for A×C, B×C, L×C and V×C ranging from 50.1 to 55.9%. 

Firmest fruits were, on average, identified in C×C (68.2 and 67.7% in 2017 and 2018, 

respectively) and the softest in B×C2 (46.5 and 48.2%) (Fig 6.1; Sup Table 6.1). For SSC 

and TA, large variability was measured, being values of 2018 lower than those observed 

in 2017 (except for TA in C×C) (Fig 6.1; Sup Table 6.1). Individuals reached values of 
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SSC of 12.9 to 29.7 ºBrix and 0.43 to 1.28% of TA, being B×C2 and L×C the most acidic 

populations, and A×C and V×C the sweetest (Fig 6.1; Sup Table 6.1).  

Trait distribution were similar both years (Fig 6.2). Only FF, SSC and TA fitted to 

normal distribution whereas the remaining traits (FD, MD, FW and FS) presented skewed 

distribution to large phenotype values (Shapiro-Wilk test). A bi-modal distribution for FD 

was observed both years (Fig 6.2). 

Values of broad-sense heritabilities (H2) varied between traits (0.54 to 0.94) (Table 

6.1). Large broad-sense heritability was observed for FD (0.92), MD (0.94), FS (0.93), FW 

(0.92) and FF (0.84), while lower H2 were detected for SSC (0.62) and TA (0.54) (Table 

6.1). 

 

Trait correlations 

Significant correlations between each traits for both years were observed 

(p<0.0001) (Sup Table 6.1). Of these, the largest inter-annual correlations were observed 

for FD, MD, FW, FS and FF (0.72-0.89), while lower inter-annual correlations were 

detected for TA and SSC (0.44-0.55) (Sup Table 6.1). 

Correlations between pair of traits (Fig 6.2) displayed similar patterns in 2017 and 

2018 (Fig 6.2). In both years, high significant positive correlation was observed between 

FD and MD (0.81 to 0.85), and FW and FS (0.97). These results revealed that fruits that 

took longer to develop were also the latest to mature, and that largest fruits were also 

heavier. FD and MD also showed moderate positive correlation with SCC (0.66/0.39 in 

2017, and 0.59/0.46 in 2018, respectively), and FD with FF (0.35 in 2017 and 0.56 in 2018) 

(Fig 6.2). That is, later cherries and those that took longer to develop tended to be firmer 

and sweeter (Fig 6.2). The analysis of BT data also revealed that in this plant material, BT 

showed significant moderate positive correlation with MD (0.47 both years), FW (0.52 and 

0.58) and FS (0.51 and 0.63 in 2017 and 2018, respectively) (Fig 6.2). In fact, the 

correlation between these traits was high for early flowering genotypes whereas for 

medium to late BT genotypes, low or no correlation was observed (Fig 6.2). A negative 

low-moderate correlation was also observed between FF, and FS and FW (from -0.34 to -

0.37) (Fig 6.2), indicating that larger fruits were softer (Fig 6.2).
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Figure 6.2 Pearson correlation coefficient among phenotyped traits, distribution histograms and correlation plots in 2017 and 

2018. Asterisks indicate correlation significance level (* p<0.01; ** p<0.001; *** p<0.0001). Positive and negative correlations 

at p<0.0001 are marked in blue and red respectively, based on Pearson correlation coefficient.  
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Figure 6.2 Continued 
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QTL analysis 

QTLs were detected for all traits for both phenotyped years (Sup Table 6.2; Sup 

Fig 6.1). The analyses of both years revealed 48 QTLs for the seven traits (12 for MD, 9 

for FW, 8 for FD, 6 for FS, 5 for SSC, 4 for FF and TA; Sup Table 6.2; Sup Fig 6.1). Most 

of these (33) were identified with strong evidence (2lnBF > 5), while 15 were detected 

with decisive evidence (2lnBF > 10) (Sup Table 6.2). QTLs detected were found on LGs 

1 to 6 (Sup Fig 6.1). The proportion of phenotype variance explained (PVE) by single QTL 

accounted for 0.4 to 65.3% (Sup Table 6.2). QTLs detected for FD, MD, FW and FF 

explained more than 60% of total phenotype variation, whereas for SSC and TA, QTLs 

explained between 20 and 50% (Sup Table 6.2). 

Thirty-eight of these QTLs were detected both years for the same trait in identical 

interval region and corresponded to 18 stable QTLs detected two years (Table 6.1; Fig 6.3). 

The remaining 13 QTLs, mainly for FW and FS, were detected only one year (Sup Table 

6.2; Sup Fig 6.1). Of the QTLs detected both years, 3 of them were for FD, 6 for MD, 3 

for FW, 1 for FS, 2 for FF, 2 for SSC and 1 for TA, being 5 of them detected with decisive 

evidences (Table 6.1; Fig 6.3). 

Three stable and significant QTLs for FD were detected on LGs 3 and 4 (Fig 6.3; 

Table 6.1). Most significant FD QTL, qP-FD4.2m, was localized on a highly narrowed 

region (51-53 cM) of LG4, which explained a large PVE (65.3 and 64.5%) and had an 

additive effect of 10.8 and 11.7 days each year (Table 6.1; Fig 6.3). For MD, six stable 

QTLs were reported, two of them detected with decisive evidence. One of them, qP-

MD4.2m, was in the same region of LG4 as the main FD QTL (qP-FD4.2m), revealing the 

relation of this two traits. This MD QTL showed the largest PVE (46.8 and 52.5%) and the 

same additive effects as FD, 11.1 and 11.6 days each year respectively (Table 6.1; Fig 6.3). 

The other QTL with decisive evidence for MD was on LG2 (qP-MD2.1m) but explained a 

lower percentage of variation (10.4 to 11.75%; Table 6.1). 

For FW, three stable QTLs (qP-FW1.1m, qP-FW2.1m and qP-FW5.1m) were 

identified, although none of them presented decisive evidence (Table 6.1; Fig 6.3). The 

PVE explained by these three QTLs varied largely between years, being the largest effects 

observed for qP-FW2.1m and qP-FW5.1m in 2017 and 2018, respectively (Table 6.1). For 

FS, a stable QTL was identified on LG2 (qP-FS2.1m; PVE 21.5 to 23.6) in the same region  
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Figure 6.3 Genetic position of stable QTLs (detected both years) in the consensus linkage map. QTLs interval shown covers QTL intervals 

of both years. QTL interval overlapping both years is shown in bold, intervals detected only one year are shown with diagonal bars. All 

QTLs detected, including each year interval, are shown in Sup. Fig 6.1
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as FW QTL qP-FW2.1m (Table 6.1, Fig 6.3), revealing in this case the relation between 

FW and FS. Regarding FF, a major stable QTL was detected on LG4 (qP-FF4.1m) (Table 

6.1; Fig 6.3). This QTL also showed decisive evidences both years of analysis and was 

narrowed to 50-54 cM of LG4 (Table 6.1; Fig 6.3), corresponding to same genomic region 

where FD and MD major QTLs were detected (Fig 6.3). qP-FF4.1m showed large PVE 

(47.9-64.1%) and additive effects of 14.4 and 15.0% in FF (Table 6.1). 

Regarding SSC, a major stable QTL was also found on the same region of LG4, in 

which main FD, MD and FF QTLs were detected (Table 6.1; Fig 6.3). qP-SSC4.1m was 

located between 50 and 59 cM of LG4 and showed the largest PVE (34.2 - 22.1%), related 

with variations between 1.7 to 3.0 ºBrix (Table 6.1; Fig 6.3). For TA, a relevant stable 

QTL, qP-TA6.1m, was detected on LG6 explaining from 15.0 to 21.6% of variation (Table 

6.1; Fig 6.3). 

 

Haplotype analysis of LG4 

Haplotype analysis of the LG4 region between 50 to 54 cM, spanning stable and 

decisive QTLs for FD (qP-FD4.2m), MD (qP-MD4.2m) and FF (qP-FF4.1m) was carried 

out for parental cultivars and their ancestors (Fig 6.4; Sup Table 6.3). Four haplotypes (H4-

a to –d) were identified using the six SNPs that span this interval (10.41 to 11.66 Mbp) of 

LG4 (Sup Table 6.3). Of these, H4-a and H4-b were the most frequent haplotypes, being 

present in all parental and ancestor cultivars except in ‘Burlat’ (Fig 6.4; Sup Table 6.3). 

The two remaining haplotypes H4-c and H4-d were only found in ‘Burlat’ (H4-c and H4-

d), ‘Brooks’ (that descends from ‘Burlat’; H4-d); and ‘Cristobalina’ (H4-c) (Fig 6.4; Sup 

Table 6.3).  

The comparison of genotype (diplotypes) effects in the populations revealed that 

individuals with H4-c matured earlier and presented shorter fruit development period than 

individuals without this haplotype (Fig 6.4; Sup Table 6.4). These individuals (genotypes 

c/-, -/c and cc) ripened on average 11.7 days earlier than individuals with other haplotype 

combinations (a/a, a/b, a/d, d/d) (Fig 6.4; Sup Table 6.4). In the same manner, H4-c 

induced the shortest FD in all the populations (12.1 days; Fig 6.4; Sup Table 6.4). Smaller 

differences were observed for the three remaining haplotypes, although individuals with 

H4-d induced MD and FD two days earlier/shorter than individuals with H4-a and –b 
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haplotypes (Fig 6.4; Sup Table 6.4). Regarding FF, genotypes effects in the F1 and F2 

populations revealed that H4-a, H4-b and H4-d were significant firmer than H4-c (Fig 6.4; 

Sup Table 6.4). The firmest individuals corresponded to ‘aa’, ‘ab’ and ‘dd’ genotypes, 

whereas ‘-c’ (or ‘c-‘) and ‘cc’ genotypes were significant softer (Fig 6.4; Sup Table 6.4). 

The fact that all individuals with H4-c presented the lowest phenotype value for MD, FD 

and FF (early ripening and soft), suggests this haplotype is dominant over the others. 

 

 

DISCUSSION 

 

Bloom time, fruit development and maturity date 

Understanding and identifying trait correlations provides knowledge for a more 

efficient phenotyping and breeding selection. Low positive correlation or no correlation at 

all has been previously reported in sweet cherry for BT and MD (Dirlewanger et al., 2012; 

Chavoshi et al., 2014; Piaskowski et al., 2018). In this study, also moderate positive 

correlation between these two traits was observed for this plant material. This correlation 

was most evident in the earlier flowering and ripening cultivars. The inclusion in this work 

of C×C, which shows extra-early blooming (Chapter 3) and maturity dates compared to 

the rest of material, may have biased the correlation of these two traits when analyzing all 

the plant material. The results, therefore suggests that blooming time and maturity are not 

completely correlated, and as observed in many cultivars not all early blooming genotypes 

are early maturing and vice versa. 

This work analyzes FD in sweet cherry for first time. The high positive correlation 

between MD and FD observed herein, has been previously observed in peach and apricot 

(Etienne et al., 2002, Salazar et al., 2013 and 2016). Results herein confirm the same 

relationship between these traits observed in other Prunus species. This result indicates 

that MD is mostly dependent on FD period; therefore, the date of maturity essentially 

depends on the time the fruit takes to mature. However, the low positive correlation also 

observed between BT and MD, also indicates, that sometimes, or to a certain degree, MD 

also depends on BT. If blooming takes place earlier, as it happened in 2017, then maturity 

also takes place earlier, or vice versa, independently of the FD time. However, since, BT 
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Table 6.1 Summary of QTLs detected both years. Genetic and physical position spanned for both years, and maximum Bayes Factor (2lnBF), mean 

additive effect, and PVE for both years. In bold, QTLs with 2lnBF>10 (decisive evidence). Full list of all detected QTLs and single year details are 

found in Supplementary Table 6.2.  

 H² QTL name LG 

Genetic 

position 

 (cM) 

Physical 

position* 

(Mbp) 

Average 2lnBF 
Additive 

effect 
PVE (%) 

Fruit Development Time (FD) 0.92 qP-FD3.1m 3 17-62 4.16-19.65 3.4 / 6.2 2.8 / 3.1 2.7 / 6.9 

 qP-FD4.1m 4 8-32 1.98-6.82 3.9 / 5.9 5.1 / 5.7 5.8 / 18.2 

 qP-FD4.2m 4 51-53 10.88-11.66 11.7 / 11.8 10.8 / 11.7 65.3 / 64.5 

Maturity Date (MD) 0.94 qP-MD1.1m 1 50-77 14.33-28.94 3.8 / 7.6 3.4 / 4.1 5.4 / 8.6 
 qP-MD2.1m 2 68-76 25.24-29.94 6.1 / 11.7 3.9 / 4.9 11.7 / 10.4 
 qP-MD3.1m 3 13-52 3.70-15.84 3.5 / 8.1 5.4 / 3.8 19.5 / 6.7 
 qP-MD4.1m 4 5-33 1.98-6.82 2.7 / 7.7 3.9 / 6.1 4.2 / 11.0 
 qP-MD4.2m 4 51-53 10.88-11.66 9.5 / 11.8 11.1 / 11.6 46.8 / 52.5 
 qP-MD5.1m 5 57-71 13.62-18.41 4.7 / 8.1 2.2 / 2.3 2.1 / 2.8 

Fruit Weight (FW) 0.92 qP-FW1.1m 1 42-84 11.08-30.61 5.2 / 4.5 0.8 / 1.1 6.1 / 15.7 
 qP-FW2.1m 2 31-74 17.86-28.60 4.9 / 5.9 1.0 / 1.7 23.9 / 53.9 
 qP-FW5.1m 5 31-54 8.42-13.18 6.5 / 4.4 1.5 / 1.3 45.4 / 6.9 

Fruit Size (FS) 0.93 qP-FS2.1m 2 57-76 23.74-29.94 6.7 / 7.2 1.4 / 1.1 23.6 / 21.5 

Fruit Firmness (FF) 0.84 qP-FF4.1m 4 50-54 10.41-12.57 11.7 / 9.5 14.4 / 15.0 47.9 / 64.1 
 qP-FF6.1m 6 74-109 22.65-30.45 4.8 / 2.3 3.7 / 2.9 2.5 / 1.3 

Soluble Solid Content (SSC) 0.62 qP-SSC3.1m 3 18-69 4.50-21.85 4.8 / 4.2 1.5 / 0.9 10.4 / 7.4 
 qP-SSC4.1m 4 50-59 10.41-13.10 11.7 / 6.8 3.0 / 1.7 34.2 / 22.1 

Titratable Acidity (TA) 0.54 qP-TA6.1m 6 91-108 26.77-30.45 9.6 / 6.3 0.09 / 0.07 21.6 / 15.0 
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and FD are independent of each other, results indicate that MD depends on both traits (BT 

and FD period), but on FD to a larger extent. In terms of breeding, this result translates in 

the possibility of combining BT and FD to achieve specific breeding goals in terms of 

maturity date. To either advance or delay maturity date using short or long FD period, and 

at the same time try to adapt to environmental conditions by introducing late (avoidance 

of late frosts) or early blooming (low chilling). 

High H2 was estimated for most traits analyzed, but as previously described in other 

Prunus species (reviewed in Aranzana et al., 2019), broad-sense heritability was highest 

in the phenology traits. The H2 estimated for FD (0.92) and MD (0.94) was very high, and 

similar to that estimated previously in sweet cherry for MD (0.76 to 0.83; Dirlewanger et 

al., 2012; Piaskowski et al., 2018) and in peach for FD (0.88 and 0.92; Fresnedo-Ramírez 

et al., 2015; Hernández Mora et al., 2017). As FD has not been evaluated previously in 

sweet cherry, results herein confirmed previous works in Prunus, in which this this trait 

showed very high heritability (Fresnedo-Ramírez et al., 2015; Hernández Mora et al., 

2017). Despite the large heritability, FD showed small variability between years, while for 

MD large differences were observed, as in average maturity was reached 20 days earlier 

in 2017 than in 2018. The same year effect was observed in the BT of the same plant 

material the same years (Chapter 3), with blooming being 20 days earlier in 2017 than in 

2018. Thus, as discussed above, revealing that in this work, MD inter-annual variation was 

due to inter-annual blooming variation. 

Traits showing normal (MD) and bimodal (FD) distribution were observed in this 

study, implying different behavior of these traits. As reported here, normal distribution was 

previously observed for MD in sweet cherry (Quero-García et al., 2014) and apricot 

(Salazar et al., 2013 and 2016). However, in most peach populations, bimodal distributions 

for MD were reported (Quilot et al., 2004; Eduardo et al., 2011; Nuñez-Lillo et al., 2015), 

corresponding to individuals of early and late ripening and suggesting the presence of a 

major locus governing the trait. The same type of bi-modal distribution was observed here 

for FD, but not for MD. This different behavior between cherries and peach can be 

explained by the different length of FD between species. In cherries, FD is narrower than 

in peach and therefore BD has a larger effect on MD than in peach. In peach, FD is much 

larger and therefore the influence of BD in MD is much smaller. This situation may explain 

why bimodal distribution was observed for MD in peach, and only for FD in sweet cherry. 
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This different effect of BT and FD in MD was also translated to QTLs effects. The 

major QTLs detected for MD in this work are the same as those detected for FD (qP-

MD3.1m, 4.1m and 4.2m). Also, the rest of MD QTLs detected in this work (qP-MD1.1m, 

5.1m) are in the same position as QTLs previously detected for BT in the same plant 

material (Chapter 3). These results confirm the correlation between these traits discussed 

above, and indicate that in our sweet cherry plant material MD depends on the genetic 

control of BT and FD. Thus, FD QTLs on LGs 4 and 3 (qP-FD4.2m and qP-FD 3.1m) are 

the main drivers of MD, followed by BT QTL qP-BT2.1m (Chapter 3) that coincides with 

MD QTL qP-MD2.1m. Previously, MD QTLs have also been mapped on LGs 1, 4 and 5 

of sweet cherry (Dirlewanger et al., 2012; Isuzugawa et al., 2019) but not on LGs 2 and 3 

as herein. In other Prunus species, MD QTLs have been previously reported in LGs 1 to 7 

in peach (Quilot et al., 2004; Eduardo et al., 2011; Fresnedo-Ramírez et al., 2015; Nuñez-

Lillo et al., 2015; Serra et al., 2017; Hernández-Mora et al., 2017), and in apricot (Salazar 

et al., 2016), and on LG4 of plum (Salazar et al., 2017). In these works, as detected herein, 

the main QTL controlling MD and FD was mapped on the central region of LG4, where a 

NAC transcription factor has been reported as the strongest candidate gene for this trait 

(Pirona et al., 2013).  

 

Fruit size and firmness 

 Heritability of fruit quality was highest for FS (0.93) and FW (0.92), which is 

higher than previously reported in other sweet cherry studies (0.63 to 0.88) (Zhang et al., 

2010; Campoy et al., 2015; Piaskowski et al., 2018; Chapter 3). However, inter-annual 

variation with significant smaller fruits in 2017 than 2018 was observed, indicating that 

environmental factors affecting fruit development and size varied between years. Both 

years, skewed distribution to large fruits was observed in all the plant material, opposing 

semi-dominance of small fruit size previously reported in the species (Zhang et al., 2010; 

Campoy et al., 2015; Chapter 5). This segregation could be explained by C×C large amount 

of homozygosity (Chapter 1). As C×C individuals have very small fruit size, when 

compared with the individuals of the other populations, the FW and FS were skewed 

towards larger fruits. Firmness H2 (0.84) was in the same range as earlier reported (0.73 to 

0.97; Campoy et al., 2015; Cai et al., 2019; Chapter 3), but mean inter-annual differences 
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Figure 6.4 Diagram of inheritance of LG4 fruit development period, maturity date and firmness QTLs (qP-FD4.2m / qP-MD4.2m / 

qP-FF4.1m; LG4: 50-54 cM) haplotypes in the families, parental and ancestor cultivars. Mean phenotype value of both years (2017 

and 2018) of each segregating class in each family are shown. Means significant differences between segregating classes are 

identified by different letters (p<0.05).   
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were not observed, revealing this trait is more stable than size. Normal distribution, as 

described previously for FF in sweet cherry, was observed in this study (Campoy et al., 

2015). 

The negative correlation observed between fruit size (FS and FW) and FF is 

relevant as these traits are considered main drivers of cherry acceptability (Cliff et al., 

1995). The same negative correlation has been observed before (Campoy et al., 2015), 

however in other genetic backgrounds a positive correlation between these traits has also 

been observed (Chavoshi et al., 2014; Piaskowski et al., 2018; Chapter 5). The results 

indicate the presence of different alleles in the different plant material analyzed. 

The influence of environmental conditions in fruit size and the diverse plant 

materials used in previous studies for QTL analyses of these traits has resulted in the report 

of different size QTLs with highly variable PVE. Main size QTLs on sweet cherry were 

mapped on LGs 2 and 6 (Zhang et al., 2010; Rosyara et al., 2013), LG5 (Campoy et al., 

2015) and LG1 (Chapter 5). Herein, we identified four stable QTLs for FS and FW on 

LG1, 2 and 5 (qP-FW1.1m, qP-FW2.1m, qP-FS2.1m and qP-FW5.1m) in regions previously 

reported for fruit size QTLs (Zhang et al., 2010; Rosyara et al., 2013; Campoy et al., 2015; 

Chapter 5). The main stable QTLs for FS and FW (qP-FW2.1m and qP-FS2.1m) in this 

work, overlapped on LG2 and spanned same physical region previously reported (Zhang 

et al., 2010; Rosyara et al., 2013), thus validating this LG2 region as a main determinant 

of fruit size in sweet cherry. Other stable size QTLs for fruit size detected also overlapped 

with QTL regions earlier reported. The physical position spanned by qP-FW1.1m (11.08 to 

30.61 Mbp) corresponds to same region where a cluster of fruit size and firmness QTLs 

were found on ‘Ambrunés’ cultivar (Chapter 5). Similarly, the region between 8.34-13.18 

Mbp with presence of significant fruit size QTLs on LG5 (qP-FW5.1m and qP-FS5.1) also 

overlapped with FW QTLs detected by Campoy et al. (2015) and in Chapter 5. The 

validation in this work of the main fruit size QTLs detected previously in sweet cherry 

highlights the potential of the multi-family QTL approach used in this work to investigate 

the genetics of quantitative traits, as all main fruit size QTLs found previously using single 

populations were detected in this work. 

Main FF QTL, stable among years and showing large effects, was found on LG4 

(qP-FF4.1m). This major QTL was previously reported by Cai et al. (2019) (qP-FF4.1) but 

not in other sweet cherry firmness studies using single mapping populations (Campoy et 



Chapter 6 

186 
 

al., 2015; Chapter 5). The haplotype analysis of qP-FF4.1 (Cai et al., 2019) revealed that 

the majority of bred cultivars carried firm alleles for this QTL, whereas only mazzards 

were homozygous for soft alleles (Cai et al., 2019). These results revealed selection of firm 

alleles at this QTL during cherry domestication and explained why it had not been detected 

in other works that considered bred and firm cultivars (Campoy et al., 2015; Chapter 5). 

However, in this study, we used ‘Cristobalina’, a landrace with a firm/soft genotype at this 

QTL (qP-FF4.1m) as parental cultivar of all populations. This QTL was segregating in the 

populations analyzed and was therefore detected in this work. Another firmness QTL 

detected here with minor effects on LG6 (qP-FF6.1m) has also been previously detected in 

sweet cherry (Campoy et al., 2015; Cai et al., 2019; Chapter 5) also at lower PVE, revealing 

presence of other genes having minor effects on fruit firmness. 

 

Soluble solids contents and Titrable Acidity 

In this work, as earlier reported in cherry (Piaskowski et al., 2018) and peach (Bassi 

et al., 1996; Dirlewanger et al., 1999; Hernández Mora et al., 2017), moderate H2 was 

observed for SSC (0.62) and TA (0.54). In fact, not a common pattern in sugars or acid 

content was observed in the parental cultivars and years, confirming the large dependence 

of environmental conditions on acids and sugar content (Morandi et al., 2008). In addition, 

the normal distribution showed for SSC and TA herein, as previously observed in other 

peach populations for the same traits (Quilot et al., 2004; Eduardo et al., 2011) reveals the 

quantitative nature of these traits.  

QTLs for SSC and TA are firstly reported for sweet cherry in this study. Previous 

QTL analyses in apricot, peach and plum of these traits reported large number of QTLs 

demonstrating the polygenic nature of these traits in the genus (Etienne et al., 2002; Quilot 

et al., 2004; Eduardo et al., 2011; Zeballos et al., 2016; Salazar et al., 2013 and 2017). In 

peach, TA QTLs were reported on LGs 2, 3, 4, 5 and 6 (Etienne et al., 2002; Quilot et al., 

2004; Eduardo et al., 2011; Zeballos et al., 2016), and a major locus (D) mapped on LG5 

has been reported as the major determinant of acid and subacid fruit taste in peach 

(Boudehri et al., 2009; Eduardo et al., 2014). This major QTL was not detected herein, 

although qP-TA6.1m, found in this work as the main QTL controlling acidity, was reported 

in homologous region of peach (qTA6.2; Hernández Mora et al., 2017). For SSC, the main 

QTL found in this work on LG4 (qP-SSC4.1m) also overlapped with a region of LG4 where 
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main QTLs for this trait were found in peach (Etienne et al., 2002; Eduardo et al., 2011; 

Zeballos et al., 2016; Hernández Mora et al., 2017), confirming a common path regulating 

this trait in both species.  

Correlation between phenology and fruit quality traits were observed in this work. 

The correlation observed between MD and FD with FF and SSC confirms previous results 

in other sweet cherry genetic backgrounds in which higher firmness and sugar content was 

observed in those genotypes with later maturity (Chavoshi et al., 2014; Piaskowski et al., 

2018). In fact, traditional varieties, such as ‘Ambrunés’, with late ripening date and large 

FD period presented higher SSC and FF than varieties of early ripening (Serradilla et al., 

2012). These results also confirmed previous studies that indicate that SSC is related to 

photoassimilate, in which cultivars of large FD period are expected to accumulate larger 

SSC than those with shorter periods (Genard et al., 2003).  

 

Phenology and fruit quality hotspot on LG4 

 In this study, stable and major QTLs for MD, FD, FF and SSC were identified 

overlapping in a narrow region of LG4 (50 to 59 cM; 10.41 to 12.57 Mbp). Additionally, 

correlation between some of these traits was observed in this work. In other sweet cherry 

populations, as well as in this plant material, BT QTLs were also mapped in this region 

(Dirlewanger et al., 2012; Castède et al., 2014; Chapter 3). Similarly, a cluster of QTLs 

was reported on the homologous regions of peach (Quilot et al., 2004; Eduardo et al., 2011; 

Zeballos et al., 2016), apricot (Salazar et al., 2013) and plum (Salazar et al., 2017) for 

related traits. In apple, Kenis et al. (2008) mapped a large number of QTLs for these traits 

on LG10, a syntenic region to LG4 of Prunus species (Illa et al., 2011). Therefore, a 

conserved region within the Rosaceae determines some main phenology and fruit quality 

traits. Two different explanations have been postulated related to this cluster: multiple 

linked genes or a major gene for MD with pleiotropic effect on fruit quality traits (Eduardo 

et al., 2011). This major MD gene could be associated with SSC and FF variations, as 

consequence of different FD between genotypes. During ripening, fruits accumulate 

sugars, acids and other volatile compounds, and cultivars with shorter FD period may not 

complete their physiological maturation as much as cultivars with long FD, which have 

more time to assimilate and synthetize these compounds. 
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Therefore, investigation of this region is of interest for breeding, as selection of 

certain haplotypes of this hotspot will allow selection of various phenology and quality 

traits at the same time. In the plant material analyzed in this work, ‘Cristobalina’ and 

‘Burlat’, both original from Southern Europe (Wünsch and Hormaza, 2002) have an allele 

associated with early MD and short FD (H4-c). Both are cultivars of early maturity, and 

the presence of this haplotype may explain this phenotype. However, the same haplotype 

H4-c is also associated with softer fruits. As we have seen that early maturity is associated 

with short FD, it may be that soft fruits is a result of a short FD period. In any case, breeding 

for early fruit will result in soft fruits from this plant material, revealing a complex scenario 

for breeding of firm and early fruits from these materials. However, as in this plant material 

BT and MD are mainly determined by different loci, BT on LGs 1 and 2 (Chapter 3) and 

MD on LG4 (this work), trying to combine early flowering and large FD could lead to 

relatively early MD cultivars and higher firmness.  

 The use of multiple sweet cherry populations with parental cultivars of different 

genetic backgrounds that show large phenotypic variability has provided valuable 

information about the genetic control of relevant phenology and fruit quality traits that will 

be useful for breeding and for broadening the understanding of the genetics of these traits. 

The trait correlations observed were confirmed by QTL mapping, as various correlated 

traits were mapped on same region. Results have revealed that MD is dependent in FD and 

BT, being FD the main cause of MD. Most relevant is a region on LG4 with presence of 

most significant and stable QTLs for MD, FD, FF and SSC, which represent a target region 

for MAS.  
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Supplementary Table 6.1 Minimum (Min), Maximum (Max), means and standard deviation (SD) for populations (a) and parental (b) in 

phenotype years. 

a) 

    FD (Days) MD (Days) FW (g) FS (mm) FF (%) SSC (ºBrix) TA (%) 
  2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

A×C Min 58 53 135 148 3.3 3.9 18.1 20 31.2 38.2 16.7 15.2 0.61 0.51 
 Max 78 83 153 173 7.2 8.1 24.9 26.3 71.2 75.6 29.7 27.5 1.12 0.97 
 Mean 69.8 68.7 146 161.2 4.8 5.6 20.8 22.3 54.3 55.9 21.9 19.1 0.86 0.73 
 SD 5.5 8.0 5.4 8.2 0.9 1.1 1.4 1.6 11 9.9 3.7 2.4 0.12 0.11 

B×C Min 49 55 124 144 4.03 5.83 20 22.7 27.6 31.1 14 16.4 0.55 0.51 
 Max 75 75 150 166 7.24 8.62 24.8 26.5 59.8 67.4 26.1 21.2 0.97 0.89 
 Mean 64.5 66 138.6 157.8 6 7 22.9 24.4 50.1 52.5 20.4 18.5 0.72 0.67 
 SD 8.7 5.9 9.5 6.4 0.9 0.9 1.3 1.2 7.3 12.4 3.1 1.5 0.12 0.12 

B×C2 Min 53 48 125 141 3.44 3.19 19 19.2 26.2 15.2 17.1 14.9 0.71 0.65 
 Max 79 75 151 168 6.33 7.21 24.3 25.3 59 77 25.1 22.4 1.01 1.13 
 Mean 63.4 59.2 139.3 153.7 4.8 5.4 21.2 22.4 46.5 48.2 19.9 18.9 0.9 0.89 
 SD 7.9 8.3 7.7 7.2 0.7 0.7 1.2 1.2 8.7 13.7 2 1.6 0.09 0.13 

C×C Min 53 53 120 138 2.27 2.03 16.4 15.2 48 49 16.6 18.7 0.43 0.67 
 Max 77 76 144 158 4.45 4.61 20.5 20.6 86.7 87.4 24.1 24.4 0.95 1.17 
 Mean 62.8 63.8 129.5 145.6 3 3.1 18 18.1 68.2 67.7 20.3 21.2 0.69 0.89 
 SD 7.1 6.3 7.2 4.9 0.6 0.6 1.3 1.3 10 8.8 2.6 1.7 0.15 0.12 

L×C Min 57 55 132 151 3.52 3.77 18.2 18.5 29.9 40.1 17.3 15.9 0.7 0.8 
 Max 79 75 158 169 7.12 8.57 24.5 26.2 78.4 68.3 25.1 25.7 1.28 1.2 
 Mean 65.9 67.2 145.3 162.1 5.8 6.5 22 23.3 50.6 54.7 20.2 19.6 0.92 0.93 
 SD 7.4 6.6 8.8 6.6 1.2 1.6 2 2.6 16.6 9.9 2.8 3.5 0.17 0.13 

V×C Min 50 48 127 142 4.08 5.07 19 20.9 33 28.7 17.3 14.6 0.62 0.49 
 Max 84 77 163 173 7.54 9.38 24.9 26.6 74.7 81.2 28.5 26.3 1.07 1.17 
 Mean 66 63.8 144.5 159.3 5.8 7.2 22.5 24.3 54 53.3 23.1 20.2 0.89 0.79 

  SD 6.4 7.6 6.7 8 0.7 0.8 1 1.1 9.8 10.4 2.8 2.2 0.11 0.13 

Pearson 

Correlation 

Coeff (2017-

2018)  

0.84   0.89   0.87   0.88   0.72   0.55   0.44   
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 Supplementary Table 6.1 Continued. 

b) 

         FD (Days) MD (Days) FW (g) FS (mm) FF (%) SSC (ºBrix) TA (%) 

    2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 2017 2018 

‘Ambrunés’   77 77 153 171 7.63 8.99 24.69 26.12 54.9 48.6 18.7 18.8 0.81 0.57 

‘Brooks’  64 57 142 155 7.97 9.07 26.07 27.59 52.1 55.6 19.8 19.1 0.75 0.78 

‘Cristobalina’ 58 60 122 138 4.01 4.15 19.5 19.69 63.4 52.9 17 21 0.6 0.71 

‘Lambert’  78 72 163 173 9.24 8.65 25.41 25.46  47.3   33.1 - 18.8 - 0.76 

‘Vic’   71 68 153 169 9.42 9.23 26.28 26.31 46.1 50.3 20.6 21.3 0.88 0.71 
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Supplementary Table 6.2 QTLs identified both years.  

  Year 

Identified 

both 

years? 

QTL name 
QTL 

Evidences 
LG 

Interval 

(cM)                

QTL 

peak 

(cM) 

Physical 

poisiton* 

(Mbp) 

Max 

2lnBF 

Average 

2lnBF 

Mean 

Additive 

effect 

PVE 

(%) 

Total 

Phenotype 

Variance 

Explained 

by QTLs 

Maturity 

Day (MD) 

2017 Yes  qP-MD1.1m Strong 1 56-77 67 18.54-28.94 6.31 3.83 3.35 5.39 

89.65 

2017 Yes  qP-MD2.1m Decisive 2 68-76 75 25.24-29.94 11.67 6.08 3.88 11.71 

2017 Yes  qP-MD3.1m Strong 3 13-52 43 3.70-15.84 5.17 3.49 5.37 19.51 

2017 Yes  qP-MD4.1m Strong 4 5-33 15 1.98-6.82 4.06 2.71 3.87 4.18 

2017 Yes  qP-MD4.2m Decisive 4 51-53 53 10.88-11.66 12.07 9.53 11.14 46.78 

2017 Yes  qP-MD5.1m Strong 5 57-71 69 13.62-18.41 6.16 4.73 2.18 2.1 

2018 Yes  qP-MD1.1m Strong 1 50-63 57 14.33-23.45 8.92 7.59 4.06 8.62 

92.06 

2018 Yes  qP-MD2.1m Decisive 2 73-76 75 26.96-29.94 15.15 11.67 4.93 10.4 

2018 Yes  qP-MD3.1m Strong 3 31-42 33 7.50-10.88 9.72 8.1 3.8 6.68 

2018 Yes  qP-MD4.1m Strong 4 8-15 11 1.93-4.19 9.29 7.72 6.13 11.03 

2018 Yes  qP-MD4.2m Decisive 4 51-53 53 10.88-11.66 14.89 11.76 11.6 52.53 

2018 Yes  qP-MD5.1m Decisive 5 64-71 67 15.81-18.41 11.18 8.15 2.32 2.81 

Fruit 

Development 

Time (FD) 

2017 Yes  qP-FT3.1m Strong 3 17-62 45 4.16-19.65 5.08 3.44 2.77 2.66 

73.83 2017 Yes  qP-FT4.1m Strong 4 9-32 21 2.15-6.82 5.31 3.93 5.07 5.85 

2017 Yes  qP-FT4.2m Decisive 4 51-53 53 10.88-11.66 14.04 11.69 10.77 65.32 

2018 No  qP-FT1.1 Strong 1 44-65 59 11.78-23.59 8.59 5.72 2.51 3.67 

93.65 

2018 Yes  qP-FT3.1m Decisive 3 25-41 35 6.02-10.88 10.93 6.24 3.12 6.91 

2018 Yes  qP-FT4.1m Decisive 4 8-30 17 1.98-6.58 10.16 5.93 5.74 18.16 

2018 Yes  qP-FT4.2m Decisive 4 51-53 53 10.88-11.66 14.02 11.77 11.66 64.53 

2018 No  qP-FT5.1 Strong 5 59-67 61 13.70-16.87 6.08 5.22 1.83 0.38 

Weight 

(FW) 

2017 Yes  qP-FW1.1m Strong 1 52-74 63 14.89-27.67 6.27 5.16 0.81 6.07 

83.73 

2017 Yes  qP-FW2.1m Strong 2 31-74 39 17.86-28.60 7.53 4.87 0.98 23.95 

2017 No  qP-FW4.1 Strong 4 43-61 51 9.15-13.61 9.06 5.31 0.4 3.39 

2017 Yes  qP-FW5.1m Strong 5 31-49 35 8.42-12.39 9.34 6.51 1.45 45.42 

2017 No  qP-FW6.1 Strong 6 13-33 23 4.17-7.26 9.18 6.01 0.39 4.89 
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 2018 Yes  qP-FW1.1m Strong 1 42-84 71 11.08-30.61 5.52 4.49 1.14 15.73 

78.84 
 2018 Yes  qP-FW2.1m Strong 2 45-73 67 21.72-27.46 8.96 5.93 1.73 53.9 

 2018 No  qP-FW3.1 Strong 3 19-52 29 4.45-15.84 7.33 4.84 0.43 2.27 

 2018 Yes  qP-FW5.1m Strong 5 39-54 49 11.20-13.18 5.46 4.37 1.28 6.94 

Size (FS) 2017 Yes qP-FS2.1m  Strong 2 57-76 65 23.74-29.94 8.99 6.75 1.43 23.59 

75.06 2017 No qP-FS5.1 Strong 5 30-50 35 8.34-12.39 9.2 4.93 2.18 44.56 

2017 No qP-FS6.1 Strong 6 15-31 25 4.63-7.06 9.94 6.88 0.73 6.92 

2018 No  qP-FS1.1 Strong 1 45-71 55 12.30-26.89 7.31 5.31 1.76 22.21 

48.07 2018 Yes  qP-FS2.1m Decisive 2 63-73 71 24.83-27.46 10.96 7.21 1.06 21.49 

2018 No  qP-FS4.1 Strong 4 10-46 21 2.55-10.08 6.83 5.11 0.78 4.37 

Firmness 

(FF) 

2017 Yes  qP-FF4.1m Decisive 4 50-54 51 10.41-12.57 12.15 11.75 14.4 47.95 
63.68 

2017 Yes  qP-FF6.1m Strong 6 78-109 99 23.80-30.45 6.86 4.83 3.66 2.54 

2018 Yes  qP-FF4.1m Decisive 4 51-53 51 10.88-11.66 11.03 9.51 15 64.05 
86.02 

2018 Yes  qP-FF6.1m Strong 6 74-109 87 22.65-30.45 3.36 2.27 2.86 1.31 

Soluble solid 

content 

(SSC) 

2017 Yes qP-SSC3.1m  Strong 3 13-40 27 3.94-10.77 9.32 4.76 1.5 10.42 
44.58 

2017 Yes  qP-SSC4.1m Decisive 4 50-55 53 10.41-12.72 14.09 11.7 3.04 34.16 

2018 No  qP-SSC1.1 Strong 1 37-74 63 9.77-27.67 9.01 4.82 1.26 15.26 

44.78 2018 Yes  qP-SSC3.1m Strong 3 18-69 59 4.50-21.85 8.29 4.19 0.89 7.41 

2018 Yes  qP-SSC4.1m Strong 4 45-59 53 10.08-13.10 9.6 6.82 1.69 22.11 

Titratable 

acidity (TA) 

2017 No  qP-TA4.1 Strong 4 34-64 51 7.06-14.83 7.31 4.14 0.0561 5.39 
26.97 

2017 Yes  qP-TA6.1m Decisive 6 91-98 95 26.68-27.49 11.83 9.65 0.0941 21.57 

2018 No  qP-TA3.1 Strong 3 72-89 87 22.74-26.99 9.94 6.17 0.0588 5.01 
20.02 

2018 Yes  qP-TA6.1m Decisive 6 91-108 97 26.77-30.45 10.29 6.33 0.0694 15.02 
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Supplementary Table 6.3 Parental and ancestor haplotypes for FD (qP-FD4.2m), MD (qP-MD4.2m) and FF (qP-FF4.1m) QTLs spanning 

LG4 50-54 cM.  

SNP 

Genetic 

position 

(cM) 

Physical 

position 

(bp) 

Haplotype 

'Ambrunes' 'BC8' 'Bing' 'Brooks' 'Burlat' 'Cristobalina' 'Lambert' 'Napoleon' 'Rainier' 'Van' 'Vic' 

H4-a H4-a H4-d H4-c H4-b H4-b H4-b H4-d H4-c H4-d H4-c H4-a H4-b H4-b H4-a H4-b H4-b H4-b H4-b H4-a H4-b H4-a 

ss490559054 50.96 10414884 B B B B A A A B B B B B A A B A A A A B A B 

ss490552906 51.09 10880163 A A A B A A A A B A B A A A A A A A A A A A 

ss490552928 53.03 11472398 B B A A B B B A A A A B B B B B B B B B B B 

ss490552931 53.12 11520743 A A A B A A A A B A B A A A A A A A A A A A 

ss490548726 53.41 11661240 A A B A A A A B A B A A A A A A A A A A A A 

ss490552936 53.41 11661765 A A B A A A A B A B A A A A A A A A A A A A 

 

  



 

 
 

C
h
ap

ter 6
 

1
9
6
  

Supplementary Table 6.4 Phenotypic values and number of individuals (N) in each segregating class of each family for MD (qP-MD4.2m), 

FD (qP-FD4.2m) and FF (qP-FF4.1m) QTLs in LG4. Statistical differences (p<0.05) within classes for families are indicated.  

Population 
Haplotype 

combination 
 N 

MD FD FF 

2017 

(Mean ± SD) 

2018 

(Mean ± SD) 

2017 

(Mean ± SD) 

2018 

(Mean ± SD) 

2017 

(Mean ± SD) 

2018 

(Mean ± SD) 

A×C a / a 18 148.9 ± 4.0 a 167.1 ± 6.2 a 72.4 ± 4.2 a 74.7 ± 5.6 a 62.3 ± 6.3 a 62.1 ± 9.6 a 

 a / c 20 142.5 ± 4.7 b 155.9 ± 5.9 b 66.4 ± 5.2 b 63.3 ± 5.8 b 45.3 ± 7.8 b 50.8 ± 6.8 b 

B×C a / b 9 143.0 ± 5.8 a 160.3 ± 3.0 a 69.7 ± 4.5 ab  69.3 ± 3.9 a 55.0 ± 3.4 61.7 ± 5.7 a 

 b / c 8 133.5 ± 10.5 b 152.0 ± 8.0 b 60.0 ± 8.4 ab 61.5 ± 6.6 b 44.9 ± 9.1 44.1 ± 8.7 b 

 a / d 6 147.0 ± 1.7 a 163.3 ± 2.3 b 71.3 ± 2.3 b 70.3 ± 3.2 a 51.5 ± 4.6 62.3 ± 4.1 a 

 c / d 5 128.5 ± 4.9 b 156.0 ± 2.8 ab 52.5 ± 4.9 a 62.0 ± 2.8 b 48.6 ± 4.9 36.3 ± 7.3 b 

B×C2 c / c 11 - 146.5 ± 7.8 a - 50.0 ± 2.8 a - 33.5 ± 5.8 a 

 c / d 32 134.4 ± 5.4 a 150.3 ± 4.3 a  57.9 ± 6.2 a 55.1 ± 3.6 a 45.1 ± 4.2 a 44.1 ± 5.0 b 

 d / d 18 145.9 ± 4.1 b 162.1 ± 4.1 b 71.9 ± 4.8 b 70.6 ± 3.1 b 53.0 ± 7.0 b 64.8 ± 7.9 c 

C×C a / a 11 138.4 ± 3.4 b 150.7 ± 4.0 b 72.6 ± 2.9 b 70.9 ± 3.9 b 71.2 ± 7.8 a 77.7 ± 7.1 a 

 a / c 56 126.2 ± 5.3 a 144.4 ± 3.5 a 59.2 ± 4.3 a 60.9 ± 3.6 a 66.7 ± 11.1 b 63.7 ± 6.6 b 

 c / c 17 - - - - - - 

L×C a / b 7 153.0 ± 3.2 a 165.4 ± 4.4 a 72.6 ± 4.0 a 70.9 ± 3.1 a 65.6 ± 8.7 a 59.9 ± 6.2 a 

 b / c 6 138.8 ± 5.9 b 154.3 ± 3.1 b 60.3 ± 3.8 b 58.7 ± 3.2 b 38.2 ± 8.9 b 42.5 ± 2.5 b 

V×C a / a 30 148.8 ± 3.2 a 165.4 ± 4.7 a 70.6 ± 3.0 a 69.9 ± 3.6 a 58.6 ± 6.6 a 60.8 ± 7.0 a 

 a / c 41 137.4 ± 4.5 b 152.1 ± 4.6 b 58.6 ± 3.8 b 56.9 ± 4.0 b 44.8 ± 6.6 b 46.3 ± 7.7 b 

 a / b 41 149.2 ± 3.4 a 167.3 ± 3.5 a 70.5 ± 3.0 a 71.6 ± 3.2 a 61.0 ± 6.3 a 62.3 ± 5.7 a 

 b / c 40 139.6 ± 6.0 b 154.3 ± 4.9 b 61.4 ± 4.8 b 58.7 ± 4.1 b  45.7 ± 6.8 b 45.4 ± 4.8 b 
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Supplementary Fig 6.1 Genetic position of all QTLs detected both years in the consensus linkage map. 
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INTRODUCTION 

 

 Sweet cherries are an excellent source of numerous phytochemical compounds with 

health-promoting properties (Ballistreri et al., 2013). Many epidemiological studies have 

demonstrated a strong correlation between regular sweet cherry consumption and potential 

human health benefits such as the reduction of cancer susceptibility (Kang et al., 2003) and 

risk of suffer a heart attack (Ma and Kinneer, 2002), inflammation (Jacob et al., 2003), or 

protection against neurodegenerative diseases (Kim et al., 2005). Within these, 

polyphenols or phenolic compounds were reported as the main phytochemical compounds 

in sweet cherry (Serra et al., 2011; Ballistreri et al., 2013; Serradilla et al., 2017). Cherry 

polyphenols, in addition to their health-promoting properties, also play relevant roles in 

some sensory fruit characteristics such as color, flavor, taste or astringency (Lee, 2000; 

Tomás-Barberán et al., 2001). Polyphenols present in sweet cherry derive from shikimate 

acid, and can be divided into two different classes based on their chemical structure and 

biosynthesis pathway: phenolic acids (hydroxycinnamic and hydroxybenzoic acids) that 

derived from cinnamic acid, and flavonoids (anthocyanins, flavonolds and flavan-3-ols) 

that derived from phenylpropanoid (Serradilla et al., 2017; Cheynier et al., 2013). 

 Phenolic acids correspond to a type of aromatic acid compound that mainly 

contribute to sweet cherry quality characteristics, preservation of organoleptic properties, 

and fruit color through the process of co-pigmentation which favors anthocyanin stability 

(Eiro and Heinonen, 2002; Ballistreri et al., 2013). They are classified into two subgroups, 

the hydroxybenzoic acids that have been found in small amounts in sweet cherry (Mattila 

et al., 2006) and hydroxycinnamic acids that are the prominent and more important 

phenolic acids in sweet cherry (Martínez-Esplá et al., 2014). Within hydroxycinnamic 

acids, neochlorogenic, p-coumaroylquinic and chlorogenic are the main compounds found 

in sweet cherry (Serradilla et al., 2016). The ratio of these acids is specific of each cultivar 

and large differences amongst them have been observed (Mozetic et al., 2006; Ballistreri 

et al., 2013). 

 The other major group of polyphenols correspond to flavonoids. Flavonoids include 

flavanols, flavan-3-ols and anthocyanins, with this latter present in much larger amounts 

than the other in sweet cherry. Anthocyanins are a water-soluble pigment located in the 

vacuole and are involved in red, blue and purple color variations in many plant organs 
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(flowers, fruits, leaves, seeds and roots) (Field et al., 2001; Regan et al., 2001; García-

Alonso et al., 2004). Apart from color, anthocyanins are also involved in other process as 

fruit flavor, bitterness, astringency, seed dispersal, protection against UV light damage and 

pathogen attack (Schaefer et al., 2004). As expected, cherry anthocyanins have also shown 

potent antioxidant and anti-inflammatory activities (Chaovanalikit and Wrolstad, 2004; 

Serra et al., 2011). Four main anthocyanins have been identified in sweet cherry: cyanidin-

3-O-rutinoside (cy3-rut), cyanidin-3-O-glucoside (cy3-glu), peonidin-3-O-rutinoside 

(peon3-rut) and peonidin-3-O-glucoside (peon3-glu) (Serradilla et al., 2017). Cy-3-rut, 

mainly associated with red-purple coloration (Gonçalves et al., 2007), represents almost 

80% of total anthocyanins concentration, whereas the other three that are related to orange-

red color, are presented in lower amounts in sweet cherry fruits (Gonçalves et al., 2007; 

Serradilla et al., 2016). Anthocyanins are distributed in the whole fruit with larger amount 

in skin rather than flesh tissues. 

Despite the significant importance of polyphenols, most studies in sweet cherry, 

have focused on the evaluation of phenolic compounds content at cultivar level, as well as, 

its changes during postharvest storage (Serra et al., 2011; Ballistreri et al., 2013; Serradilla 

et al., 2017). However, there is little information about the genetic control of these 

compounds content. In the Rosaceae, genetic studies of polyphenols content based on QTL 

analysis have been reported in apple (Malus × domestica Borkh.; Chagné et al., 2012b; 

Khan et al., 2012; Verdu et al., 2014) and peach (Zeballos et al., 2016). In apple, QTLs 

identified were clustered on different linkage groups (LGs) based on compound structure, 

with a region at top of LG16 mainly controlling flavonol content variation. In peach 

(Prunus persica L.), polyphenol content QTLs were found on various LGs, but none of 

them was stable during the years of study (Zeballos et al., 2016).  

Within polyphenols, the molecular basis of anthocyanin content has been most 

studied due to its relationship with red fruit coloration. Studies in apple identified an R2R3 

MYB transcription factor (MdMYB10), which is considered the main regulator of red 

coloration in fruits and leaves, by regulation of the anthocyanin pathway (Chagné et al., 

2007; Allan et al., 2008). In sweet cherry, and other Prunus species, a homologous gene, 

MYB10, has been characterized and associated with the regulation of the anthocyanin 

biosynthetic pathway (Lin-Wang et al., 2010). This candidate gene in located on the LG3 

region where a main skin and flesh color QTL was detected in sweet cherry 
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(Sooriyapathirana et al., 2010). This gene was shown by transcription analysis to be 

associated with anthocyanin content and to be absent in yellow cherries (Wünsch et al., 

2014; Jin et al., 2016). An SSR marker that correlates with mahogany and blush haplotypes 

in this QTL has been proposed for the identification of fruit color in sweet cherry 

(Sanderful et al., 2016). For phenolic acids, QTLs have only been reported in apple (Khan 

et al., 2012; Chagné et al., 2012b; Verdu et al., 2014), in which main genomic regions 

associated to these compounds content were reported on LGs 14 and 15. For these QTLs, 

shikimate/quinate O-hydroxycinnamoyl transferase (HCT/HQT) were proposed as main 

candidate gene (Verdu et al., 2014).  

This work aims to investigate the main genomic regions associated to polyphenol 

content in sweet cherry, and their relationship with fruit color, by using a QTL mapping 

approach. To achieve this goal, accurate phenotyping of polyphenol content by high-

performance liquid chromatography (HPLC), in a color segregating sweet cherry F1 

population (‘Vic’ × ‘Cristobalina’), and saturated linkage mapping with RosBREED 15K 

SNP array were used.  

 

 

MATERIALS AND METHODS 

 

Plant material 

In this work, a cross-pollinated sweet cherry population (N=161) from ‘Vic’ × 

‘Cristobalina’ (V×C) was used. The V×C population cross was made in 2010 and planted 

in 2013, and has been observed to segregate for skin and flesh color. ‘Vic’ and 

‘Cristobalina’ cultivars, both belonging to the CITA de Aragón sweet cherry collection, 

were also used. All plant material is found at the orchard of CITA de Aragón (Zaragoza, 

Spain).  

 

Cherry polyphenol and color phenotyping 

 Phenotyping of sweet cherries skin and flesh color and polyphenols were carried 

out one year (2017) from sample fruits of V×C population and the parental cultivars. Skin 

and flesh color were evaluated in fifteen fruits per tree at the optimum ripening stage based 
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on visual inspection of color, firmness and taste. Skin color was measured on the two 

opposite sides of each fruit medio-lateral axis using a DuroColor colorimeter (Setop Giraud 

Technologie, Cavaillon, France), in which data is recorded in CTIFL Index (1 to 7). Flesh 

color was visually defined according to UPOV color chart for flesh (1 to 5). 

 

 

 
Table 7.1 Number of makers, genetic length, average marker distance and maximum gaps for ‘Vic’ 

(V), ‘Cristobalina’ (C) and consensus (V×C) SNP maps. 

 

 

 

For analyses of polyphenols, fruit samples were frozen and stored at -20 ºC. 

Individual phenolic compounds were extracted as described by Serradilla et al. (2011a). 

For each tree, 10 g of homogenate obtained from 15 fruits, partially defrosted and pitted, 

was transferred to a volumetric flask and 50 mL of methanol solution containing 0.1% 

hydrochrolic acid was added. Subsequently, samples were incubated for 24h at -20ºC in 

darkness. Chromatographic analysis was carried out employing an Agilent 1100 model LC 

system (Hewlett-Packard, Waldbronn, Germany) equipped with an UV-Vis diode-array 

detector and with a rapid scan fluorescence spectrophotometer detector. Separation and 

quantification was performed according to Cabrera-Bañegil et al. (2017). Individual 

hydroxycinnamic acids [neochlorogenic acid (NA), p-coumaroylquinic acid (CQA) and p-

coumaric acid (CA)] and anthocyanins [cyanidin-3-O-glucoside (cy3-glu), cyanidin-3-O-

rutinoside (cy3-rut), peonidin-3-O-glucoside (peo3-glu) and peonidin-3-O-rutinoside 

  Genetic 

map 
LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 Total 

Number of 

markers 

V 302 32 49 73 142 96 118 98 910 

C 104 173 120 75 63 152 29 73 789 

V×C 440 225 213 219 242 293 161 207 2000 

Genetic length 

(cM) 

V 142.9 84.1 53.4 68.9 61.5 95.5 58.3 72.1 636.7 

C 66.5 84.5 92.9 88.6 76.9 117.4 70.5 68.7 666.0 

V×C 177.2 89.1 89.6 84.9 71.0 113.6 70.7 98.2 794.3 

Average 

marker 

distance (cM) 

V 2.5 5.4 2.9 2.9 2.1 2.6 1.8 3.5 3.0 

C 2.8 2.0 2.4 3.4 3.8 2.8 6.3 3.1 3.3 

V×C 1.6 1.3 1.2 1.2 0.9 1.0 1.4 11.6 2.5 

Maximum gap 

(cM) 

V 9.0 22.9 8.2 12.1 6.0 11.3 3.9 19.0 11.6 

C 10.5 7.5 8.2 11.9 12.1 9.0 19.0 10.5 11.1 

V×C 8.7 9.8 4.7 6.7 3.7 3.0 5.7 10.8 6.6 



  Chapter 7 

205 
 

(peo3-rut)] were quantified against external standards (Sigma-Aldrich, Spain). Results are 

expressed as mg 100 g-1 FW. 

 

SNP genotyping, linkage mapping and QTL analysis 

 Genomic DNA from the population and parental cultivars was obtained from young 

leave samples extracted using DNeasy® Plant Mini Kit (Qiagen, MD, USA). Genome-wide 

SNP genotyping of the population and the parental cultivars was carried out using 

RosBREED Cherry 15K Illumina Infinium® SNP array. DNA quantification by Quant-

iT™ PicoGreen® (Invitrogen Ltd., Paisley, UK) and SNP genotyping was carried out at 

CEGEN-PRB2-ISCIII (Madrid, Spain).  

SNP filtering and clustering, as well as linkage map development were conducted 

as described previously for cross-pollinated populations (Chapter 2). QTL analysis in the 

parental maps was carried out using MapQTL® v.6.0 (Kyazma BV, Wageningen, The 

Netherlands, van Ooijen, 2009). Interval mapping and MQM mapping strategies was used 

for QTL discovery in both parental cultivars (Lander and Bostein, 1989; Jansen, 1993 and 

1994; Jansen and Stam, 1994). Significant threshold to considered a QTL in a given linkage 

group was calculated using Permutation Test at a significance level of 90% (p<0.1) using 

10,000 permutations (van Ooijen, 1992). MapChart software were used for graphical 

representation of linkage groups (LGs) and QTLs. 

 

Statistical analysis 

Mean, minimum, maximum and standard deviation of V×C population was 

evaluated for each trait. Analysis of correlation among traits was carried out using Pearson 

correlation coefficient. All statistical analysis were conducted using SPSS statistics v21.0.0 

software (IBM, IL, USA) and R v3.4.1 (R Core Team, 2017). 
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RESULTS AND DISCUSSION 

 

Genotyping and linkage mapping 

 Genotyping of ‘Vic’ and ‘Cristobalina’ with RosBREED cherry 15K SNP array 

(Vanderzande et al., 2019) allowed scoring 11,566 (85.3%) and 11,616 (85.6%) SNPs in 

each cultivar, respectively. From the total of scored SNPs, 1,256 SNPs were heterozygous 

in ‘Vic’ and 1,136 were heterozygous in ‘Cristobalina’. Within these, 335 SNPS were 

heterozygous in both cultivars. From the rest of scored markers, 8,317 and 8,537 SNPs 

were homozygous in ‘Vic’ and ‘Cristobalina’ respectively. The 15K array used in this work 

includes the markers available in the RosBREED cherry 6K SNP array (Peace et al., 2012) 

plus a selection of 9,000 additional SNPs, resulting in a significant increase of SNPs 

available for whole genome genotyping. The number of heterozygous markers detected in 

this work is larger (1.5 to 1.9 times larger) than the number reported for the same parental 

cultivars (483 in ‘Vic’, and 526 in ‘Cristobalina’), and for other cultivars (450 to 641 SNPs; 

Klagges et al., 2014; Chapters 2 and 5) using the RosBREED cherry 6K SNP array. 

The 2,057 heterozygous informative SNPs in the parental cultivars were used for 

V×C linkage mapping. Only those markers heterozygous in one parental cultivar and 

homozygous in the other were considered for parental linkage mapping. The remaining 

11,502 SNPs (84.8%) of the array were discarded for further analysis due to various 

reasons; failed to be detected (2,305; 17.0%), were monomorphic (9,043; 66.7%) or 

resulted in unexpected segregations (154; 1.1%). Linkage mapping grouped the selected 

SNPs into the eight expected linkage groups (LGs) in each parental cultivar map. ‘Vic’ 

linkage map includes 910 SNPs spanning a total length of 636.7 cM, and the ‘Cristobalina’ 

linkage map has 789 SNPs and covers 666.0 cM (Table 7.1). Like in the maps developed 

using the RosBREED 6K SNP array (Chapter 2), LG1 in ‘Vic’ and, LG2 in ‘Cristobalina’ 

were the groups with the largest number of SNPs, while ‘Vic’ LG2 and ‘Cristobalina’ LG7 

were the groups with the lowest number of markers (Table 7.1). Large gaps of ~20 cM 

were observed in ‘Vic’ LGs 2 and 6, and in ‘Cristobalina’ LG7, in same region as detected 

in the 6K SNP array (Chapter 2; Table 7), confirming that these regions are probably 

homozygous in these cultivars (Chapter 2). The V×C consensus map included 2,000 SNPs 

and covered a genetic distance of 794.3 cM, with an average distance between markers of 

2.5 cM (Table 7.1). LGs 1 and 7, with 440 and 161 SNPs, were the LGs with largest and  
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Figure 7.1 Distribution of phenotyped traits in V×C population. a) Skin and flesh color, b) 

anthocyanins, and c) phenolic acids. Mean parental values are indicated in grey (‘Vic’) and black 

(‘Cristobalina’).
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least number of mapped markers respectively. A reduction in the average marker distance 

(2.5 cM) and gap size was observed in the consensus map compared with both parental 

maps (3.0 and 3.3 cM in ‘Vic’ and ‘Cristobalina’, respectively) (Table 7.1). 

The use of the RosBREED 15K SNP array improved the linkage maps developed 

using the RosBREED 6K SNP array (Klagges et al., 2014; Chapters 2 and 5), as a larger 

number of markers could be mapped and a reduction in the average distance between these 

SNPs was observed. Additionally, the presence of additional markers in 15K SNP array 

allowed filling some gaps previously detected in the 6K SNP array derived maps (Sup Fig 

1, Chapter 2). Despite the number of mapped markers is significantly larger than those 

mapped using the 6K SNP array, the relative low number of segregating individuals (161) 

limited the possibility of recombination and resulted in a large number of markers mapped 

at the same genetic position (64.7%, 66.3 and 60.7% in ‘Vic’, ‘Cristobalina’ and V×C, 

respectively). Alternatively, this may be due to SNPs found in regions with low 

recombination, which are inherited as blocks. 

 

Color and anthocyanin content segregation and correlation 

Skin and flesh color in sweet cherry are quantitative traits that exhibit a range of 

coloration from yellow to dark mahogany (Schmidt, 1998; Sooriyapathirana et al., 2010). 

In this work, skin and flesh color were evaluated in V×C, a population whose parental 

cultivars have similar mahogany fruit skin color (CTIFL code 6, Sup Fig 1), and pink and 

medium-red flesh (UPOV codes: 3 for ‘Cristobalina’ and 4 for ‘Vic). Despite both parental 

cultivars have dark fruits, segregation was observed for both traits in the 98 phenotyped 

individuals, with value codes ranging from 2 to 6 for skin color, and from 1 to 5 for flesh 

color (Fig 7.1; Table 7.2; Sup Fig 1). The distribution of these traits in the segregating 

population was similar to that observed previously in cherry fruit color studies, in which a 

skewed distribution towards darker skin fruits was reported (Schmidt, 1998; 

Sooriyapathirana et al., 2010; Jin et al., 2016). Sixty-nine trees with fruit red to mahogany, 

or dark skin color (skin card >4) and 29 bicolor (yellow with orange overcolor) or light 

colored (skin card <4) were observed (Sup Fig 2). This segregation adjusts to a 3:1 

(dark:light) ratio (χ2=0.039), confirming that fruit color may be determined by a major 

gene with minor genes showing epistasis effects (Fogle, 1958; Schimidt, 1998). In this 

population, both parental cultivars ‘Vic’ and ‘Cristobalina’ would be heterozygous for this 
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major gene, with the dark allele being dominant and the light color allele being recessive. 

This recessive allele for light color will only have a phenotypic expression in determined 

crosses, when it is found in homozygosis. Jin et al. (2016), in a population also derived 

from another two dark cultivars, like the population analyzed herein, also reported a 

segregation of 3:1 (dark:light). Sooriyapathirana et al. (2010) observed a 9:7 (dark:light) 

segregation in a population whose parental cultivars were light and dark, fitting a 1:1 

(dark:light) segregation (χ2=0.028), and therefore adjusting to the described genetic model.  

 

 

 
Table 7.2 Minimum (Min), maximum (Max) and mean values for evaluated traits in ‘Vic’, 

‘Cristobalina’ and V×C population. 

Trait Units ‘Vic’ ‘Cristobalina’ 
V×C population 

Min Max Mean ± SD 

Skin color CTIFL Index 6 6 2 6 4.7 ± 1.4 

Flesh color UPOV Index 4 3 1 5 3.2 ± 1.6 

Cy3-glu mg / 100g FW 4.5 23.1 0 37.2 6.7 ± 7.2 

Cy3-rut mg / 100g FW 122.5 69.2 4.1 165.5 74.6 ± 50.6 

Peo3-glu mg / 100g FW 1.5 0.5 0 1.7 0.7 ± 0.5 

Peo3-rut mg / 100g FW 2.9 0.9 0 6.1 1.7 ± 1.5 

NA mg / 100g FW 89.3 43.0 24.5 136.5 68.1 ± 28.3 

CQA mg / 100g FW 35.9 61.5 13.9 105.4 45.9 ± 28.4 

CA mg / 100g FW 0 0.9 0 1.03 0.2 ± 0.3 

 

 

 

Four anthocyanins were identified in ‘Vic’ and ‘Cristobalina’ fruits: cy3-glu, cy3-

rut, peo3-glu and peo3-rut (Table 7.2). In both parental cultivars, the most abundant 

anthocyanins were cy3-rut (122.5 and 69.2 mg/100g FW in ‘Vic’ and ‘Cristobalina’ 

respectively), followed by cy3-glu (4.5 and 23.1 mg/100g FW in ‘Vic’ and ‘Cristobalina’ 

respectively), while peo3-glu and peo3-rut content was very low in both cultivars (0.9 to 

2.9 mg/100g FW; Fig 7.1; Table 7.2). The same anthocyanins were reported by other 

authors in sweet cherry, with cy3-rut also accounting for 77 to 96% of total anthocyanin 

content (Serradilla et al., 2016). In V×C, only cy3-rut was detected in all the seedlings with 

concentrations ranging from 4.1 to 165.5 mg/100g FW (Fig 7.1; Table 7.2). This compound 

is the main pigment related to the sweet cherry color, and have been observed in light-

colored cultivars as ‘Rainier’ or ‘Gold’ that the concentration was not higher than 1 

mg/100g FW, it is absent in white cherries (Wünsch et al., 2014), whereas in dark cherries 

like ‘Bing’, cy3-rut can reach up to 297 mg/100g FW (Gao and Mazza, 1995; Serradilla et 
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al., 2016). The other anthocyanins ranged from being absent in most light-colored 

seedlings to 1.7 (peo3-glu), 6.1 (peo3-rut) and 37.2 (cy3-glu) mg/100g FW in red-black 

individuals (Fig 7.1; Table 7.2). All anthocyanins detected showed positive and negative 

transgressive segregation. 

Trait correlation analyses revealed large positive correlation for skin and flesh 

color, and the four anthocyanins detected (Table 7.3). But the highest correlation was 

observed for cy3-rut and skin color (0.907; Table 7.3), confirming that anthocyanin 

content, most specifically cy3-rut, is the major component of sweet cherry fruit color (Gao 

and Mazza, 1995). 

 

 

 

Table 7.3 Correlation between phenotyped traits. 

 FC Cy3-glu Cy3-rut Peo3-glu Peo3-rut NA CQA CA 

SC 0.922* 0.632* 0.907* 0.834* 0.755* -0.057 -0.148 -0.149 

FC  0.603* 0.870* 0.821* 0.744* -0.088 -0.124 -0.145 

Cy3-glu   0.660* 0.581* 0.397* -0.022 -0.165 -0.170 

Cy3-rut    0.908* 0.870* -0.006 -0.100 -0.116 

Peo3-glu     0.763* -0.054 -0.020 -0.010 

Peo3-rut      0.038 -0.063 -0.071 

NA       -0.533* -0.570* 

CQA        0.836* 

* Correlation is significant at the 0.001 level. 

 

 

 

Color and anthocyanins QTL analyses 

Previous QTL analysis for fruit color in sweet cherry (Sooriyapathirana et al., 2010) 

revealed a main QTL governing this trait on LG3. In this work, QTL analysis of color and 

anthocyanin content were conducted, being the analysis of anthocyanin content carried out 

for first time in sweet cherry. Most significant and stable QTLs of fruit color and all 

anthocyanins detected (cy3-glu, cy3-rut, peo3-glu and peo3-rut) were found on the same 

region of LG3 of both parental maps (Fig 7.2; Table 7.4). This region spans from 19.38 to 

32.84 cM in ‘Vic’ map and from 35.95 to 59.45 cM in ‘Cristobalina’ map, which 

corresponds to same region of chromosome 3 in the sweet cherry genome (6.72 to 

10.41Mbp in ‘Vic’ and 8.52 to 13.56 Mbp in ‘Cristobalina’), where PavMYB10 is located, 

and where the main fruit color QTL was detected (Sooriyapathirana et al., 2010).  
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Figures 7.2 ‘Vic’ linkage map and detected QTLs. 
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For skin and flesh colors, only this major QTL was identified in both parental 

cultivars explaining from 23.8 (qP-SC3.2) to 30.1% (qP-SC3.1) of phenotypic variation 

(Fig 7.2; Table 7.4). For anthocyanins, QTLs detected on this region of LG3 showed 

variable percentages of phenotypic variation, ranging from 13.6 to 22.7% in ‘Vic’ (qP-

CyG3.1, qP-CyR3.1; qP-PeG3.1 and qP-PeR3.1) and from 11.9 to 21.8 in ‘Cristobalina’ 

(qP-CyG3.2; qP-CyR3.2; qP-PeG3.2 and qP-PeR3.2) (Table 7.4). The overlapping of the 

major QTLs for these traits, color and anthocyanins content, on a narrow region of LG3 

confirms the correlation reported for these traits and the same genetic control 

(Sooriyapathirana et al., 2010). The transcription factor PavMYB10 located in this region 

is the candidate gene of major determinant of sweet cherry color due to anthocyanin 

content, by regulating the anthocyanin biosynthesis pathway (Jin et al., 2016). 

 Minor QTLs for anthocyanin content were mapped on LG7 of ‘Vic’ (qP-CyG7.1; 

qP-CyR7.1 and qP-PeG7.1) and on ‘Cristobalina’ LG4 (qP-PeR4.1; Fig 7.2; Table 7.4). 

These QTLs are firstly reported in this study and may also be associated with fruit color. 

The use of a low precision phenotyping methodology for fruit color in this work may have 

limit the QTL detection possibilities, indicating that should be necessary to complete this 

work with a more precise phenotyping of skin and flesh color in order to identify other 

color QTLs segregating in this population, and/or to confirm the correlation of the minor 

anthocyanin content QTLs detected with fruit color. 

Additive effects were calculated for the detected QTLs to identify the effect of 

alleles associated with fruit color and anthocyanins content (Table 7.4). Positive values 

were observed for ‘Vic’ QTLs on LG3 for fruit color and all anthocyanins detected (qP-

CyG3.1, qP-CyR3.1; qP-PeG3.1, qP-PeR3.1, qP-SC3.1 and qP-FC3.1), suggesting that 

alleles from ‘Vic’ are associated with an increase in anthocyanin content and darker 

coloration. On the other side, ‘Cristobalina’ QTLs on LG3 and ‘Vic’ QTLs on LG7 were 

associated with negative additive effects. The largest additive positive and negative effect 

observed for cy3-rut QTLs on LG3 confirm the large effect of this QTL on fruit color and 

anthocyanin content.
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Figures 7.3 ‘Cristobalina’ linkage map and detected QTLs. 
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Phenolic acids content and QTL analysis 

 Three phenolic acids, NA, CQA and CA, which derive from the hydroxycinnamic 

acid (Cheynier et al., 2013), were identified in the population and the parental cultivars 

(Fig 7.1; Table 7.2). The highest concentrations in the parental cultivars were observed for 

NA in ‘Vic’ (89.3 mg/100 FW) and CQA in ‘Cristobalina’ (61.5 mg/100 FW), while CA 

was only detected in ‘Cristobalina’ at very low concentration (0.9 mg/100 FW; Table 7.2). 

In the population, a large mean value (68.1 mg/100g FW) was observed for NA, which 

ranged from 24.5 to 136.5 mg/100g FW, followed by CQA with a mean of 45.9 mg/100g 

FW (13.9 to 105.4 mg/100g FW). As in the parental cultivars, CA was only detected in 

some individuals of V×C, with maximum concentrations of 1.03 mg/100g FW (Fig 7.1; 

Table 7.2). Similar results have been observed in other sweet cherry cultivars, in which a 

larger amount of NA than CQA has been reported (Usenik et al., 2008; Serrano et al., 

2009). However, we observed in ‘Cristobalina’, as well as has been previously observed 

in ‘Burlat’ (Gonçalves et al., 2004), a larger amount of CQA than NA, indicating that the 

ratio of these compounds is specific of each cultivar and might be related to fruit 

development, as both are very early ripening cultivars, or to genetic similarity, as both are 

original from southern Europe (Wünsch and Hormaza, 2002). 

A significant negative correlation was observed between NA and the others two 

phenolic acids, CQA (-0.533) and CA (-0.570) that were highly positively correlated 

(0.836). As expected, no correlation was observed between anthocyanins and phenolic 

acids, as both types of compounds derive from different biosynthesis pathways, the 

anthocyanins that derive from phenylpropanoid, and the phenolic acids, which derived 

from hydroxycinnamic acid (Cheynier et al., 2013). 

This lack of correlation between the two groups of compounds was also observed 

in the QTL analysis, as different QTLs were detected for the phenolic acids content, 

confirming their different genetic control. A major QTL for the phenolic acids (NA, CQA 

and CA), was found on a narrow region at the bottom of ‘Vic’ LG1 at great LOD values 

(19.9 to 32.5; Fig 7.2; Table 7.4), and explaining a large proportion of the variation (60.3 

to 77.9). These QTLs were associated with additive effects of 21.40, 24.90 and 0.23 

mg/100g FW for NA, CQA and CA, respectively (Fig 7.2; Table 7.4). This QTL is 

probably associated with a major gene determinant of the phenolic acids content, therefore
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Table 7.4 QTLs identified for evaluated traits in ‘Vic’ and ‘Cristobalina’ cultivars. 

Trait Parental QTL name LG 

QTL  

interval 

(cM) 

Physical 

position* 

QTL peak 

Cofactor SNP LOD Variance PVE 
Additive 

effect 

Skin color Vic qP-SC3.1 3 21.39-32.20 7.50-10.00 PAV3_13025963 7.7 1.20 30.1 0.74 

 Cristobalina qP-SC3.2 3 45.17-54.45 12.11-13.56 PAV3_12987920 5.8 1.31 23.8 -0.67 

Flesh Color Vic qP-FC3.1 3 21.39-28.22 7.50-9.05 PAV3_13025963 6.1 1.83 24.8 0.79 

 Cristobalina qP-FC3.2 3 43.90-53.82 11.68-13.37 PAV3_12987920 7.3 1.73 28.8 -0.87 

Cy3-glu Vic qP-CyG3.1 3 27.22-32.84 8.91-10.41 PAV3_13025963 3.5 43.84 13.7 2.68 

 Vic qP-CyG7.1 7 26.60-31.77 13.94-15.73 PAV7_13940978 1.3 47.78 5.9 -1.74 

 Cristobalina qP-CyG3.2 3 41.90-59.45 9.21-13.56 PAV3_12987920 3.1 44.74 11.9 -2.60 

Cy3-rut Vic qP-CyR3.1 3 20.39-31.56 6.72-9.05 PAV1_30710911 5.5 1935 22.7 24.29 

 Vic qP-CyR7.1 7 27.60-34.98 13.94-16.86 PAV7_16310608 1.9 2294 8.3 -14.48 

 Cristobalina qP-CyR3.2 3 35.95-53.82 8.52-12.98 PAV3_15373201 4.8 2030 18.9 -22.95 

Peo3-glu Vic qP-PeG3.1 3 19.39-31.53 6.72-10.41 PAV1_30710911 3.6 0.18 16.4 0.19 

 Vic qP-PeG7.1 7 25.60-45.92 12.92-18.28 PAV7_16310608 1.8 0.20 8.4 -0.13 

 Cristobalina qP-PeG3.2 3 43.90-59.45 10.91-13.56 PAV3_12987920 3.0 0.19 13.6 -0.18 

Peo3-rut Vic qP-PeR3.1 3 20.39-29.22 6.72-9.05 PAV1_30710911 4.3 1.89 17.8 0.65 

 Cristobalina qP-PeR3.2 3 45.17-48.39 10.47-16.21 PAV3_15373201 5.3 1.80 21.8 -0.75 

 Cristobalina qP-PeR4.1 4 54.04-61.58 10.18-11.94 PAV4_10981932 4.1 1.92 16.7 -0.63 

NA Vic qP-NA1.1 1 141.34-142.90 43.21-47.58 PAV1_47015014 19.9 297 60.3 -21.40 

 Vic qP-NA3.1 3 8.24-19.39 9.35-16.60 PAV4_16184822 4.0 233 6.2 -7.02 

 Vic qP-NA5.1 5 11.90-17.76 4.30-8.19 PAV5_4897952 2.9 203 3.6 -5.26 

 Cristobalina qP-NA4.1 4 39.35-62.68 7.14-12.01 PAV4_10184036 2.4 679 9.3 -8.51 

 Cristobalina qP-NA6.1 6 69.78-75.89 19.16-20.91 PAV6_19476076 2.0 615 7.1 7.28 

CQA Vic qP-CQA1.1 1 141.34-142.90 43.21-47.58 PAV1_47015014 32.5 174 77.9 24.90 

 Cristobalina qP-CQA2.1 2 4.85-10.27 0.52-4.23 PAV2_2274343 3.0 688 12.4 9.90 

CA Vic qP-CA1.1 1 141.34-141.63 43.21-47.01 PAV1_47472494 23.6 0.02 67.9 0.23 

 Cristobalina qP-CA2.1 2 3.85-10.27 0.50-4.23 PAV2_2274343 2.0 0.07 7.4 0.07 

*Physical position on sweet cherry genome v1 (Shirasawa et al., 2017)
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candidate gene analysis in this region will allow to identify potential genes for the 

regulation of phenolic acid content in sweet cherry. 

This is the first genetic analysis of phenolic acids in a Prunus species, but QTL 

analyses of phenolic acids have been previously carried out in other Rosaceae species like 

apple (Khan et al., 2012; Chagné et al., 2012b; Verdu et al., 2014). Comparison of QTLs 

from this study and those detected in apple, revealed that the main region on LG1, in which 

most significant QTLs for phenolic acids were found in this study is syntenic to LGs 14 

and 15 in apple (Illa et al., 2011), where the main QTLs for phenolic acids have also been 

reported (Chagné et al., 2012b; Verdu et al., 2014). Within these QTL intervals, candidate 

genes for phenolic acid content were reported in apple (Chagné et al., 2012b; Verdu et al., 

2014). These are, genes homologous to shikimate/quinate O-hydroxycinnamoyl 

transferase (HCT/HQT) that has been shown to contribute to hydroxycinnamic acid 

synthesis in other plant species (Lepelley et al., 2007; Sonnante et al., 2010), and other 

genes such as flavonoid 3’-hydrolase and MYB genes (MYB110a and MYB110b; Verdu et 

al., 2014). Being syntenic the regions that control phenolic acids in Malus and Prunus, the 

candidate genes reported in apple may also be candidate genes in sweet cherry and Prunus 

species for phenolic acids content regulation, suggesting a conserved regulation 

mechanism of phenolic acids content within Rosaceae. Further studies should be carried 

out to confirm this hypothesis.  

   

Conclusion 

This study is the first report in sweet cherry of QTLs for polyphenols, anthocyanins 

and phenolic acids, traits that are associated with fruit quality, color and health-promoting 

properties. The use of the recently developed RosBREED cherry 15K SNP array allowed 

the saturation of previously generated SNP maps in the species, revealing a powerful tool 

for QTL and genetic analysis. Segregation of the studied phenolic compounds in the V×C 

population allowed identifying two main cluster of QTLs, on LGs 1 and 3, associated with 

the phenotype variation of these traits. A major QTL on LG3 regulates anthocyanin content 

and therefore fruit color, most likely due to the presence of the previously reported 

transcription factor PavMYB10. In the bottom region of LG1, another major QTL regulates 

phenolic acid compounds content, in a syntenic region in which QTLs for same compounds 

were reported in apple, suggesting candidate genes might be the same as those reported in 
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Malus. In addition, this study allowed identifying additional QTLs of anthocyanin content 

that may also be associated to fruit color.
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Supplementary Fig 1 CTIFL and UPOV color codes. 
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Supplementary Fig 2 Example of bicolor/light and mahogany/dark colored fruit of V×C 

population. 
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8. DISCUSSION 

 

SNP genotyping and linkage maps 

 Sweet cherry cultivars from different genetic backgrounds, including landraces like 

‘Cristobalina’ and ‘Ambrunés’, and bred cultivars, have been genotyped in this study using 

the whole genome Illumina RosBREED cherry 6K and 15K SNP arrays (Peace et al., 2013; 

Vanderzande et al., 2019). These arrays have allowed identifying heterozygous markers in 

the same range as previously reported for other cultivars, 400-700 for the 6K (Peace et al., 

2012; Klagges et al., 2013), and near 2,300 in the 15K array (Vanderzande et al., 2019). 

Within cultivars, those that derived from breeding programs, and descend from a few 

ancestors, had lower number of heterozygous markers than the landrace ‘Ambrunés’, 

confirming a loss of heterozygosity in bred cultivars as a result of inbreeding (Choi and 

Kappel, 2004). But, surprisingly, a low number of heterozygous markers were found in the 

landrace ‘Cristobalina’ compared with other cultivars. This low heterozygosity and the 

large homozygous regions observed in most of the LGs, detected with both 6K and 15K 

arrays, suggests that ‘Cristobalina’ may derive from self-pollination, and this fact could be 

the cause of some of its characteristics, like low vigor and small fruit size. 

 Four sweet cherry populations were used for linkage map development using the 

6K array (Chapters 2 and 5). Additionally, one of these populations (V×C) was also used 

for map construction using the 15K array (Chapter 7), being the first report of a linkage 

map using this array. In general, the 6K maps were similar in terms of number of SNPs, 

genetic length, average distances between markers and gaps sizes than observed for other 

maps developed using the same array (Klagges et al., 2013), adding this study new high-

density linkage maps to the previously developed in the species (Klagges et al., 2013; 

Guajardo et al., 2015; Wang et al., 2015; Shirasawa et al., 2017). These maps (Chapter 2, 

5 and 7) are a useful tool for the investigation of sweet cherry genetics, and are the basis 

of other studies carried out in this work, as they gave an insight in the study of inbreeding 

depression in the species (Chapter 2), allowed performing QTL analysis and discovery for 

several relevant quantitative breeding traits, and were used for haplotype analysis for the 

identification of relevant QTL alleles of sweet cherry breeding (Chapters 3, 5, 6 and 7). In 

addition, all developed maps derive from local plant material (‘Cristobalina’ and 
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‘Ambrunés’), which are highly interesting cultivars for breeding purposes due to their 

relevant characters, and as a source of genetic variability in the narrow genetic diversity of 

many commercial sweet cherry cultivars (Wünsch, 2019). Results revealed that the 

inclusion of this plant material was useful to investigate the genetics of traits of breeding 

interest like low chilling requirements and early bloom date from ‘Cristobalina’ (Chapters 

3 and 4) for example, or the high fruit firmness and late maturity date from ‘Ambrunés’ 

(Chapters 5 and 6). 

Despite various linkage maps have been constructed in sweet cherry from 

intraspecific and interspecific crosses with other related species (reviewed in Salazar et al., 

2014; Iezzoni et al., 2017), this work reports the first time linkage maps of self-pollinated 

populations, adding a useful tool for sweet cherry genetic analyses. The natural self-

compatibility of ‘Cristobalina’ (Wünsch and Hormaza, 2004; Ono et al., 2018) made 

possible to develop F2 populations in the species. These F2 populations (C×C and B×C2) 

were used in this work for linkage mapping and allowed carrying out genetic analyses that 

could not be investigate in cross-pollination populations. For example, B×C2 population 

resulted highly useful to investigate the BT, FD and MD QTL effects (Chapters 3 and 6). 

In addition, these F2 populations led to take a first look at genome-wide effect of self-

pollination in an obligate outcrossing species as sweet cherry. Self-pollination lead to an 

increase in homozygosity that was associated with a reduction in fitness by inbreeding 

depression (Chapter 2). 

 

QTL analyses  

In this work, a QTL mapping approach using multi-families and multi-years data 

was used when possible (i.e. phenotype data from various years was available or could be 

generated within the research period, or plant material was available). This approach was 

used for the study of BT, FD, MD, FS, FW, FF, TA and SSC. The use of this approach has 

proven very useful for QTL detection and the identification of allele variation of these 

traits. Only two previous studies have used a similar approach for QTL analysis in sweet 

cherry (Rosyara et al., 2013; Cai et al., 2019), in which FS and FF were investigated. This 

strategy, combined with the use of F2 populations and local germplasm, has resulted in a 

highly efficient tool for genetic analyses of relevant traits in the species and the 

identification of relevant alleles for breeding purposes. An example of translating this QTL
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Figure 8.1 Genetic position of most relevant QTLs identified in this study (colored bars). Only QTLs detected ≥ 2 years are shown, except 

for polyphenols content, for which QTLs detected one year with LOD>3.0 are shown. Colored circles indicate approximate genetic position 

of main QTLs for the same traits reported previously (Iezzoni et al., 2017; Quero-García, 2019). 
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analysis into breeding efficiency is shown in results derived from QTL studies from 

Chapter 3 that resulted in a breeding marker for early blooming (Chapter 4). A similar 

approach could be applied to the other traits investigated. 

 

New major QTLs 

In general, QTL analyses of several phenology and fruit traits in this work allowed, 

either the detection of new QTLs, or the validation of previously detected QTLs in the 

species for the same traits, and the identification of new alleles. As some investigated traits 

[FD, TA, SSC and polyphenolic compounds (anthocyanins and phenolic acids)] have been 

considered for QTL analyses by first time in this work, new QTLs were reported for them 

in the species. For all them, major QTLs were found, suggesting the presence of major 

genes associated with the genetic control of these traits (Fig 8.1). Major QTLs for these 

traits were found on LG1 for phenolic acids, on LG3 for anthocyanin content, on LG4 for 

FD and SSC, and on LG6 for TA (Fig 8.1). Some of these were very stable, as multiple 

year data allowed their detection in various years such is the case of FD, TA or SSC. Other 

traits were only studied one year (polyphenolic compounds) but the large significance and 

variation explained suggest they are also probably stable QTLs. Nevertheless, additional 

data (more years) should be analyzed to confirm the results.  

Some of these sweet cherry newly detected major QTLs (FD and polyphenolics 

content), are found in syntenic regions to QTLs previously described for the same traits in 

other Prunus and Malus species (Chagné et al., 2012; Verdu et al., 2014; Fresnedo-

Ramírez et al., 2015; Hernández Mora et al., 2017), and therefore candidate genes for these 

traits may be the same as previously reported for these species (Table 8.1). Also, some of 

these major new QTLs, are found in the same region of QTLs of correlated traits. This was 

the case of main FD and SSC or FF QTLs that overlap with the region of main MD QTL 

(Chapter 6; Dirlewanger et al., 2012; Isuzugawa et al., 2019), suggesting that these traits 

may be determined by linked genes, or a by major FD gene with pleiotropic effect over 

SSC and FF. As a larger fruit development period, and hence later maturity, is associated 

with sugar accumulation, SSC and FF may be result from a longer development period, 

and hence both traits may be determined by the same gene/s. Another example is 

anthocyanin content and fruit color, with QTLs overlapping on same region of LG3 

(Chapter 7; Sooriyapathirana et al., 2010), thus confirming that both traits are determined 
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by the same regulatory gene (MYB10), and anthocyanins (most specifically cy3-rut) are 

the main determinant of sweet  cherry coloration (Lin-Wang et al., 2010; Jin et al., 2016). 

On the other side, QTL and correlation analyses revealed that for the two types of 

polyphenolic compounds studied their genetic control is not related. Phenolic acids and 

anthocyanins content are not correlated and are associated to different QTLs on LGs 1 and 

3, respectively, revealing different regulatory genes of the corresponding biosynthesis 

pathways. 

 

QTL validation and new alleles 

Other traits investigated herein (BT, MD, FF, FS and FW) have been previously 

studied using QTL analysis in sweet cherry (Zhang et al., 2010; Dirlewanger et al., 2012; 

Rosyara et al., 2013; Quero-García et al., 2014; Campoy et al., 2015; Cai et al., 2019; 

Isuzugawa et al., 2019). This study validated most of previously reported QTLs for these 

traits in a different genetic background, and revealed new minor QTLs, thus completing 

the genetic picture of these traits. Additionally, and most relevant, for some of these major 

validated QTLs, a different effect and/or new alleles were identified in this work. This is 

the case of BT QTL analysis, in which main QTLs on LGs 1 and 2 were associated a much 

larger proportion of the variation in this work (Chapter 3) than previously reported 

(Castède et al., 2014). Additionally, the main QTL previously reported for this trait, on 

LG4 (Dirlewanger et al., 2012; Castède et al., 2014), did not have a large effect in this 

plant material. The inclusion in the analysis of populations derived from ‘Cristobalina’, 

with low CR and extra-early BTs, allowed identifying that the effect of these QTLs (LGs 

1 and 2) is larger in this plant material, and hence these major QTLs are associated with 

low CR and early bloom. Similarly, for MD, the major QTL previously described on LG4 

in sweet cherry and other Prunus species (Dirlewanger et al., 2012; Isuzugawa et al., 2019; 

Quilot et al., 2004; Dirlewanger et al., 2012; Nuñez-Lillo et al., 2015; Salazar et al., 2016 

and 2017) was validated in this work, but again, in this work new alleles were identified, 

in cultivars of early MD as ‘Cristobalina’ and ‘Burlat’, mainly associated with short FD 

period and early MD.  

 For FF, also new QTL effects and alleles were identified in this work in the major 

QTLs identified on LG1 (Chapter 5; Campoy et al., 2015; Cai et al., 2019) and LG4 

(Chapter 6; Cai et al., 2019). On LG1, a relevant QTL was identified in ‘Ambrunés’ × 
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‘Sweetheart’, in which ‘Ambrunés’ contributes for larger fruit size and firmness (Chapter 

5). The use of ‘Cristobalina’ in the multi-family approach also allowed detecting the 

recently reported main FF QTL on LG4 (Chapter 6; Cai et al., 2019). Bred cultivars 

evaluated in this study were homozygous for firm alleles on FF QTL of LG4 (Cai et al., 

2019), which suggest this locus was objective of selection during domestication and cherry 

breeding, and only in some landraces, like ‘Cristobalina’, soft alleles were segregating for 

this QTL (Chapter 6). Similar regions under selection in sweet cherry breeding have been 

observed on LG2 for FS (Cai et al., 2017), in which main FS QTL was found in this study 

only when parental cultivars of low fruit size as ‘Cristobalina’ was considered (Chapter 6).  

 

Candidate genes 

The description of major QTLs for evaluated traits in this work will allow the 

description and study of candidate genes that can be associated to the observed phenotypic 

variation, and that will permit MAS and/or optimization of the breeding process. This 

strategy was successfully carried out in this work for major BT QTL on LG1 (Chapters 3 

and 4). A similar approach could be attempt for other relevant QTLs detected in this work 

as candidate genes in these QTL regions have been previously described in sweet cherry 

and other related species (Table 8.1; reviewed in Aranzana et al., 2019). Furthermore, the 

availability of sweet cherry genome sequences (Shirasawa et al., 2017; Le Dantec et al., 

2019) will allow the analysis of these genome regions to identify additional candidate 

genes for these traits.  

In this study, using the sweet cherry genome sequence available (Le Dantec et al., 

2019), CR and BT candidate DAM genes (Bielenberg et al., 2008; Jiménez et al., 2009; 

Sasaki et al., 2011) were identified and characterized (PavDAM) in major BT QTL on LG1 

(Chapters 3 and 4). Cultivar sequence comparison allowed identifying cultivar specific 

polymorphisms that may be associated to phenotypic variation, and a deletion (DPD) in 

the promoter region of ‘Cristobalina’ PavDAM associated with early BT (Chapter 4). This 

mutation may help explaining low CR and extra-early flowering of this cultivar (Chapter 

3; Tabuenca, 1983; Alburquerque et al., 2008) but additional experiments are needed to 

confirm this hypothesis. Nevertheless, the polymorphism detected (DPD) will be useful 

for MAS of early BT. 
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Table 8.1 Candidate genes in main QTLs detected in this work, reported in sweet cherry and other 

Rosaceae species (Aranzana et al., 2019).  

Trait Ch QTL Candidate 

gene 

P. avium Other species 

BT 1 qP-

GDH1.2m 

DAM1-6 Chapter 4 

Castède et al. (2015) 

P. persica (Bielenberg et al., 2008) 

P. mume (Sasaki et al., 2011) 
 

2 qP-

GDH2.1m 

SOC1 Castède et al. (2015) P. armeniaca (Trainin et al., 2013) 

  
 FAR1 Castède et al. (2015) 

 

MD 4 qP-MD4.2m NAC  Isuzugawa et al. (2019) P. persica (Pirona et al., 2013) 

FF 4 qP-FF4.1m Expansin-A12 Cai et al. (2019) 
 

  
 endoPG 

 
P. persica  (Peace et al., 2005) 

FS 1 qP-Dia1.2m PavCNR09 

PavCNR10 

PavCNR11 

De Franceschi et al. (2013) 

De Franceschi et al. (2013) 

De Franceschi et al. (2013) 

 

 
2 qP-FS2.1m PavCNR12 De Franceschi et al. (2013) 

 

Color/ 

Anthoc. 

3 qP-SC3.1 

 

qP-CyR3.1 

MYB10  Sooriyapathirana et al. (2010)  

Lin-Wang et al. (2010) 

Chapter 7 

Apple (Espley et al., 2007) 

Pheno. 

acids 

1 qP-NA1.1  

qP-CQA1.1 

qP-CA1.1 

HCT/HQT Chapter 7 Apple (Chagné et al., 2012) 

Verdu et al. (2014) 

 

 

 

For the other relevant QTLs identified (Figure 8.1), for BT and other analyzed 

traits, candidate genes which have been previously reported (Table 8.1) could be also 

investigated. This is the case of MADS-box genes, SOC1 and FAR1 in main BT QTL of 

LG2 (Chapter 3; Trainin et al., 2013; Castède et al., 2015), or NAC transcription factor for 

MD on LG4 (Chapter 6; Pirona et al., 2013; Isuzugawa et al., 2019). Other relevant 

candidate genes proposed for fruit quality traits in the QTLs described and/or validated 

herein are expansin-A12 and endopolygalacturonase for fruit firmness on LG4 (Chapter 6; 

Peace et al., 2005; Cai et al., 2019), CNR on fruit size LGs 1 (PavCNR09, PavCNR10 and 

PavCNR11) and 2 (PavCNR12) (Chapter 4 and 5; De Franceschi et al., 2013), PavMYB10 

for fruit color and anthocyanin content (Chapter 7; Sooriyapathirana et al., Lin-Wang et 

al., 2010; Wünsch et al., 2014; Jin et al., 2016) or shikimate/quinate O-hydroxycinnamoyl 

transferase genes for phenolic acids on LG1 (Chapter 7; Verdu et al., 2014).  

 

Applications in sweet cherry breeding 

Trait correlations studied in this work will be useful for cherry breeding as evidence 

was obtained that in the plant material analysed some traits are significantly highly 

correlated, and therefore selecting for one of them implies selecting for another. These 
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correlations were observed within phenology (e.g. FD and MD; Chapter 6) and fruit quality 

traits (e.g. FW and FS, or FF and SSC) studied, but also amongst both types of traits (e.g. 

FD/MD and SSC/FF). These correlations may be the result of one trait being the cause of 

another (e.g. FD and SSC), or because both traits have the same genetic control (e.g. FD 

and MD). The later was confirmed in this work for some traits by identifying the same 

associated QTLs (e.g. FD and MD; fruit color and anthocyanin content).  

For the phenology traits studied, FD showed a high positive correlation with MD 

confirming the same previously reported correlation in other Prunus species (Chapter 6; 

Etienne et al., 2002, Salazar et al., 2013 and 2016). In addition, the overlapping of main 

MD QTLs, in the syntenic regions of BT and FD QTLs, revealed that MD genetic control 

can be dissected into BT and FD QTLs, which are independent of each other (Chapters 3 

and 6). These results indicated that to breed for early or late MD, in order to adapt to 

different climatic conditions and chilling areas, to obtain early cherries, or to extend the 

growing season in order to reduce seasonality; short or long FD and early or late BT could 

be selected. 

Other highly correlated traits in this study were mapped on clusters of stable and 

major QTLs (Chapters 5, 6 and 7) as observed in other fruit species (Quilot et al., 2004; 

Kenis et al., 2008; Eduardo et al., 2011; Zeballos et al., 2016; Salazar et al., 2013 and 

2017). This was the case of MD, FD, FF and SSC on LG4; FS, FS and FF on LG1; 

anthocyanin compounds and fruit color on LG3; and phenolic acids on LG1 (Fig 8.1). 

These clusters of QTLs are of high interest for breeding, as selection of certain haplotypes 

will allow selection various traits at the same time. Additionally, the haplotype analysis of 

these QTL regions in various parental cultivars, including local landraces, allowed the 

identification of QTL haplotypes or alleles of breeding interest, like the ‘Cristobalina’ 

haplotypes on LGs 1 and 2 (H1-c and H2-f ; Chapter 3) that are associated to early 

flowering and low CR; the ‘Cristobalina’ and ‘Burlat’ haplotype on LG4 (H4-c; Chapter 

6) that is associated with short FD and early MD but also to low FF; or the ‘Ambrunés’ 

haplotypes on LG1 (Wei1.1_H2; Dia1.1_H2; Fir1.1_H2; Chapter 5) that could be used for 

increasing fruit size and firmness at the same time. The identification of these new QTLs 

haplotypes/alleles will be useful for sweet cherry breeding, as MAS for these traits can be 

done by selecting the appropriate haplotypes in segregating populations from these 
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parental cultivars, either by using the SNP haplotypes defined in these works or by 

designing PCR markers from SNP markers at these haplotypes.  

Most direct application for sweet cherry breeding was developed in this work in 

Chapter 4 for BT as described above. By characterising the candidate genes of this trait at 

the main BT QTL (PavDAM), identifying a mutation associated to the phenotypic variation 

(early blooming), and developing a PCR marker (DPD) associated to this polymorphism, 

early BT, and most likely low CR material, can be selected from ‘Cristobalina’ derived 

individuals using this PCR marker.  

 Due to the narrow genetic diversity of sweet cherry, especially for bred cultivars, 

local landraces like ‘Cristobalina’ and ‘Ambrunés’, are an opportunity for the genetic 

improvement of relevant breeding traits. In this work, genetic analysis and genomic tools 

were successfully used to study phenology and fruit quality traits derived from this plant 

material, facilitating the selection of this local phenotypic variability in breeding programs. 

This work will be useful to release new cultivars adapted to the growers, market 

intermediaries and consumer demands, to improve adaptation and hence allow a more 

sustainable production, and to confront the challenge of global threats like climate change 

and global warming.
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9. CONCLUSIONS 

 

1. Genotyping of intra-specific sweet cherry populations with genome-wide 6K and 15K 

SNP arrays allowed constructing high-density linkage maps from cross- and self-

pollinated populations, providing a useful tool to enable genetic analysis. The genetic 

maps from the F2 populations, being the first in the species, revealed a high degree of 

homozygosity, providing an opportunity to investigate inbreeding depression in this 

naturally outbreeding species. 

 

2. Sweet cherry linkage maps comparison with peach genome allowed confirming a high 

degree of synteny between both species genomes, although specific differences like 

small translocated and inverted regions, with the most noticeable inversion at top of 

LG5, were detected.  

 

3. The multi-family QTL mapping approach implemented by FlexQTL™ software, 

combined with the use of F1 and F2 populations derived from local germplasm, proved 

to be a useful approach for detecting QTLs for the phenology and fruit quality traits 

studied and for identifying new QTL variants of breeding interest. 

 

4. The multi-year bloom time QTL analysis using populations derived from the low 

chilling and early blooming cultivar ‘Cristobalina’, allowed validating two main QTLs 

on linkage groups 1 and 2 accounting for nearly 63% of the phenotypic variation, and 

revealed that in these plant material phenotypic variation is not determined by the major 

bloom time QTL previously reported on LG4 in other populations with medium to late 

bloom time. These QTLs are, therefore, major determinants of bloom time in this low 

chilling plant material. 

 

5. ‘Cristobalina’ early bloom haplotypes for major bloom time QTLs on LGs 1 and 2 can 

be selected for breeding for low chilling and early blooming, as this was the only 

evaluated cultivar that contributed with alleles for early blooming in these QTLs.  
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6. Characterization in the ‘Regina’ sweet cherry genome of six MADS-box proteins 

(PavDAM), orthologues to P. mume and P. persica DAM genes, on major bloom time 

QTL on LG1 confirmed that these genes are main candidates of low chilling 

requirements and bloom time regulation in sweet cherry. 

 

7. Alignment of the genome sequences of 13 sweet cherry cultivars with different chilling 

requirements and bloom times allowed detecting polymorphisms in the PavDAM 

sequences that may be associated to these phenotypic differences. Additionally, a 696 

bp deletion in ‘Cristobalina’ PavDAM promoter, that correlates with early blooming, 

was also identified. A marker developed to detect this mutation will be useful for 

marker-assisted selection of low chilling requirements and early blooming from 

‘Cristobalina’. 

 

8. The multi-year and multi-family analysis of fruit development period and maturity date 

revealed that both traits are highly correlated, and that both are associated to a major 

QTL region on LG4, indicating that maturity date is most likely mainly dependent on 

genetic control of fruit development period. Additionally, minor QTLs for maturity date 

were the same of those reported for bloom time, revealing that, to a minor extent in 

sweet cherry, maturity date also depends on the genetic control of bloom time.  

 

9. The use of an F1 population from two unrelated cultivars, ‘Ambrunés’ and ‘Sweetheart’, 

allowed validating previously reported QTLs in the species for diameter, weight and 

firmness. Additionally, QTLs for the three traits, in the same region of LG1, have alleles 

of breeding interest in coupling phase in ‘Ambrunés’, revealing that selection of this 

haplotype from ‘Ambrunés’ will provide larger and firmer fruits. 

 

10. The genetic analysis of fruit quality traits (size, firmness, solid soluble content and 

titratable acidity) allowed validating main QTLs previously detected for these traits in 

other genetics backgrounds, and identifying new major QTLs for sugar content and 

acidity on LGs 4 and 6 respectively.  
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11. Major QTLs for fruit development period, fruit firmness and sugar content, traits which 

are also correlated, were mapped on the same narrow region of LG4. These results 

indicate that these traits may have the same genetic regulation or that a major gene 

regulating fruit development time may have a pleiotropic effect in the other fruit quality 

traits, as a larger development period may result in the accumulation of sugars and in 

fruit firmness increase.  

 

12. The identification of a cluster of major phenology and fruit quality traits QTLs on LG4 

will be useful for breeding purposes as specific haplotypes of this QTL region will allow 

selecting for short or long developing period and hence early or late maturity date, and 

sugar content or firmness at the same time. ‘Cristobalina’ and ‘Burlat’ haplotypes of 

this region associated to short fruit development time may be of interest for breeding 

for early maturity, but these haplotypes are also associated to low firmness. 

 

13. The identification of major anthocyanins content QTLs on LG3, overlapping with skin 

and flesh color QTLs also validated in this work, confirmed that anthocyanins content, 

and cyanidin 3-rutinoside in largest amount, is the main determinant of color variation 

most likely due to the previously proposed candidate gene, the transcription factor 

PavMYB10, which regulates the anthocyanin biosynthesis pathway.  

 

14. First report of a phenolic acids content QTL analysis in sweet cherry and Prunus 

species, has allowed identifying a major QTL on LG1, explaining up to 78% of the 

variation. This QTL is located in a syntenic region to the QTL region regulating the 

same traits in apple and therefore, candidate genes HCT/HQT for this trait in apple may 

be also regulating phenolic acid content in sweet cherry and Prunus species.
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9. CONCLUSIONES 

 

1. El genotipado de poblaciones intra-específicas de cerezo con los arrays de SNPs 

6K y 15K permitió la construcción de mapas de ligamiento de alta densidad de 

familias de cruzamientos y de autopolinzaciones, proporcionando una herramienta 

de utilidad para el desarrollo de análisis genéticos. Los mapas genéticos de las 

poblaciones F2 son los primeros en la especie y revelaron un alto grado de 

homocigosidad, proporcionando una oportunidad para investigar la depresión por 

consanguinidad en esta especie de polinización cruzada. 

 

2. La comparación de los mapas de ligamiento de cerezo con el genoma del 

melocotonero permitió confirmar el alto grado de sintenia entre los genomas de 

ambas especies, aunque diferencias específicas como pequeñas regiones 

translocadas e invertidas fueron detectadas, siendo una inversión en la parte 

superior del GL5 la más destacable. 

 

3. El mapeo de QTLs utilizando varias familias, implementado con el software 

FlexQTL™, combinado con el uso de poblaciones F1 y F2 derivadas de material 

local, fue una estrategia útil para detectar QTLs de los caracteres fenológicos y de 

calidad de fruto estudiados y para identificar nuevas variantes de QTLs de interés 

para la mejora.  

 

4. El análisis multianual de QTLs para fecha de floración usando poblaciones 

derivadas del cultivar de bajos requerimientos de frio y floración temprana 

‘Cristobalina’, permitió validar dos QTLs principales en los grupos de ligamientos 

1 y 2, que explicaron casi el 63% de la variación fenotípica; revelando que en este 

material la variación fenotípica no está determinada por el QTL principal de 

floración previamente identificado en el GL4 en familias de floración media a 

tardía. Por lo tanto, estos QTLs son los principales determinantes de la fecha de 

floración en este material de bajos requerimientos de frio. 
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5. Los haplotipos de floración temprana de ‘Cristobalina’, en los QTLs principales de 

floración identificados en los grupos de ligamiento 1 y 2, pueden ser seleccionados 

para la mejora genética de bajos requerimientos de frío y floración temprana, ya 

que éste fue el único cultivar evaluado que presentó alelos de floración temprana 

en estos QTLs. 

 

6. La caracterización de seis proteínas MADS-box (PavDAM) en el genoma del 

cultivar de cerezo ‘Regina’ en la región del QTL principal de floración en el GL1,  

y que son ortólogos a los genes DAM identificados  en  P. mume y P. persica,, 

confirmó que estos son los principales genes candidatos al control de bajos 

requerimientos de frio y fecha de floración en cerezo. 

 

7. El alineamiento de la secuencia genómica de 13 cultivares de cerezo con diferentes 

requerimientos de frío y fechas de floración permitió detectar polimorfismos en las 

secuencias de los genes PavDAM que podrían estar asociadas a estas diferencias 

fenotípicas. Además, también se identificó una deleción de 696 pb en el promotor 

de los PavDAM en ‘Cristobalina’, que esta correlacionada con floración temprana. 

El marcador desarrollado para detectar esta mutación será de utilidad para la 

selección asistida por marcadores de bajos requerimientos térmicos y floración 

temprana de ‘Cristobalina’. 

 

8. El análisis plurianual y multifamiliar del período de desarrollo de fruto y la fecha 

de maduración reveló que ambos caracteres están muy correlacionados, y que  

ambos están asociados a un QTL principal en la misma región del GL4, lo que 

indica que probablemente la fecha de maduración depende principalmente del 

control genético de período de desarrollo del fruto. Además, QTLs menores para 

la fecha de maduración fueron los mismos que los identificados para fecha de 

floración, revelando que la fecha de maduración también depende del control 

genético de la fecha de floración, aunque en menor medida. 
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9. El uso de una población F1 de dos cultivares no relacionados, ‘Ambrunés’ y 

‘Sweetheart’, permitió validar QTLs previamente identificados en la especie para 

diámetro, peso y firmeza. Además, QTLs para los tres caracteres localizados en la 

misma región de GL1, tienen alelos de interés en fase de acoplamiento en 

‘Ambrunés’, lo que indica que la selección de este haplotipo de ‘Ambrunés’ 

permitirá seleccionar  frutos más grandes y más firmes. 

 

10. El análisis genético de los caracteres de calidad de fruto (tamaño, firmeza, 

contenido en sólidos solubles y acidez titulable) permitió validar los QTLs 

principales detectados previamente para estos caracteres en otros fondos genéticos 

e identificar nuevos QTLs mayores para el contenido en azúcares y acidez en los 

GL 4 y 6 respectivamente. 

 

11. QTLs mayores para período de desarrollo de fruto, firmeza y contenido en 

azúcares, que son caracteres que además están correlacionados entre si, se 

mapearon en la misma estrecha región del GL4. Estos resultados indican que estos 

caracteres pueden tener el mismo control genético o que un gen mayor que regule 

el periodo de desarrollo de fruto pueda tener un efecto pleiotrópico sobre los otros 

caracteres, ya que un período de desarrollo más largo puede resultar en un aumento 

de la acumulación de azúcares y en una mayor firmeza del fruto. 

 

12. La identificación de un grupo de QTLs mayores en el GL4 para caracteres 

fenológicos y de calidad de fruto será de utilidad para la mejora ya que los 

haplotipos específicos de esta región permitirán seleccionar para un período de 

desarrollo corto o largo y, por lo tanto, una fecha de maduración temprana o tardía, 

así como para contenido de azúcares o firmeza al mismo tiempo. Los haplotipos de 

‘Cristobalina’ y ‘Burlat’ de esta región asociados con un desarrollo de fruto corto 

pueden ser de interés para la mejora para maduración temprana, pero estos 

holotipos también están asociados a una menor firmeza. 
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13. La identificación de QTLs principales para el contenido de antocianinas en el grupo 

de ligamiento 3, en la misma región que los QTLs para color de piel y pulpa que 

también fueron validados en este trabajo, confirmó que el contenido de 

antocianinas, y en particular la cianidina 3-rutinósido, es el principal determinante 

de la variación de color, probablemente debido al gen candidato previamente 

propuesto, el factor de transcripción PavMYB10, que regula la ruta de biosíntesis 

de antocianinas. 

 

14. El primer trabajo de análisis de QTLs para el contenido de ácidos fenólicos en 

cerezo y especies del genero Prunus ha permitido identificar un QTL principal en 

el grupo de ligamiento 1 que explica hasta el 78% de la variación. Este QTL está 

ubicado en una región sinténica a la región del QTL que regula este mismo carácter 

en manzano, y por tanto los genes candidatos HCT/HQT para este carácter en 

manzano puede que también regulen el contenido en ácido fenólicos en cerezo y 

otras especies del genero Prunus. 
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Abstract
The landrace sweet cherry (Prunus avium L.) cultivar ‘Cristobalina’ is a useful resource for sweet cherry breeding due to several
important traits, including low chilling requirement, early maturity date, and self-compatibility. In this work, three families (N =
325), derived from ‘Cristobalina’, were used to develop high-density genetic maps using the RosBREED 6K Illumina Infinium®
cherry SNP array. Two of the families were derived from self-pollination, which allowed construction of the first F2 genetic maps
in the species. The other map developed was from an interspecific cross of cultivars ‘Vic’ × ‘Cristobalina’. The maps developed
include 511 to 816 mapped SNPs covering 622.4 to 726.0 cM. Mapped SNP marker order and position were compared to the
sweet cherry and peach genome sequences, and a high degree of synteny was observed. However, inverted and small translocated
regions between peach and sweet cherry genomes were observed with the most noticeable inversion at the top of LG5. The
progeny resulting from self-pollination also revealed a high level of homozygosity, as large presumably homozygous regions as
well as entire homozygous LGs were observed. These maps will be used for genetic analysis of relevant traits in sweet cherry
breeding by QTL analysis, and self-pollination populations will be useful for investigating inbreeding depression in a naturally
outbreeding species.

Keywords Sweet cherry 6KSNP array . Genetic map . ‘Cristobalina’ . Homozygosity . Self-compatibility

Introduction

Sweet cherry (Prunus avium L.), a diploid species (2n =
2x = 16) in the Rosaceae, is mainly cultivated for its fruit.
World sweet cherry production has increased over 30%

during the last two decades, reaching 2.2 M tons in 2014
(FAOSTAT 2018). The increase in sweet cherry consump-
tion, combined with challenges posed by climate change,
and grower and consumer demands require breeding and
production improvements. New genomic technologies and
physical and genetic linkage maps generated contribute to
an increase in knowledge that can lead to an improvement
in breeding efficiency. In the Rosaceae family, various ge-
nome sequences have been published in recent years
[Genome Database for Rosaceae (GDR); Jung et al.
2008]. Verde et al. (2013) sequenced the peach genome,
the first Prunus genome sequenced, and, just recently, a
sweet cherry genome was published (Shirasawa et al.
2017). Next generation sequencing (NGS) technologies
have also allowed the identification of single nucleotide
polymorphisms (SNPs) along the genome and the develop-
ment of SNP array platforms for Rosaceae crops. This is
the case for peach (Verde et al. 2012), sweet and sour
cherry (Peace et al. 2012), strawberry (Bassil et al. 2015),

Communicated by E. Dirlewanger

Electronic supplementary material The online version of this article
(https://doi.org/10.1007/s11295-018-1252-2) contains supplementary
material, which is available to authorized users.

* Ana Wünsch
awunsch@aragon.es

1 Unidad de Hortofruticultura, Centro de Investigación y Tecnología
Agroalimentaria de Aragón (CITA), Instituto Agroalimentario de
Aragón-IA2 (CITA-Universidad de Zaragoza), Avenida de
Montañana 930, 50059 Zaragoza, Spain

2 Department of Horticulture, Michigan State University, 1066 Bogue
St, East Lansing, MI 48824-1325, USA

Tree Genetics & Genomes  (2018) 14:37 
https://doi.org/10.1007/s11295-018-1252-2

http://crossmark.crossref.org/dialog/?doi=10.1007/s11295-018-1252-2&domain=pdf
http://orcid.org/0000-0002-8684-8840
https://doi.org/10.1007/s11295-018-1252-2
mailto:awunsch@aragon.es


and apple (Chagné et al. 2012; Bianco et al. 2014, 2016).
These arrays have enabled the development of highly sat-
urated linkage maps in the different species (Klagges et al.
2013; Di Pierro et al. 2016; Mahoney et al. 2016; Lambert
et al. 2016). Linkage maps are a useful tool for the identi-
fication of quantitative trait loci (QTL), genomic regions
associated with variation for quantitative traits. QTL for
traits of breeding and production interest can be further
used for marker-assisted selection or to identify candidate
genes responsible for these traits.

Numerous linkage maps have been constructed in sweet
cherry (reviewed in Salazar et al. 2014; Iezzoni et al.
2017). The first sweet cherry linkage maps were construct-
ed using RAPDs (Stockinger et al. 1996) and isoenzymes
(Boškovi and Tobutt 1998). Later, maps were developed
using SSR markers (Dirlewanger et al. 2004; Olmstead et
al. 2008; Clarke et al. 2009) and SNP markers (Cabrera et
al. 2012). High-density maps have been developed more
recently (Klagges et al. 2013; Balas et al. in press) using
the RosBREED cherry 6K Illumina Infinium® SNP array
v1 (Peace et al. 2012), Genotyping By Sequencing (GBS;
Guajardo et al. 2015), and Specific-Locus Amplified
Fragment (SLAF; Wang et al. 2015). Most recently, an
integrated consensus linkage map containing 2317 SNPs
and 65 SSRs spanning 1165 cM, from three cross-
pollination populations (Shirasawa et al. 2017), was con-
structed using double-digest restriction site-associated
DNA sequencing (ddRAD-Seq).

All linkage maps developed in sweet cherry to date have
been constructed from F1 populations from interspecific or
intraspecific crosses. Sweet cherry is a natural outcrossing
species that exhibits a gametophytic self-incompatibility
system controlled by the S locus. Pollen tube growth ex-
pressing an S allele that matches one of the two S alleles
expressed in the diploid style is inhibited (Tao and Iezzoni
2010). As a result of gametophytic self-incompatibility,
self-fertilization is not possible in this species. F1 mapping
populations developed in sweet cherry have been made
between cross-compatible parents. However, self-
compatible mutants do exist in sweet cherry. The self-
compatible mutant most widely used in breeding is a mu-
tation that was induced using irradiation that renders S4
pollen compatible in an S4containing style (Lewis 1949).
Therefore, any sweet cherry that carries this S4 mutant,
termed S4′, is self-compatible. However, natural self-
compatible mutants have been found in local germplasm,
including the landrace cultivars ‘Cristobalina’ (Wünsch
and Hormaza 2004), ‘Talegal Ahim’, ‘Son Miro’ (Cachi
and Wünsch 2014), and ‘Kronio’ (Marchese et al. 2007).

These cultivars, and any cultivar with S4′, can be used to
develop populations from self-pollination. Self-pollinated
populations are useful for the genetic dissection of quanti-
tative traits, especially in species with a low level of

heterozygosity, because genetic effects (additive and dom-
inant) can be estimated, and therefore, these population
types are frequently used in fine mapping of QTLs
(Zhang 2012). In the genus Prunus, linkage maps have
been developed using F1 and F2 populations, and these
maps have been used for QTL analyses for traits of inter-
est. In peach, most linkage maps come from F2 populations
[Genome Database for Rosaceae (GDR); Jung et al. 2008],
but in other Prunus species that are self-incompatible, like
almond or sweet cherry, all genetic maps have been devel-
oped in F1 populations. In apricot, in which some cultivars
are self-compatible, F2 linkage maps have also been devel-
oped (Soriano et al. 2008; Vilanova et al. 2003). In breed-
ing of sweet cherry, use of these self-compatible mutants
makes it possible for the breeder to do self-pollinations or
sib-matings that were previously not possible, raising the
question of whether an associated increase in homozygos-
ity in this naturally cross-pollinated crop could lead to in-
breeding depression.

‘Cristobalina’, a landrace cultivar from Eastern Spain,
specifically, a mountain area (Sierra de Espadán,
Castellón) near the Mediterranean coast, offers many op-
portunities for sweet cherry breeding. This cultivar has a
very low chilling requirement (< 800 h), compared with
other sweet cherry cultivars, such as ‘Van’ or ‘Napoleon’
(> 1100 h), that have large chilling requirements (Tabuenca
1983). This trait makes ‘Cristobalina’ an important cultivar
for breeding for low chilling, looking to extend the area of
production to areas with warmer winters. This cultivar also
has a very early maturity date, which makes it of interest
for breeding early maturing cultivars. In addition,
‘Cristobalina’ has compact growth and medium to small
size fruit (4–5 g) with dark red skin. Another relevant as-
pect is that ‘Cristobalina’ is self-compatible (Wünsch and
Hormaza 2004) due to a mutation located on linkage group
(LG) 3 and therefore unlinked to the S locus that is on LG6
(Cachi and Wünsch 2011). Thus, it is an alternative source
for breeding for self-compatibility. Being self-compatible,
‘Cristobalina’ also offers the possibility to use F2 popula-
tions for genetic analysis of these important production
traits and to investigate the possibility of inbreeding de-
pression in this naturally cross-pollinated species.

In this work, we used three sweet cherry families that
have ‘Cristobalina’ as a parental cultivar, two of which are
self-pollinations, to develop genetic maps using the
RosBREED Cherry 6K SNP array v1. These maps were
compared with previous sweet cherry linkage maps and
with sweet cherry and peach physical maps (Shirasawa et
al. 2017; Verde et al. 2017) to estimate the degree of sim-
ilarity and synteny. The two self-pollinated populations
derived from ‘Cristobalina’ were further used to investi-
gate extent of homozygosity exhibited by the self-
pollinated progeny.
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Materials and methods

Plant material

Three sweet cherry families were used for linkage map con-
struction that all include ‘Cristobalina’ (S3S6, Mm) in the par-
entage or ancestry. ‘Cristobalina’ has the S locus genotype
S3S6; however, it is self-compatible because it is heterozygous
for a self-incompatibility modifier locus (Mm) on LG3 (Cachi
and Wünsch 2011; Ono et al. 2018). All self-compatible
‘Cristobalina’ pollen has the m allele and either S3 or S6
(Cachi and Wünsch 2011; Ono et al. 2018). These three fam-
ilies were an F1 family from the cross of cultivars ‘Vic’ (S2S4,
MM) × ‘Cristobalina’ (V × C; N = 161), an F2 family from the
self-pollination of ‘Cristobalina’ (C × C, N = 97), and an F2
family derived from the self-pollination of a progeny (S6S9,
Mm) of the cross of ‘Brooks’ (S1S9, MM) × ‘Cristobalina’
(B × C2, N = 67). These trees come from crosses and self-
pollinations made from 2008 to 2010 and are grown at the
experimental orchards of CITA de Aragón in Zaragoza
(Spain). All the parental cultivars belong to the CITA de
Aragón sweet cherry cultivar collection. ‘Vic’ (Dickson
1959) is a cultivar, derived from the cross of ‘Bing’ ×
‘Schmidt’, with late blooming and maturity dates and dark
large fruits. ‘Brooks’ is a cultivar from the cross of ‘Rainier’
and ‘Burlat’, which shows early blooming and maturity dates
and dark red and firm fruits (Hansche et al. 1988). Progeny
from three additional sweet cherry populations from the
crosses ‘Lambert’ (S3S4, MM) × ‘Cristobalina’ (L × C, N =
14), ‘Ambrunés’ (S3S6, MM) × ‘Cristobalina’ (A × C, N =
40), and ‘Brooks’ (S1S9, MM) × ‘Cristobalina’ (B × C, N =
33) were genotyped using the 6K RosBREED cherry array
and used to perform SNP clustering.

SNP genotyping

Genomic DNA was obtained from lyophilized leaves using
DNeasy® Plant Mini Kit (Qiagen, MD, USA). Genomic
DNA was extracted from the parental cultivars and all the
progeny individuals. A duplicate genotype was included in
each 96-plate as a quality control to evaluate reproducibility.
Initial genomic DNA quantification was carried out using
Nanodrop® (Thermo Fisher Scientific, Waltham, MA,
USA). Genome-wide SNP genotyping of the three families
and the parental cultivars was done using the RosBREED
Cherry 6K Illumina Infinium® SNP Array v1 (Peace et al.
2012). Information about the SNP array, including the name,
SNP type, position on the peach genome, Gbrowse link, and
flanking sequence for the SNPs, can be downloaded from the
Genome Database for Rosaceae (https://www.rosaceae.org/
species/prunus/cherry) (Jung et al. 2008). Genotyping was
carried out at CEGEN-PRB2-ISCIII (Madrid, Spain) by quan-
tification with Quant-iT™ PicoGreen® (Invitrogen Ltd.,

Paisley, UK) and array scanning with Illumina iSCAN
System® (Illumina Inc., San Diego, CA, USA).

SNP genotypes were analyzed using the Genotyping
Module (v1.9.4) of GenomeStudio™ (v2011.1; Illumina
Inc., San Diego, CA, USA) software. Manifest file providing
a description of the SNP and probe content on the array was
used for the SNP genotype calling. In order to maximize alle-
l ic divers i ty, SNP clus ter ing was performed by
GenomeStudio™ using 480 sweet cherry genotypes. This
sample included 325 genotypes corresponding to the three
mapping progenies, 45 cultivars from the CITA sweet cherry
cultivar collection previously genotyped with the same array
(Martínez-Royo and Wünsch 2014), 87 individuals from the
remaining three families described previously, and 23 geno-
types including the parents and technical duplicates. Only
samples that had GenCall scores above 0.15 were initially
clustered using the GenomeStudio™ build-in algorithm
BGentrain2^. Clustering for all the SNPs was also visually
checked and adjusted manually if needed. Duplicated geno-
types in each plate were tested for reproducibility using the
Genome Studio BReplicate^ analysis function. Genome
Studio Bparent–parent–child^ (P-P-C) analysis function was
used to test progenies and marker heritability in all the prog-
enies. Further SNP quality filtering and data formatting for
input in JoinMap were carried out using ASSIsT 1.0 (Di
Guardo et al. 2015) with default parameters for each of these
three populations.

To confirm homozygous LGs, a selected sample of eight
individuals from C ×C that collectively exhibited homozy-
gosity for all LGs with the RosBREED Cherry 6K Illumina
Infinium® SNPArray v1, was also genotyped with the recent-
ly developed RosBREED Cherry 15K Illumina Infinium®
SNP array. Genotyping and SNP analysis was carried out as
described previously, but SNP clustering was performed using
a smaller sample (183 individuals) of sweet cherry popula-
tions and cultivars from CITA orchards. As the additional
SNPs on the 15K array had not yet been placed on the linkage
map generated from the C × C family, the SNP positions used
were the physical positions of each SNP indicated in the array
Manifest file.

Linkage map construction

Linkage map construction was performed using JoinMap
4.1® (Kyazma B.V., Netherlands; van Ooijen 2006). All indi-
viduals with more than 5% missing data and all SNPs with
more than 10% missing data were excluded from map
construction.

For V × C, a cross-pollination, a BTwo-step method^
(Klagges et al. 2013; Tavassolian et al. 2010), was used. In
the first mapping step, only heterozygous markers in each
parent were used to develop parental linkage maps.
Minimum independence of LOD (= 10.0) was used for marker
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grouping. All informative markers were included in the paren-
tal map construction in the first mapping round. In the second
round, markers showing segregation distortion (p < 0.01)
were excluded if they were not surrounded by other segrega-
tion distorted markers. A recombination frequency threshold
of 0.6 was selected to prevent suspect linkages. False double
recombination events were checked using BGenotype
Probabilities^ option with a threshold of 2.0 [− Log 10 (P)].
The Maximum Likelihood mapping algorithm with default
parameters was used for LG construction (van Ooijen 2006),
and recombination frequency was converted into genetic dis-
tance (centiMorgan, cM) using Kosambi’s mapping function
(Kosambi 1944). In the second mapping step, heterozygous
markers for both parents as well as all the markers previously
mapped in each parental map were used to create the V × C
consensus map. SNP markers with identical segregation were
included in the linkage maps using the function BAssign iden-
tical loci to their groups.^

For the construction of the C × C and B × C2 linkage maps,
in both segregating as F2 populations, a BOne-step method^
was carried out using JoinMap 4.1. This method consisted of a
single mapping step using all heterozygous markers of the
parental tree. Minimum independence of LOD (= 10), a re-
combination frequency of 0.6, and maximum likelihood map-
ping algorithm were used for linkage map construction. As
described for V × C mapping, markers showing segregation
distortion (p < 0.01) were excluded when not surrounded by
other markers exhibiting segregation distortion. MapChart
v2.2 was used to draw linkage maps (Voorrips 2002).
Deviation from expected Mendelian segregation was evaluat-
ed in the three families by Chi-square goodness-of-fit at p <
0.001 to avoid false positives, using JoinMap 4.1. In addition,
for each progeny individual, marker data was evaluated to
identify chromosomes with just monomorphic markers, and
these chromosomes were presumed to be homozygous.

Comparative mapping

The genetic positions of the SNPs placed on the genetic maps
constructed were compared with their physical positions in the
cherry genome PAV_r1.0 (Shirasawa et al. 2017). SNP
flanking sequences were searched against the cherry genome
PAV_r1.0 using the BLAST function at the Genome Database
for Rosaceae (GDR, www.rosaceae.org; Jung et al. 2008), and
only the best matching sequence was included as a result
(Online Resource 1).

The SNPs mapped in the three maps were also aligned with
their physical position in the peach genome v2.0.a1 (Verde et
al. 2017), and the peach physical and cherry linkage map
positions were compared. When discrepancies between genet-
ic and physical order occurred, the genetic marker order was
used, and physical positions for the new marker locations
were extrapolated using the physical positions of flanking

markers in the peach genome v2.0.a1 (Campoy et al. 2016).
Using this method, the chromosomes of C × C, B × C2, ‘Vic’
(V), and ‘Cristobalina’ (C) maps (this work) and those of
‘Regina’ (R), ‘Lapins’ (L), ‘Black Tartarian’ (BT), and
‘Kordia’ (K) (Klagges et al. 2013) were drawn using
MapChart v2.2 (Voorrips 2002).

Results

SNP genotyping and linkage map construction

SNP genotyping of V × C revealed 842 SNPs (14.8%) that
were polymorphic in the parental cultivars and segregating
in the family. The remaining SNPs were either monomorphic
(4201 SNPs, 73.7%), showed unexpected segregation (11
SNPs, 0.2%), or failed detection (642 SNPs, 11.3%) and were,
therefore, discarded. From the 842 segregating SNPs, 483
(8.5%) were heterozygous in ‘Vic’ and 526 (9.2%) were het-
erozygous in ‘Cristobalina’ with 167 SNPs heterozygous in
both cultivars. Using these markers, parental linkage maps of
‘Vic’ and ‘Cristobalina’ were constructed that each had the
expected eight LGs (Table 1; Fig. 1; Online Resource 1).
The ‘Vic’ map has 313 SNPs covering 707.2 cM, with an
average distance between markers of 3.1 cM. For
‘Cristobalina’, 370 SNPs were mapped, spanning 659.6 cM,
with an average distance between markers of 4.0 cM. The
largest numbers of markers were mapped to ‘Vic’ LG1 (100
SNPs) and ‘Cristobalina’ LG2 (95 SNPs), while ‘Vic’ LG2
(10 SNPs) and ‘Cristobalina’ LG7 (5 SNPs) were the LGs
with least numbers of markers. The V × C consensus linkage
map has 816 markers distributed along 726.0 cM and an
average distance between markers of 0.9 cM (Table 1;
Fig. 1; Online Resource 1).

In the C × C family, of 526 SNPs heterozygous in
‘Cristobalina’, 511 were mapped to the eight LGs. This map
covered 634.1 cM with an average distance between markers
of 1.7 cM (Table 1; Fig. 2; Online Resource 1). Like in the
‘Cristobalina’ parental map, the largest and lowest numbers of
markers were mapped to LG2 (105) and LG7 (9 SNPs), re-
spectively. As expected, the ‘Cristobalina’ linkage map gen-
erated from the two populations (V ×C and C × C) was highly
similar and mostly collinear (Fig. 2); however, more SNPs
were placed on the C × C map than the ‘Cristobalina’ V × C
parental map. This difference occurred due to different criteria
used for including markers in map construction. For C × C, all
heterozygous markers in ‘Cristobalina’ could potentially be
used for linkage map construction. However, the
‘Cristobalina’ parental map fromV × Cwas constructed using
only markers heterozygous for ‘Cristobalina’ and not with
those that were heterozygous in both parental cultivars
(‘Cristobalina’ and ‘Vic’), as these were only used in the con-
struction of the consensus V × C map. This effect is evident in
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the different size observed at the top of LGs 5 and 7 and
bottom of LGs 2 and 3, where heterozygous SNPs in
‘Cristobalina’ were only used in C × C map construction but
not in the ‘Cristobalina’ parental map. Other differences are
also observed between both maps. For example, the last SNP
(ss490557364) mapped at the bottom of LG7 of ‘Cristobalina’
was not present in the C × Cmap since this marker exhibited a
high level of segregation distortion and was therefore exclud-
ed from the C × C map. Therefore, a big gap spanning
26.4 cM at the bottom of LG7 in the ‘Cristobalina’ parental
map was not detected in the C × C map (Fig. 2). Both maps
have similar genetic length in total, and thus, the larger num-
ber of SNPs mapped in the C × C family resulted in a denser
map although the average marker distances vary between LGs
(Table 1).

SNP genotyping of the parent that was self-pollinated to
generate the B × C2 family identified 589 (10.3%) heterozy-
gous SNPs, 4725 (82.9%) homozygous SNPs, and 382 (6.7%)
that failed detection. From genotyping the B × C2 family, a
linkage map was constructed from 552 SNPs. The resulting
map covered a total genetic length of 622.4 cM, with a marker

density of 1.2 cM (Table 1; Fig. 3; Online Resource 1). Like in
‘Vic’, the largest number of markers and larger genetic length
was observed for LG1 (133 SNPs, 124.7 cM), and like in the
other two maps, LG7 had the lowest number of markers (51).

Large gaps (> 10 cM) were identified on the ‘Vic’ parental
map for all LGs, except in LG4 and LG7 (Table 1, Fig. 1). The
maximum gap on the ‘Vic’ map spanned 50.7 cM and was
located on LG2. For ‘Cristobalina’, large gaps were detected
on six of the eight linkage groups (LG1, 4–8), with the largest
gap of 43.3 cM found on LG7. Fewer large gaps were ob-
served on the V × C, C × C, and B × C2 maps compared to the
‘Vic’ and ‘Cristobalina’ maps. Additionally, the largest gaps
were smaller in these maps than in the parental maps, reveal-
ing the generation of denser maps from consensus and the F2
populations compared to the F1 parental maps.

SNP markers showing distortion from the expected
Mendelian segregation ratios (p < 0.001) were identified in
all the maps constructed except in the ‘Vic’ parental map.
The number of skewed markers ranged from 32 in the V × C
consensus map to 56 in C × C, being most frequent on LG2
and LG3 (Table 1). These markers were grouped in

Table 1 Number of SNP markers, genetic length, average distance between markers, maximum gap size, and number of markers with expected
Mendelian segregation distortion (SD) (p < 0.001) per linkage group (LG) in ‘Vic’ (V), ‘Cristobalina’ (C), V × C, C × C, and B × C2 maps

LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8 Total

Number of markers V 100 10 23 28 44 29 54 25 313

C 67 95 54 34 32 49 5 34 370

V × C 185 111 89 100 92 95 68 76 816

C × C 85 105 66 75 51 71 9 49 511

B × C2 133 75 70 56 48 66 51 53 552

Genetic length (cM) V 169.8 65.3 64.2 75.7 79.2 106.7 68.7 77.6 707.2

C 63.4 75.2 91.1 91.1 72.5 120.5 75.9 70.2 659.9

V × C 150.3 79.8 89 78.5 71.3 108.9 76.1 72.1 726.0

C × C 58.9 94.9 100.2 80.9 72.2 111.5 42.9 72.6 634.1

B × C2 124.7 73.1 52.6 71.8 68.5 86.8 70.4 74.5 622.4

Average marker distance (cM) V 1.7 7.2 2.9 2.8 1.8 3.8 1.3 3.2 3.1

C 0.9 0.7 1.7 2.8 2.3 2.5 18.9 2.1 4.0

V × C 0.8 1.2 1.0 0.8 0.8 1.1 1.1 0.9 0.9

C × C 0.7 0.9 1.5 1.0 1.4 1.6 5.3 1.5 1.7

B × C2 0.9 0.9 0.7 1.3 1.4 1.3 1.4 1.4 1.2

Largest gap size (cM) V 18.7 50.7 15.2 8.1 16.9 23.5 7.4 29.9 50.7

C 10.3 6.6 9.5 16.8 11.9 17.7 43.3 18.6 43.3

V × C 6.8 5.4 6.1 6.7 7.9 7.6 10.9 5.9 10.9

C × C 7.8 13.4 10.4 8.6 6.7 11.1 26.4 9.7 26.4

B × C2 7.5 16.2 3.8 11.8 6.4 9.1 12.7 12.4 16.2

Number of markers with SD (p < 0.001) V – – – – – – – – 0

C – 36 – – – – – – 36

V × C – 32 – – – – – – 32

C × C – 4 32 – 12 1 1 6 56

B × C2 15 – 30 – – 1 – 1 47
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segregation distortion regions (SDRs; Fig. 4), such as the bot-
tom of LG2 (26.96–27.58 Mbp) for ‘Cristobalina’ and C × C
maps and the bottom of LG3 (16.41–25.38Mbp) for the C × C
and B × C2 maps, where the ‘Cristobalina’ self-compatibility
locus is located (Cachi and Wünsch 2011). Segregation dis-
tortion also occurred in the C × C map, but not in the other
maps, at the lower region of LGs 5 and 8 and in B × C2 at the
lower part of LG1. Segregation distortion in SDRs showed
distortion against one homozygous class.

Comparative mapping

Comparison of the SNPs placed on the three linkage maps
with their physical position in the sweet cherry genome
PAV_r1.0 (Shirasawa et al. 2017) revealed agreement in LG
assignment and marker order for most of the SNPs (82%;
Online Resource 1).Within each LG, only a fewmarkers were
mapped to orders that differed from that of the sweet cherry
genome. However, some inverted regions were observed.
These regions were located at the bottom of chromosome 1
and top of chromosomes 5, 6, and 7 (Online Resource 1).

Additionally, 5% of the SNPs were mapped to different LGs
than predicted by the sweet cherry genome sequence
(Online Resource 2). Specifically, regions of chromosomes
2, 3, and 4 were mapped to different LGs for all maps
(Online Resource 2).

Comparison of the genetic positions of the sweet cherry
genetically mapped SNPs and their physical location in the
peach genome v2.a.01 (Verde et al. 2017) revealed high co-
linearity (Online Resource 3). However, SNPs mapped in dif-
ferent orders within a LG or to different LGs compared to the
peach genome v2.0.a1 were observed. SNPs mapped in dif-
ferent orders within LGs were observed in all maps at different
positions, but the number of inconsistencies was highest at the
top of LG5, where an inverted region was observed for the
‘Vic’, V × C, and B × C2 maps compared to the peach physi-
cal map (671,433–2,722,392 bp; Online Resource 3). Some
SNPs were also mapped to different LGs compared to the
peach genome; some of these occurred in more than one
map (Online Resource 4).

The physical positions of the RosBREED cherry 6K SNPs
in the peach genome v2.a.01 were compared to the genetic

Fig. 1 ‘Vic’ (V), ‘Cristobalina’ (C), and V × C consensus (V × C) linkage maps. Asterisks indicate deviation from expected Mendelian segregation
(*p < 0.1; **p < 0.05; ***p < 0.01; ****p < 0.005; *****p < 0.001; ******p < 0.0005)
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positions from the maps in this work and previous linkage
maps using other cultivars (Klagges et al. 2013). This analysis
allowed the visualization of the chromosomal regions covered
by the mapped SNPs in the different sweet cherry maps
(Online Resource 5). For the ‘Cristobalina’ and C × C maps,
large regions of chromosomes 1 and 7 did not have any seg-
regating markers. These regions could be homozygous as no
heterozygous markers were detected. Thus, large presumably
homozygous regions were observed in these maps for these
regions. Similarly, ‘Vic’ was predicted to be homozygous at
the top of chromosomes 2 and 3. The other cultivars also
showed various regions of suspected homozygosity. This
was most noticeable at the top and/or bottom of LG2 in
‘Vic’, ‘Black Tartarian’, ‘Kordia’, and ‘Lapins’; in LG4 for
‘Black Tartarian’ and ‘Kordia’; the top of LG5 in
‘Cristobalina’ and ‘Kordia’; and the top of LG7 in ‘Kordia’.

Homozygosity

Progeny individuals with presumably homozygous LGs
based on the absence of any heterozygous SNPs on these
LGs were identified in the two populations derived from

self-pollination, C × C and B × C2 (Online Resource 6).
For C × C, 38 individuals (38%) had one homozygous
LG, 13 (13%) had two homozygous LGs, and three
(3%) had three homozygous LGs. Overall, more than half
of the progeny (54 individuals, 54%) had at least one
homozygous LG. For C × C, LG7 was the LG most often
homozygous (28 individuals), followed by LG1 and LG5
being homozygous in 12 individuals. This is consistent
with ‘Cristobalina’ being homozygous for the majority
of LGs 1 and 7 and a portion of LG 5 (Online Resource
5). In B × C2, a similar proportion, nearly half of the fam-
ily (32 individuals; 48%), had trees with homozygous
LGs. Of these, 23 had one homozygous LG, eight had
two homozygous LGs, and one individual had four homo-
zygous LGs. The LG most frequently homozygous was
LG3, occurring for 12 individuals, while the least frequent
homozygous LG was LG6 in both families.

To confirm the homozygosity of these LGs, eight individ-
uals of C × C (Table 2) that collectively exhibited homozygos-
ity for all LGs with SNPs from the RosBREED Cherry 6K
array were also genotyped with the 15K RosBREED Cherry
Illumina Infinium® SNP array. A larger number of

Fig. 2 ‘Cristobalina’ parental map (white) and C ×C linkage map (gray)
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heterozygous SNPs could be scored with the 15K array in
each LG (Table 2). The assay revealed that of the 16 presum-
ably homozygous LGs in the eight trees, seven are likely ho-
mozygous after the analysis with the 15K array, as no hetero-
zygous markers were assigned to these LGs. Furthermore,
presumably homozygous linkage groups were confirmed in
all LGs, except 3, 6, and 7 (Table 2). The results show that
increasing the number of genotyped SNPs reduced the num-
ber of homozygous LGs, but that homozygosity was con-
firmed in about half of them. In the LGs that were homozy-
gous with the 6K array and not with the 15K array, few het-
erozygous markers were detected indicating that large regions
of homozygosity are present for these LGs. In LG7, a large
number of presumably homozygous LGs were detected in the
RosBREED cherry 6K array; however, this seems to be due to
the low number of markers mapped to this LG with this array,
as this was not the case after the analysis with the 15K array.

Discussion

Linkage maps

The three populations and linkage maps constructed in this
work will be used for future QTL analysis for chilling require-
ment, bloom and maturity time, and fruit size. The under-
standing of the map coverage and regions of segregation dis-
tortion and low marker density gained from the maps gener-
ated will be critical for interpreting the forthcoming QTL re-
sults. In general, the maps developed in this work and those
previously constructed using the same SNP array revealed
similar numbers of markers, genetic lengths, average distances
between markers, and gap sizes (Klagges et al. 2013).
However, for LG7 from ‘Cristobalina’ and C × C and LG2
from ‘Vic’, very few markers were heterozygous and met
the criteria for use in linkage map construction, resulting in
regions with large distances between markers. This was no-
ticeable for the ‘Cristobalina’ parental map when compared
with the C × C map, due to the use of different mapping strat-
egies for the F1 and F2 populations (Tavassolian et al. 2010).
In general, the use of all heterozygous markers to develop F2
and consensus maps resulted in higher marker density maps in
the F2 populations and in the consensus maps from the F1
crosses, than in the parental maps.

The linkage maps constructed also identified regions that
are presumably homozygous in the parental cultivars and
therefore would be uninformative for QTL discovery. For ex-
ample, ‘Vic’ is presumably homozygous for the top of LGs 2

and 3 and, therefore, homozygous for any QTL alleles that fall
in these regions. Likewise, ‘Cristobalina’ is presumably ho-
mozygous for large portions of LGs 1 and 7, and, therefore,
QTL analysis would not identify any loci in these regions. In
this case, the population B × C2will be particularly useful as it
will allow an investigation of ‘Cristobalina’ derived alleles for
regions that are not segregating in the V × C and C × C popu-
lations. Since the B × C2 population resulted from self-polli-
nation, it will be possible to compare the effects of all three
allele classes for SNPs homozygous in ‘Cristobalina’ (i.e.,
AA, AB, and BB).

Comparison with the sweet cherry and peach physical
maps

Comparisons of the linkage maps developed herein, with the
sweet cherry genome sequence PAV_r1.0 (Shirasawa et al.
2017), supported the genetic position and marker order of
most of the markers mapped. However, because almost 30%
of the sweet cherry genome was not anchored to any chromo-
some (Shirasawa et al. 2017), a large portion of mapped SNPs
were not assigned to any chromosome and temporarily located
to the cherry scaffold identified as Chr_0. In addition, some
inconsistencies between linkage maps and scaffold positions
could be due to minor misassembles in the cherry genome or
the possibility that our use of the best matching marker posi-
tion on the cherry scaffolds for each SNP did not provide an
accurate comparison.

Comparison between sweet cherry linkage maps and the
peach genome v2.0.a1 revealed extensive collinearity, but
some markers mapped in different orders. Most noticeable
was a group of markers that mapped in inverse order at the
top of LG5 in the ‘Vic’ and B × C2 maps. This apparent in-
version between the sweet cherry linkage maps and peach
physical map was also observed in the ‘Black Tartarian’ and
‘Rainier’ maps (Klagges et al. 2013; Guajardo et al. 2015).
For the ‘Cristobalina’ and ‘Kordia’ maps, this LG5 region is
presumably homozygous, and therefore, these parental maps
were uninformative for this region. When the physical posi-
tions of these inverted markers were aligned with the sweet
cherry genome scaffolds (Shirasawa et al. 2017), the region
was not inverted. This indicates that this region may not be
inverted in the cherry genome when compared to the peach
genome. However, the fact that this region appears inverted in
four genetic maps from unrelated sweet cherry individuals
may also indicate a real inversion that has not been correctly
assembled with the sweet cherry sequence.

In the maps developed herein, some SNPs were mapped to
different LGs than expected based on their positions in the
peach genome sequence. Similar inconsistencies were also
detected in other sweet cherry linkage maps developed using
the same genotyping platform (two SNPs in ‘Black Tartarian’,
three SNPs in ‘Lapins’, and six SNPs in ‘Regina’) (Klagges et

Fig. 3 B×C2 linkage map. Asterisk indicates deviation from expected
Mendelian segregation (*p < 0.1; **p < 0.05; ***p < 0.01; ****p <
0.005; *****p < 0.001; ******p < 0.0005)
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al. 2013). The presence of markers mapped in different LGs
based on peach genome may indicate regions that are
translocated from one genome to the other or duplicated
(Dirlewanger et al. 2004; Fresnedo-Ramírez et al. 2013).
The position of these markers could not be confirmed due to
poor alignment with the current sweet cherry genome se-
quence. However, if these differences between the cherry
and peach genome are eventually verified, they may mark
species-specific genomic regions that contributed to the evo-
lutionary differences between cherry and peach.

Segregation distortion

Skewed markers detected in this work were grouped in
segregation distortion regions (SDRs). SDRs have also
been detected in other species like barley (Li et al.
2010), eucalyptus (Myburg et al. 2004), oak (Bodénès et
al. 2016), maize (Lu et al. 2002), or rice (Xu et al. 1997).
SDRs detected in this work were also found in other
sweet cherry maps. A SDR at the lower end of LG1 in
B × C2 was also detected in ‘Black Tartarian’, ‘Kordia’,
‘Regina’, ‘Lapins’, and Prunus davidiana linkage maps
(Foulongne et al. 2003; Klagges et al. 2013). Similarly,
a SDR at the lower end of LG2 in ‘Cristobalina’ and C ×
C was also found in the ‘Emperor Francis’ and ‘New York
54’ maps (Olmstead et al. 2008), and a SDR at the lower
region of LG8 for C × C was also detected in the
‘Emperor Francis’ linkage map. The presence of these
SDRs in different cherry maps for LGs 1, 2, and 8 may
indicate the presence of lethal and/or sub-lethal alleles in
these regions that reduce viability or survival (Ward et al.
2013). The SDR identified on LG2 in this study overlaps
with a QTL hotspot containing fruit and bloom time traits
important for sweet cherry breeding (Cai et al. 2017);

therefore, understanding the basis for segregation distor-
tion at this region would be of interest.

Other regions with segregation distortion identified
herein were specific for individual linkage maps con-
structed in this work. This includes the lower part of
LG3 in C × C and B × C2 maps, where distorted segrega-
tion results from the pollen-expressed self-incompatibility
modifier locus that is heterozygous in ‘Cristobalina’ that
maps to this region (Cachi and Wunsch 2011; Ono et al.
2018). Only pollen containing the self-fertile allele at this
locus will be able to achieve fertilization in a self-polli-
nation, and as a result, only the self-compatible allele is
inherited and segregation distortion is observed in this
region. The markers with maximum distortion in this re-
gion are ss490552038, ss490552032, ss490548178, and
ss490552064 in C × C (Fig. 2; Fig. 4) and are expected
to map to the location of the self-incompatibility modifier
locus that leads to self-compatibility. An additional region
where segregation distortion was observed exclusively in
C × C was the bottom region of LG5. In this region, one
homozygous class was favored over the other, and there-
fore, for this region, deleterious recessive alleles may be
selected against.

Self-pollination and chromosomal homozygosity

Sweet cherry evolved as an obligate outcrossing species due
to the presence of a gametophytic self-incompatibility system.
The ‘Cristobalina’-derived C × C and B × C2 populations,
both resulting from self-pollination, will provide a unique op-
portunity to investigate the impact of self-pollination on this
heterozygous species. In C × C and B × C2, compared to V ×
C (F1 population), a large number of individuals with one to
four presumably homozygous LGs were identified in both F2
populations, and, presumably, completely homozygous LGs
were identified for all LGs in both populations. Recently, a
Bnext-generation^ RosBREED Cherry 15K Illumina
Infinium® SNP Cherry Array was developed that was de-
signed to fill gaps previously identified with the use of the
6K array (Illumina, San Diego, CA). This array was used in

Fig. 4 Physical positions of RosBREED cherry 6K SNP array v1
markers on the peach genome v2.0.a1 where segregation distortion
(p < 0.001) was identified in ‘Vic’, ‘Cristobalina’, C × C, and B × C2
linkage maps. (SC Locus: Self-Compatibility Locus)

Table 2 Number of heterozygous
SNPs per linkage group (LG) in
eight C × C progeny individuals
(CC05, CC22, CC36, CC43,
CC50, CC52, CC79, and CC91)
identified with the RosBREED
cherry 6K SNP array and the
RosBREED 15K SNP array (6K/
15K)

LG1 LG2 LG3 LG4 LG5 LG6 LG7 LG8

CC05 85/168 71/142 25/55 0/0 11/30 27/95 9/51 14/26

CC22 85/162 0/0 58/148 0/7 26/58 26/83 5/35 28/76

CC36 19/48 49/93 20/59 52/124 38/80 0/11 9/36 16/26

CC43 0/8 104/193 53/138 55/143 13/30 17/55 0/25 0/0

CC50 85/167 42/72 0/1 75/171 0/0 12/56 0/13 5/16

CC52 0/0 0/0 20/62 44/87 19/40 35/108 8/48 0/0

CC79 10/25 2/11 52/142 0/2 44/106 40/131 0/17 5/22

CC91 71/133 15/33 29/87 51/124 0/2 38/134 0/17 49/10
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this work to test whether the degree of homozygosity detected
with the 6K array was also confirmed after analyzing a larger
number of SNPs. This test revealed that the number of homo-
zygous LGs in C × C and B × C2 was overestimated with the
6K array but confirmed the presence of large homozygous
regions and homozygous LGs in the families. The finding that
LG6 had the lowest level of homozygosity when considering
both the C × C and B × C2 self-pollinated populations is con-
sistent with the presence of the S locus on LG6. It suggests that
there may be a high genetic load of presumably deleterious
recessive alleles linked to the S locus. Taken together, these
results reveal that high levels of homozygosity (up to four
presumably homozygous LGs) can be tolerated in sweet cher-
ry. The finding that ‘Cristobalina’ is presumably homozygous
for large regions on LGs 1 and 7 and a smaller region on LG 5
suggest that it may be derived from self-pollination. If
‘Cristobalina’ is the result of self-pollination (S2), then the
S2 population (C × C) would be an S3.

Selfing in naturally outcrossing species leads to an increase
in homozygosity, which may result in a decrease in fitness and
fitness-related traits, characterized as inbreeding depression
(Charlesworth and Charlesworth 1999). Phenotypic observa-
tions of individuals from the three mapping populations sug-
gest that inbreeding in sweet cherry can be associated with a
loss of vigor and fertility (data not presented). Trees in the C ×
C population are generally weak and exhibit a low vegetative
vigor. The progeny only began fruiting after eight years and
only 19% of the trees have fruit after 10 years. In contrast, V ×
C trees began fruited after five years, and 62% of trees have
fruit after seven years. Furthermore, V × C is younger than
C × C but shows higher vigor, measured as trunk
circumference.

In conclusion, the genetic maps reported for ‘Cristobalina’
and its derived progeny will enable future QTL identification
from this important breeding parent. In addition, the maps
herein provide an opportunity to take a first look at the
genome-wide impacts of self-pollination in sweet cherry.
This is especially timely with the increased emphasis on the
development of self-compatible cultivars using either S4′ or
naturally derived self-compatible mutations, such as the one
present in ‘Cristobalina’.
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APPENDIX II - ABBREVIATIONS 

 

 

A×C: ‘Ambrunés’ × ‘Cristobalina’ 

A×S: ‘Ambrunés’ × ‘Sweetheart’ 

AGL24: Agamous-like 24 

ANOVA: Analysis of variance 

B×C: ‘Brooks’ × ‘Cristobalina’ 

B×C2: ‘BC8’ × ‘BC8’ 

BAM: Binary alignment map 

BF: Bayes factor 

BLUP: Best linear unbiased prediction 

BT: Bloom time 

C×C: ‘Cristobalina’ × ‘Cristobalina’ 

CA: ρ-coumaric acid  

CD: Calendar day 

CICYTEX: Centro de Investigaciones Científicas y Tecnologicas de Extremadura 

CITA: Centro de Investigación y Tecnología Agroalimentaria de Aragón 

cM: centiMorgan 

CNV: Cell number varitaion 

CQA: ρ-coumaroylquinic acid  

CR: Chilling requirement 

CTIFL: Centre Technique Interprofessionnel des Fruits et Légumes 

Cy3-glu: cyanidin 3-O-glucoside 

Cy3-rut: cyanidin 3-O-rutinoside 

DAM: Dormancy associated MADs-box 

DDBJ: DNA Data Bank of Japan 

DPD: DAM promoter deletion 

DPDF: DAM promoter deletion forward 

DPDR: DAM promoter deletion reverse 

EVG: Evergrowing peach mutant 

FAR1: Far-red impaired response 1 
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FD: Fruit development time 

FF: Fruit firmness 

FS: Fruit size 

FT: Flowering Locus T 

FW: Fruit weight 

GBS: Genotyping by sequencing 

GBV: Genome breeding value 

GDH: Growing degree hours 

GDR: Genome Database for Rosaceae 

GFF: General File Format 

H2: Broad-sense heritability 

HPLC: High-performance liquid chromatography 

HR: Heat requirement 

IGV: Integrative genomic viewer 

INDEL: Insertion/deletion 

INRA: Institut National de la Recherche Agronomique 

L×C: ‘Lambert’ × ‘Cristobalina’ 

LG: Linkage group 

LOD: Logarithm of odds 

MAS: Marker-assisted selection 

MCL: Maximum composite likelihood 

MCMC: Markov chain Monte Carlo 

MD: Maturity date 

MQM: Multiple QTL mapping 

NA: neochlorogenic acid  

NCBI: National Center for Biotechnology Information 

NGS: Next generation sequencing 

NT: Nucleotide  

PARC: Pacific Agri-Food Research Centre 

PCR: Polymerase chain reaction 

Peo3-glu: peonidin 3-O-glucoside  

Peo3-rut: peonidin 3-O-rutinoside 

POD: Protected Designation of Origin 

PPC: Parent-Parent-Child 



  Appendix II 

281 
 

PV: Phenotype variation 

PVE: Percentage of variation explained 

QTL: Quantitative trait locus 

R×G: ‘Regina’ × ‘Garnet’ 

R×L: ‘Regina’ × ‘Lapins’ 

RAPD: Random amplification of polymorphic DNA 

SC: Self-compatibility 

SD: Segregation distortion 

SDR: Segregation distortion region 

SLAF: Specific-Locus Amplified Fragment 

SNP: Single nucleotide polymorphism. 

SSC: Solid soluble content 

SSR: Simple sequence repeat 

SVP: Short vegetative phase 

TA: Titratable acidity 

TBE: Tris-borato-EDTA 

UPOV: International Union for the Protection of new Varieties of plants 

V×C: ‘Vic’ × ‘Cristobalina’ 

Y1: Year 1 

Y2: Year 2 
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