000099367 001__ 99367
000099367 005__ 20220301144158.0
000099367 0247_ $$2doi$$a10.23919/Eusipco47968.2020.9287670
000099367 0248_ $$2sideral$$a122377
000099367 037__ $$aART-2021-122377
000099367 041__ $$aeng
000099367 100__ $$0(orcid)0000-0002-6264-4229$$aRiccio, J.$$uUniversidad de Zaragoza
000099367 245__ $$aOmnipolar EGM voltage mapping for atrial fibrosis identification evaluated with an electrophysiological model
000099367 260__ $$c2021
000099367 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099367 5203_ $$aAtrial fibrillation (AF) is the most spread heart arrhythmia, whose mechanisms are not completely clear yet. Catheter ablation is a standard treatment, which isolates the area involved in the arrhythmia. Intracardiac electrograms (EGMs) are used to better understand the AF mechanisms and to find appropriate ablation sites. Bipolar EGMs (b-EGMs) are often employed, but their amplitude and shape depend on catheter orientation, limiting reliability. To avoid this uncertainty, an approach insensitive to catheter orientation, referred as Omnipolar EGM (OP-EGM) method, has been introduced, which uses an estimation of the electric field within a group of electrodes, referred as clique. In this work, we compare different mapping approaches based on b-EGMs and OP-EGM signals in simulation including fibrosis, so to evaluate their ability to detect fibrosis and reproduce the spatial distribution of the voltage. Maps have been computed using two clique configurations (square and triangular), introducing or not a previous time alignment of the b-EGMs. OP-EGM signals have been obtained by projecting the electric field along directions of its maximal excursion and its principal components. Results show that the proposed alignment of b-EGMs improves maps based on OP-EGM signals. Both cliques configurations present good performance, in terms of fibrosis detection and correlation with the reference voltage maps.
000099367 536__ $$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 766082-MY-ATRIA$$9info:eu-repo/grantAgreement/EC/H2020/766082/EU/MultidisciplinarY training network for ATrial fibRillation monItoring, treAtment and progression/MY-ATRIA$$9info:eu-repo/grantAgreement/ES/DGA-FSE/T39-20R-BSICoS group
000099367 540__ $$9info:eu-repo/semantics/openAccess$$aAll rights reserved$$uhttp://www.europeana.eu/rights/rr-f/
000099367 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000099367 700__ $$0(orcid)0000-0002-0166-2837$$aAlcaine, A.
000099367 700__ $$aRocher, S.
000099367 700__ $$0(orcid)0000-0003-3434-9254$$aLaguna, P.$$uUniversidad de Zaragoza
000099367 700__ $$aSaiz, J.
000099367 700__ $$0(orcid)0000-0002-7503-3339$$aMartínez, J.P.$$uUniversidad de Zaragoza
000099367 7102_ $$15008$$2800$$aUniversidad de Zaragoza$$bDpto. Ingeniería Electrón.Com.$$cÁrea Teoría Señal y Comunicac.
000099367 773__ $$g2021-January (2021), 920-924$$pEur. Signal Process. Conf.$$tEuropean Signal Processing Conference$$x2076-1465
000099367 8564_ $$s2526853$$uhttps://zaguan.unizar.es/record/99367/files/texto_completo.pdf$$yVersión publicada
000099367 8564_ $$s2406237$$uhttps://zaguan.unizar.es/record/99367/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099367 909CO $$ooai:zaguan.unizar.es:99367$$particulos$$pdriver
000099367 951__ $$a2022-03-01-14:38:18
000099367 980__ $$aARTICLE