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ABSTRACT 

Fire has always been an intrinsic feature in various ecosystems around the world. In environments heavily 

populated by humans, their actions have altered these natural fire regimes for others that are fundamentally 

anthropogenic in nature. In the context of Mediterranean Europe, the number of forest fires and their 

observed burnt area fell into a general decline during the late twentieth century, which led to a reduced 

incidence of fire in most Mediterranean ecosystems historically affected by recurrent fires. Therefore, the 

change in past fire regimes is evident, mainly due to human intervention instigating a very demanding policy 

of total exclusion of fire.  

However, the recent evolution of fire regimes presents a high spatial and temporal variability. On the other 

hand, future scenarios predict a growing impact of the human factor (more land abandonment, poor 

management of forests and adhering exclusively to suppression methods), which will result in increased fire 

activity due to a greater amount of available fuel. In addition, climatic conditions are expected to cause 

increasingly larger burned areas (higher temperatures, more frequent heat waves and droughts), which will 

undoubtedly have a negative effect on both ecosystems and future societies. 

All these factors make an adequate zoning of fire regimes necessary from a spatial-temporal perspective, 

which allows the relationship between the altered fire regime and associated socio-economic and 

environmental factors to be determined, as well as detecting temporal trends in regions with decreasing 

activity, or on the contrary, an increase in the incidence of fires. Therefore, finding these areas will lead to 

improved management and prevention of forest fires.  

This doctoral dissertation focuses on enriching knowledge for identifying and interpreting homogeneous 

regions of fire regimes. A wide range of methods of statistical analysis and spatial modeling are employed. 

The dissertation is structured according to the following objectives: Objective 1 focuses on analyzing the 

spatial-temporal distribution of the main features defining the fire regime during the recent period. 

Objective 2 aims to further describe the influence of meteorological danger on the evolution of fire activity. 

Objective 3 evaluates the change in the relative contribution of anthropogenic factors on forest fires. 

Objective 4 focuses on explaining the evolution and causes of changes or transitions in fire regimes during 

the recent (1974-2015) and future (2016-2036) periods. Finally, Objective 5 centers on the transfer of the 

zoning of fire regime typologies into an integral mapping of pyroregions  

The results indicate that fire regimes in mainland Spain have undergone several changes, mainly a 

considerable decrease in fire activity in most of the territory, although it still remains high in the north 

(especially in winter). The diverse machine-learning methods employed, especially Random Forest, have 

demonstrated their potential in terms of revealing the fire drivers behind fire regime evolution. Moreover, 

forecasting by the ARIMA model has confirmed the ongoing tendency towards a lower incidence of fire. 

All indications are that preventive measures should take greater prominence in areas with an abrupt decrease 

in wildfires, as they are significantly more prone to large ones in the short and medium term. 





RESUMEN 

El fuego ha coexistido de forma intrínseca en diversos ecosistemas a nivel global. En el caso de los 

ambientes más humanizados la acción del hombre ha alterado esos regímenes de incendio naturales por 

uno fundamentalmente de carácter antrópico. En el contexto de la Europa Mediterránea, el número de 

incendios forestales y su área quemada observados han experimentado un descenso general durante el final 

del siglo XX. Esto ha supuesto un declive de la incidencia del fuego en la mayoría de los ecosistemas 

mediterráneos históricamente afectados por incendios recurrentes. Por tanto, es evidente la alteración de 

los regímenes de incendio pasados, debido principalmente a la intervención humana con una política de 

exclusión total del fuego muy exigente.  

No obstante, la evolución reciente de los regímenes de incendio presenta una alta variabilidad espacial y 

temporal. Por otro lado, las perspectivas de futuro vaticinan un impacto creciente del factor humano 

(abandono del campo, gestión de los bosques y mantenimiento de la supresión excluyente), lo que 

consecuentemente derivará una mayor actividad de incendios debido a una mayor cantidad de combustible 

disponible. Asimismo, se prevén unas condiciones climáticas cada vez más propensas a generar incendios 

de gran superficie (mayores valores de temperatura, mayor frecuencia de olas de calor y sequías), lo que sin 

duda afectará negativamente tanto a los ecosistemas como las sociedades futuras. 

Todos estos factores hacen necesaria una adecuada zonificación de los regímenes de incendio desde una 

perspectiva espacio-temporal, la cual permita conocer la relación existente entre el régimen de incendios 

alterado y los factores socio-económicos y ambientales asociados. Así como detectar tendencias en el 

tiempo en regiones que experimenten un descenso de la actividad, o, por el contrario, incremento de la 

incidencia de incendios. Por tanto, conociendo estas zonas se podrá mejorar la gestión y prevención contra 

incendios forestales.  

Esta tesis doctoral se enfoca en enriquecer el conocimiento sobre la identificación e interpretación de 

regiones homogéneas de regímenes de incendio. Para ello se recurre a un amplio abanico de métodos de 

análisis estadísticos y de modelado espacial. La tesis se estructura de acuerdo a los siguientes objetivos: el 

objetivo 1 se centra en analizar la distribución espacio-temporal de las principales métricas que definen el 

régimen de incendio durante el periodo reciente. El objetivo 2 pretende profundizar en la influencia del 

riesgo meteorológico en la evolución de la actividad de los incendios. El objetivo 3 evalúa el cambio de la 

contribución relativa de los factores antropogénicos en los incendios forestales. El objetivo 4 se enfoca en 

explicar la evolución y causas de los cambios o transiciones de los regímenes de incendios durante el periodo 

reciente (1974-2015) y futuro (2016-2036). Finalmente, el objetivo 5 pone la atención en la traslación de la 

zonificación de tipologías de regímenes de incendios hacia una cartografía integral de piroregiones.  

Los resultados indican que los regímenes de incendio en la España peninsular han experimentado diversos 

cambios, principalmente una disminución considerable de la actividad de incendios en la mayor parte del 

territorio, aunque todavía persiste una alta actividad en el extremo norte (especialmente en invierno). Los 

diversos métodos de aprendizaje automático empleados, especialmente Random Forest, han demostrado su 

potencial en términos de revelar los factores que impulsan la evolución del régimen de incendios. Además, 

la proyección ARIMA ha confirmado la tendencia actual hacia una menor incidencia de incendios. Todo 

apunta a que las medidas preventivas deben tomar más protagonismo en áreas con un abrupto descenso de 

la ocurrencia, ya que son significativamente más propensas a grandes incendios a corto y medio plazo. 
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1 CHAPTER 1: INTRODUCTION 

This chapter presents the state of the art of the fire phenomenon 
and the relevance of the fire regime term, summarizing the range 
of methods applied in the fire regime modelling and introduce 
the conceptually differences between the fire regime and 
pyroregion terms. 
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1.1. The wildfire phenomenon 

Fire plays an important role in the processes governing the Earth System (Bodí et al., 2012), and are a 

natural mechanism in plant succession, which has been shaping the distribution and dynamics of many 

vegetation species during millennia. Forest fires were originally a natural hazard, but can become a major 

disturbance when its frequency and/or intensity is altered (De Santis and Chuvieco, 2009), causing major 

environmental and socioeconomic impacts. These alterations can be classified into two main groups 

depending on the time elapsed after the fire event: short-term and long-term.  

In general, the immediate or short-term consequences of forest fires usually have a negative impact on the 

environment. Among the most significant ecological repercussions are : soil erosion (Pérez-Cabello et al., 

2006; Shakesby, 2011), physical-chemical alterations in the surface horizons of the soil (Badía et al., 2014; 

González-Pérez et al., 2004), disappearance of species and degradation (Pérez Cabello et al., 2010), loss of 

biodiversity (Durán-Medraño et al., 2017), and carbon emissions (Raupach et al., 2007). In the 

Mediterranean region, the heavy autumn rains commonly occurring after summer wildfires cause the onset 

of water erosion- channeled or laminar – which usually transfer organic matter and nutrients to the soil but 

reduce its structural stability (Bodí et al., 2012). In their last stage, they help to form rills, wash fines and 

increase stoniness.  

However, in the mid-to-long-term (months or years post-fire) a high percentage of burned areas and 

vegetation usually make a recovery. The degree of this process will depend on many factors: 

climate/weather conditions before and after the fire event (Davis et al., 2019; Dimitrakopoulos et al., 2011), 

the strategies of the main species - seeders vs resprouters (Díaz-Delgado et al., 2003), the interval of fire 

recurrence (Juli G. Pausas and Vallejo, 1999), the various alterations on the soil (Certini, 2005), as well as 

restoration treatments and human intervention (logging, forestry management, etc.), which have 

contributed to mitigating or worsening post-fire conditions (Shakesby, 2011). In this respect, in many 

developed countries, the abandonment of agricultural activities in rural areas (Vélez, 2004; Whitlock, 2004) 

has increased the amount and continuity of fuel load, which will promote more virulent and extensive fires 

(megafires) in the coming years. On the other hand, in developing countries, the situation is quite different, 

even with great spatial variability, there is an overall intensification of tropical plantations and the persistence 

of the traditional use of fire for land clearing and shifting cultivation (Le Page et al., 2010). 

Globally, a decrease both in burned area and fire-related emissions is reported reaching a historical 

minimum in 2013 (Arora and Melton, 2018; Van Der Werf et al., 2017). One of the major causes of this 

tendency is related to the so-called fire exclusion policy often implemented in developed countries 

(Minnich, 1983). However, there is a high level of variability between large-scale regions. For instance, both 

Southeast Asia and North America show an increasing trend in burned area (Doerr and Santin, 2016). With 

the former, this trend is due to an intensification of crop burning, and there is a clear influence of climate 

change in the latter (Earl and Simmonds, 2018), where the number of fires has decreased, which means 

fewer fires but affecting a larger area. In Mediterranean Europe, the risk from forest fires is expected to 

increase, which will require much stronger advanced management (IPCC, 2014). Although many studies 

show different trends depending on the regions, the statistics show a general decline in fire frequency and 

burned area (Turco et al., 2016), although in certain regions within Portugal, Greece and Spain some authors 

found significant increases in fire activity during the period 1985-2009 (Marcos Rodrigues et al., 2013). 

Recently, there has been a slight upturn in fire activity, especially in regions with infrequent fires and little 

danger (such as Scandinavia), in 2018 when numerous fires exceeded extinguishing capacity (Martin Ruiz 

de Gordejuela and Puglisi, 2018). 
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In the particular case of mainland Spain, forest fires are the greatest alteration to ecosystems, as it is one of 

the countries in the Mediterranean region with highest frequency of fire events and annual cumulative 

burned forests (Darques, 2016). According to the Spanish Ministry of Agriculture and Environment 

(MAGRAMA), over the period 2008-2017, an annual average of 12,573 fires were reported, affecting a 

mean area of 101,411 ha.  The European Fire Database (EFFIS) shows that Portugal is in first place, with 

an average of 18,204 fires per year for the same period, although with a slightly smaller average affected 

area (91.160 ha). Since the 1960s, an increase in the number of disturbances has been detected, probably 

due to improved detection and data collection systems. In fact, this trend has currently been strongest 

during the winter fire season, partially induced by human activities (Moreno et al., 2014) and also related to 

the lengthening of the fire season (Jolly et al., 2015). In addition, the yearly frequency has increased in the 

majority of regions, except on the Mediterranean coast (Turco et al., 2016) where recent socioeconomic 

changes have promoted more hazardous landscapes coupled with warmer climate conditions. The trend is 

similar for burned areas, with a significant decrease since the mid-1990s (Marcos Rodrigues et al., 2013; 

San-Miguel-Ayanz et al., 2013; Urbieta et al., 2019). This can be explained by improved methods of 

extinguishing fires. On the other hand, an overall decrease in the frequency of large fires has also been 

reported (A. Cardil and Molina, 2013), along with the fact that these particular events cause the greatest 

environmental and social damage, as well as having become difficult to predict and control in the worst 

fire-weather conditions of recent years (Regos et al., 2014).  

All this points towards the existence of changes in fire regimes, which will lead to probable implicit 

differences between different regions and different transitions (from activity regression, stability, to activity 

progression). Given the diversity of fire features and driving factors involved in these changes, the study of 

the characteristics and temporal evolution of fire regimes in mainland Spain should address the fact that 

not only must it focus on these two metrics (fire frequency and burnt surface), but also try to capture the 

wide diversity of parameters concerning forest fires. In addition, it is important for the analysis to include 

the contribution from the main driving factors, both natural and anthropogenic. In this way, there will be 

a greater depth of knowledge on future and foreseeable trends of fire regimes. 

It is evident, therefore, that the study of fire regimes is a promising and crucial research line to better 

understand the occurrence of wildfires. However, assessing fire regime is complex, due to the continuous 

spatial-temporal changes they have experienced. It is important to remember that natural fire regimes 

defined pre-industrial landscapes, until altered by human intervention (Syphard et al., 2007), often exceeding 

thresholds of fire resilience in ecosystems (Stevens-Rumann et al., 2018). On the other hand, some authors 

have observed a transition towards a more significant role of climate factors in recent fire regimes (Pechony 

and Shindell, 2010), resulting in a greater probability of ignition and propagation (Thompson et al., 2011). 

In Spain, the main changes are related first with anthropogenic pressure over wildlands, and later with 

climate-weather conditions (Pausas and Fernández-Muñoz, 2012). In fact, fire regimes have been strongly 

related to climatic conditions after the 1970s, pointing out that forest fires are caused mostly by fuel and 

droughts. In addition, the structure of fuel and the landscape is shaping the current fire regime-climate 

relationship (Pausas and Paula, 2012). However, most of these studies usually focus solely on the number 

of fires and burned area, which highlights the lack of an analysis of the evolution of the fire regime based 

on additional features such as cause, seasonality and the role of large fires. 

1.2. The concept of fire regime: definitions and components 

The birth of the concept of “fire regime” dates from the 1820s, with a group of French-speaking botanists 

and agronomists in African colonies (Krebs et al., 2010). In the United States, the concept was not adopted 
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until the early 1960s, when the idea of fire as a natural disturbance shaping ecosystems was incorporated. 

The current definitions of this term are based on a selection of variables that are questionable because it 

implies a certain degree of subjectivity. For this reason, there is still no consensus on the definition of the 

concept of “fire regime”, which varies largely according to the research objectives (Krebs et al., 2010), the 

scale of analysis and available data. Chuvieco (2009) termed fire regime as “the average fire conditions 

within a particular area persistent over a long period of time”. Some authors advocate the inclusion of 

spatial-temporal patterns of fire activity, as well as the type of fuel burned, as an ecological proxy (Gill, 

1973). Hence, it seems clear that the notion of fire regime is somehow ‘variable’ and susceptible to including 

different features and dimensions. In fact, it is widely believed that fire regime features have been and 

continue to change dramatically in time and space(Morgan et al., 2001a). However, there are several 

common features usually accepted (Pyne, 2001). Among the wide variety of fire regime features found the 

literature, fire frequency, fire size distribution, intensity, seasonality and mean annual burned area are the 

most frequently used in fire regime assessments (Archibald et al., 2013). Recent papers in mainland Spain 

dealing with fire regimes, such as those by Moreno and Chuvieco (2016, 2013), have contributed 

significantly to shaping the first geographical delimitations of the fire regime, although they still  assumed 

fire features to be stationary over time. 

In this PhD dissertation, fire regime is defined as “the average behavior of a set of key fire features (fire 

frequency, burned area, large fires, winter frequency and natural fires), persistent over space and time”. 

However, the proposed approach goes one-step further, including not only fire regime characteristics but 

also their trends, and the factors influencing their potential variability in space and time. It is important to 

note, that the degree of participation of fire regime components and driving factors is variable and will 

depend on the scale of the study, the time period examined and the minimum spatial unit of reference. For 

instance, in the case of the size of the study region, the role of climatic factors will have a smaller or larger 

range of variability, depending on the differences between the altitude gradients. On the other hand, the 

period studied will allow a more robust analysis of trends in both fire metrics and driving factors, provided 

it is over a longer time range. Finally, the size of the spatial unit influences the level of detail with which the 

variable in question is spatialized, analyzed and represented.  

1.3. Methodological approaches in fire regime modelling 

The study of the fire regime was conducted using a wide variety of factors and approaches. In the first 

place, it is important to differentiate the two major governing forces: climate and human activities. The first 

refers to variables such the lack of precipitation events (droughts), as well as the prevailing thermal regime 

during the fire season that controls the probability of ignition, fire size and seasonality, thus shaping the 

patterns of large-scale fire regimes (Boulanger et al., 2013). The second aspect, human causality has a double 

face, since it can impact the occurrence positively or negatively, depending on the level of influence 

(Syphard et al., 2007). In this respect, the active suppression of forest fires may reduce their activity, while 

at the same time, humans cause ignitions in the vicinity of infrastructures (primary and secondary road 

networks) or in the wildland-urban interface. 

The capacity of current methodologies for space-time modeling of forest fire frequency and burned area is 

evident. Among others, the methods employed vary from the use of bivariate and multiple regression, as 

in the examples of DaCamara et al. (2014) and Syphard et al. (2007), through the analysis of specific spatial 

patterns (Fuentes-Santos et al., 2013; Liu et al., 2012), probabilistic models (Silvestrini et al., 2011), machine 

learning such as Random Forest (Boulanger et al., 2013), multivariate adaptive regressions splines – MARS 

(Boulanger et al., 2014) and maximum entropy (Duane et al., 2015). Another branch of research has used 
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specific-devoted simulation models, as change points (Mouillot et al., 2002) or power law (Malamud, 1998; 

Malamud et al., 2005; Perera and Cui, 2010). In Spain, several articles suggest that alterations in fire regimes 

have been driven by climate, land use changes and suppression policies (Moreno et al., 2014) as well as 

different propagation patterns in Catalonia (Duane et al., 2015). 

The majority of studies have used regression models in combination with simulated data from general 

climate models (GCM) (Boulanger et al. 2013; DaCamara et al. 2014; Kilpeläinen et al. 2010; Krawchuk et 

al. 2009; Pechony and Shindell 2010; Terrier et al. 2014; Westerling et al. 2011) based on IPPCC projections 

of future emission scenarios or Regional Climate Models (RCM). Most of these studies envisage an 

increasing burned area in regions such as Portugal (DaCamara et al., 2014), California (Westerling et al., 

2011) and the Iberian Peninsula (Sousa et al., 2015). However, several authors point out different trends 

depending on the regions of the world (Krawchuk et al., 2009; Pechony and Shindell, 2010), including 

showing opposite tendencies with increasing frequency and a slight decline of burned area in the Northeast 

of Spain (Turco et al., 2014).   

In the fire-climate framework, many authors have analyzed the relationship between climate change and 

shifts in certain characteristics of fire regimes (fire frequency, surface area, seasonality, average fire range, 

maximum fire size, etc.) in many regions. For example, in the boreal forests of North America (Kasischke 

and Turetsky, 2006) they resort to historical records, the analysis of individual years by categories of eco-

zones and the start time of individual events. In Canada, the Fire Growth Model has been used to model 

the risk of lightning and human-induced ignitions (Nitschke and Innes, 2013). On the other hand, most of 

the studies have assumed future projections with similar environmental and anthropic conditions to the 

current ones (Boulanger et al., 2014, 2012), thus showing certain limitations in trend detection since they 

assume a “static” of non-climate conditions for the future. Therefore, the growing importance of estimating 

the present and future impact of climate change on fire regime has become a key issue in risk assessment 

and adaptation strategies, emerging as the cornerstone in national and international climate programs 

(Turco et al., 2014), such as the European project FUME (2010-2013). 

However, it is well-known that the democratic and massive use of future climate change scenarios implies 

a high degree of uncertainty. In other words, the most complicated issue is the validation of projected data, 

especially those by GGM or RCM models, as there is still no time series with which to correlate. This is 

why some authors leaned towards the “safest” alternatives, such as the auto-regression and moving average 

models (ARIMA). ARIMA models are known for their good performance in fields such as markets and the 

economy (Loi and Ng, 2018; Matyjaszek et al., 2019), as well as in the environmental framework: vegetation 

(REF) or climate change. In the context of forest fire, Preisler and Westerling (2007) employed ARIMA 

using temperature forecasting to assess fire danger in western USA, whereas, Boubeta et al. (2016) applied 

a simplified version of ARIMA (ARMA) without the integrated component in order to predict burnt area 

in Galicia. The main virtue of ARIMA models lies in the fact that they predict future trends and seasonality, 

with the historical time series of data as their only reference. As a result, the principle of parsimony is 

guaranteed in the model, since the minimum number of variables is used, being more easily reproducible 

and without creating an over adjustment. 

When discussing the use of spatial modeling methods and the prediction of forest fire characteristics in 

specific areas, a wide repertoire of methodological approaches and explanatory variables can be brought to 

bear. The scale of analysis (global, regional or local), the proposed objectives and the nature of the data 

used will condition the analysis framework. Among the most widely applied models to date, GLM and 

GAM (Generalized Linear Models and General Additive Models, respectively) stand out as flexible 
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generalizations of linear regression, able to deal with non-normal distributions of the variable under study 

(fire activity) or the explanatory variables (climate, weather, topography, population, wildland urban-

agricultural interfaces, road network, etc.). This modeling framework is adequate, since forest fire data 

usually depict non-linear response functions. In addition, Geographically Weighted Regression (GWR) is a 

more advanced alternative that has also been applied in the context of wildfires (Koutsias et al., 2010; Sá et 

al., 2011), whose main advantage is that it allows the calculation of local regression parameters, useful for 

analyzing the spatial behavior of each explanatory variable and determining their level of significance. The 

few works conducted in mainland Spain point to a certain degree of spatial variability (Martínez-Fernández 

et al., 2013), confirming that human driving factors vary over both space and time(Rodrigues et al., 2016) 

and are losing explanatory power in favor of climatic conditions (Rodrigues et al., 2018). 

Another important aspect when estimating the probability of the occurrence of wildfires is to analyze the 

characteristic of fuels and how they interact with climatic variables (precipitation, temperature, wind, relative 

humidity, etc.). The role of forest fuels not only largely determines the likelihood of ignition, but also the 

speed of propagation, and ultimately the severity. In this respect, numerous fire weather danger indices 

have been used to relate meteorological data to fire (Fire Weather Index: FWI, Standardized Precipitation-

Evapotranspiration Index: SPEI, Palmer Drought Index: PDSI, among others). Some studies carried out 

in Portugal (Fernandes et al., 2014) stressed the positive relationship between fire and weather together 

with fuel hazard and the final burned area. In eastern-Spain, (Cardil et al., 2019) pointed out the importance 

of a multi-temporal perspective when studying the link between drought and burned area for different 

vegetation communities. In any case, that there is a strong influence from the flammability of the fuel and 

its spatial continuity on fire frequency and burned area has been demonstrated by fuel model classifications 

(Prometheus, NFFL, NFDRS, McArthur, FBP - see Arroyo, Pascual, and Manzanera (2008) for more 

details. 

1.4. Fire regime vs pyroregion 

Because of the potential usefulness and interest in predicting how the behavior of fire regimes evolves, this 

PhD Thesis aims to optimize the identification and characterization of fire regimes in mainland Spain, 

beginning with the identification of the most relevant features of fire, and continuing by evaluating the 

direction and extent of regional trends both in space and time. Until now, most works focused on broad-

scale fire regime modeling based on large ecological and administrative units. In Canada, the next step was 

to outline homogeneous fire regime (HFR) zones without this traditional approach, since it does not capture 

the spatial heterogeneity of fire regimes and could lead to spatially inaccurate estimations of future fire 

activity (Boulanger et al., 2014). In Spain, only a few papers have defined fire regime units but by attributing 

a static image in their delimitation (Moreno and Chuvieco, 2013), i.e., not incorporating the non-stationary 

behavior of fire features. To overcome this limitation, our goal is to provide a projection of the possible 

future evolution of these homogeneous fire regime zones, since until now the few projects carried out in 

the Iberian Peninsula have focused on only forecasting selected components, such as the affected surface 

(Sousa et al., 2015). 

Generally, the spatial delimitation of fire regimes is based exclusively on the consideration of the main, 

defining features of fire. However, this zoning has to be incorporated into a more comprehensive spatial 

context that also integrates the driving factors (both climatic and human) most directly related to forest 

fires. In this respect, the first study that put forward this new concept was Fréjaville & Curt (2015), which 

added the concept of “pyroclimates” to the wildfire literature. They developed a new framework for 

analyzing regional changes in fire regimes from specific spatial-temporal patterns of forest fires and climate, 
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defining it as a geographical entity displaying homogenous attributes with respect to fire regime, climate 

conditions (bioclimatic variables and fire danger indices) and the temporal trends of both. Therefore, we 

adopted part of the innovation of this concept in our term “pyroregions”, but in our case, we added human 

factors into the definition and not only the climate conditions. As result, we define pyroregion as “a 

geographical area sharing homogeneous fire regime features, climate-human conditions and the evolution 

of both”. 

To sum up, the main difference between “fire regime” and “pyroregion” lies fundamentally in the nature 

of their underlying factors. In the case of fire regime, it broadly refers to the average conditions in terms of 

fire features over time and space. The pyroregion transcends fire regime being a geographical entity that 

characterizes by uniform or homogeneous fire activity, but is also influenced by self-defining climatic and 

human conditions.   



2 CHAPTER 2: OBJECTIVES 
AND RESEARCH DESIGN 

This chapter summarizes the objectives and structure of the 
thesis, connecting the former with their corresponding 
publications and appendices that compose the whole research. 
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The working hypothesis of this PhD Thesis is that mainland Spain presents different fire regimes 

defined by specific fire frequency, burned area, seasonality and cause, which are non-stationary over space 

and time, thus allowing modeling and envisaging their evolution. To understand the complexity of 

the phenomenon, we had to investigate the driving forces of fire regimes, which ultimately would lead to 

the definition of dynamic pyroregions, thus improving fire management, prevention and preparedness 

within a context of climate and socio-economic change.  

Therefore, the main objective of this research was to translate the variety of homogenous zones of fire 

regimes into pyroregions, providing insights into their possible evolution through the identification 

and characterization of their main components (frequency, size, seasonality, cause, etc.) and driving 

factors (climate, weather, human pressure, etc.).  

2.1. Research questions 

In order to address the main objective stated before, five specific research questions (RQs) or objectives 

were formulated and addressed by studying several research papers. Table 1 shows the correlation between 

each specific objective and its corresponding publications. 

RQ 1: What is the spatial-temporal distribution of the main fire regime features and what is 

its relationships with climate-human factors? 

1st Objective: Explore the spatial-temporal distribution of fire regime features and their relation with 

climate-human factors. 

RQ 2: What role does fire-weather danger play in the temporal evolution of fire regime 

features? 

2nd Objective: Estimate the contribution of fire-weather danger on the observed evolution of fire 

activity. 

RQ 3:  What have been the spatial-temporal changes in the influence of human factors on 

wildfires? 

3rd Objective: Analysis spatial-temporal changes in the role of anthropogenic drivers on wildfires. 

RQ 4: What changes have been experienced by fire regimes and which factors are behind 

these dynamics? 

4th Objective: Characterize the dynamics of recent-future fire regimes and know the drivers of their 

changes. 

RQ 5: How are pyroregions distributed in space on the basis of the observed evolution of fire 

regime typologies and drivers? 

5th Objective: Translate the fire regime typologies scheme into pyroregions. 
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Table 1. Summary of the specific objectives and their corresponding publication or contribution. 

Objective Publication 

1st Objective: Explore 

the spatial-temporal 

distribution of fire regime 

features and their relation 

with climate-human 

factors. 

CHAPTER 5 

-Jiménez-Ruano A, Rodrigues M, de la Riva J (2017) Understanding wildfires in mainland 

Spain. A comprehensive analysis of fire regime features in a climate-human context. Applied 

Geography 89:100-111. https://doi.org/10.1016/j.apgeog.2017.10.007 

-Jiménez-Ruano A, Rodrigues M, de la Riva J (2017) Exploring spatial–temporal dynamics 

of fire regime features in mainland Spain. Natural Hazards and Earth System Sciences 17:1697-

1711. https://doi.org/10.5194/nhess-17-1697-2017 

APENDIX A 

-Supplementary material from “Understanding wildfires in mainland Spain. A comprehensive

analysis of fire regime features in a climate-human context”.

APPENDIX E 

- Jiménez-Ruano A, Rodrigues M, de la Riva Fernández J. (2017). An analysis of wildfire

frequency and burned area relationships with human pressure and climate gradients in the context

of fire regime. Geophysical Research Abstracts (Poster contribution). Vol. 19 EGU2017-15084,

Vienna, Austria.

- Jiménez-Ruano A, Rodrigues M, de la Riva Fernández J. (2017). Assessing the influence of

small fires on trends in fire regime features at mainland Spain. Geophysical Research Abstracts

(Poster contribution). Vol. 19, EGU2017-15755, Vienna, Austria.

2nd Objective: Estimate 

the contribution of fire-

weather danger on the 

temporal evolution of fire 

activity. 

CHAPTER 6 

-Jiménez-Ruano A, Rodrigues M, Jolly W.M, de la Riva J (In Press) The role of short-term 

weather conditions in temporal dynamics of fire regime features in mainland Spain. Journal of 

Environmental Management 17:1697-1711. https://doi.org/10.1016/j.jenvman.2018.09.107 

APPENDIX B 

-Supplementary material from: “The role of short-term weather conditions in temporal 

dynamics of fire regime features in mainland Spain”    

APPENDIX E 

- Jiménez-Ruano A, Rodrigues M, Jolly W M, de la Riva Fernández J. (2018). Assessing the

influence of fire weather danger indexes on fire frequency and burned area in mainland Spain.

Geophysical Research Abstracts (Oral presentation). Vol. 20, EGU2018-13196, Vienna,

Austria.

- Jiménez-Ruano A, Rodrigues M, Jolly W M, de la Riva Fernández J. (2018). The role of

drought and magnitude in the temporal evolution of fire occurrence and burned area size in mainland

Spain. Geophysical Research Abstracts (Poster contribution). Vol. 20, EGU2018-13520,

Vienna, Austria.

3rd Objective:   Analysis 

of spatial-temporal 

changes in the role of 

anthropogenic drivers on 

wildfires. 

CHAPTER 7 

-Rodrigues M, Jiménez-Ruano A, de la Riva J. (2016) Analysis of recent spatial–temporal

evolution of human driving factors of wildfires in Spain. Natural Hazards 84(3):2049-2070.

https://doi.org/10.1007/s11069-016-2533-4

-Rodrigues M, Jiménez-Ruano A, Peña-Angulo D, de la Riva J. (2018) A comprehensive

spatial-temporal analysis of driving factors of human-caused wildfires in Spain using Geographically

https://doi.org/10.1016/j.apgeog.2017.10.007
https://doi.org/10.5194/nhess-17-1697-2017
https://doi.org/10.1016/j.jenvman.2018.09.107
https://doi.org/10.1007/s11069-016-2533-4
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2.2. Research structure 

The contents of the Thesis are organized as follows: Chapter 3 presents a description of the study area. 

Chapter 4 summarizes the data sources and methods employed in the research, complementing the 

information already published. Chapters 5 to 8 bring together the original version of accepted and published 

articles. Lastly, the last two chapters (Chapter 9 and 10) portray the final outline of pyroregions and 

summarize the main conclusions, respectively. Figure 1 summarizes the main databases and methodologies 

employed in the investigation according to the first four specific objectives.  

In addition, a complementary section provides further information, organized into five appendixes (A, B, 

C, D and E). The first three correspond to the supplementary material in three publications of the main 

body of this thesis, appendix A belongs to the paper entitled “Understanding wildfires in mainland Spain. A 

comprehensive analysis of fire regime features in a climate-human context”, appendix B is part of the article “The role of 

short-term weather conditions in temporal dynamics of fire regime features in mainland Spain” and appendix C 

corresponds to the manuscript under review “Fire regime dynamics in mainland Spain. Part 1: drivers of change”. 

Appendix D refers to Chapter 3 of the book “Advances in Forest Fire Research” edited by Domingos Xavier 

Viegas, as a result of the contribution in the “VIII International Conference on Forest Fire Research”, held in the 

city of Coimbra (Portugal) from 9 to 16 November 2018. The latter appendix includes several abstracts 

from different conference contributions held in EGU 2017 and EGU 2018.  

Weighted Logistic Regression. Journal of Environmental Management 225: 177-192. 

https://doi.org/10.1016/J.JENVMAN.2018.07.098 

4th Objective: 

Characterize the dynamics 

of recent-future fire 

regimes and know the 

drivers of their changes. 

CHAPTER 8 

-Rodrigues M, Jiménez-Ruano A, de la Riva J. (In press). Fire regime dynamics in mainland

in Spain. Part 1: drivers of change. Science of the Total Environment.

-Jiménez-Ruano A, de la Riva J, Rodrigues M.  (In press). Fire regime dynamics in mainland

Spain. Part 2:  a near-future prospective of fire activity.  Science of the Total Environment.

APPENDIX C 

-Supplementary material from: “Fire regime dynamics in mainland in Spain. Part 1: drivers 

of change. Science of the Total Environment”. 

5th Objective: Translate 

the fire regime typologies 

scheme into pyroregions. 

CHAPTER 9 

-Jiménez-Ruano A, Rodrigues M, de la Riva J. (to be submitted) Mapping recent pyroregions 

on the basis of spatial-temporal patterns of fire regimes and environmental-human datasets in 

mainland Spain 

APPENDIX D 

-Jiménez-Ruano A, Rodrigues M, de la Riva J. (2018) Identifying pyroregions by means of 

Self Organizing Maps and hierarchical clustering algorithms in mainland Spain. in: Viegas, D.X. 

(Ed.), Advances in Forest Fire Research (VIII International Conference on Forest Fire Research). 

Imprensa da Universidade de Coimbra, Coimbra, pp. 495–505. 

https://doi.org/https://doi.org/10.14195/978-989-26-16-506_54 

https://doi.org/10.1016/J.JENVMAN.2018.07.098
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Figure 1 Conceptual workflow of the thesis according to the first four specific objectives. 



3 CHAPTER 3: STUDY AREA 

This chapter presents a description of the study area where the 
thesis has had its spatial framework. 
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The study area encompasses the whole of mainland Spain (excluding the Balearic and Canary archipelagos 

and the autonomous cities of Ceuta and Melilla) and covers a total surface area of 498,000 km2. Spain is 

very biophysically diverse, presenting a wide variety of climatic, topographical and vegetation communities. 

This diversity also appears when discussing socioeconomic conditions in terms of settlement systems and 

population structure, production sector, changes in land use and land cover, or structure of the territory. 

From a biogeographical point of view, mainland Spain is dominated by two different bioregions. The 

Eurosiberian, located in the northwestern area, and the Mediterranean, covering the remaining territory. 

The Eurosiberian is characterized by an Oceanic climate (according to the Spanish Climate Atlas - AEMET 

2011- and based on the Köppen-Geiger’s climate classification - Cfb) distinguished by milder temperatures 

throughout the year and high precipitation evenly distributed across the year (average values over 1,000 

mm) peaking during winter. This area is mostly covered by various types of vegetation from deciduous oak

(Quercus robur, Fraxinus excelsior or Fagus sylvatica) and ash to evergreen oak woodlands. However, this region

is also heavily dominated by forest plantations such as Pinus radiata and Eucalyptus globulus. In turn, the

Mediterranean region is characterized by hot-summers in almost 40% of the territory (Csa) and cold semi-

arid (BSk) climateswith high annual thermal amplitude and precipitation irregularly distributed over the year

(peaking in autumn and spring, with a clear minimum during summer). Therefore, there are notably drier

and warmer conditions than the Eurosiberian region, especially across the southeastern region and the Ebro

Valley. These conditions, coupled to human activity, favors complex mosaics of agricultural systems and

plant communities. Sclerophyllous and evergreen vegetation, such as Quercus ilex, Quercus suber and

thermophilous scrublands (maquis and garrigue formations), dominate the region, and forest areas mainly

consist of pines (Pinus halepensis, Pinus sylvestris, Pinus nigra, Pinus pinea or Pinus pinaster). Furthermore,

bioclimatic (altitudinal) belts exist within each region in mountain areas such as the Pyrenees along the

French border or the Sierra Nevada on the southern Mediterranean coast. These sub-regions host a large

variety of tree species that are common in central Europe.

Human activity also changes its footprint across the region. According to Corine Land Cover 2006 (CLC 

2016), in the northwest area, approximately 68% of the region is covered by forests, shrubs or grassland. 

This land cover has been traditionally shaped by seasonal grazing (agricultural burning to maintain pastures 

and grasslands) at the end of the winter. In the hinterland region, there has been a gradual abandonment of 

agricultural activity (crops and pastures) meaning that around 54% of its territory is covered by wildland. 

Meanwhile, the Mediterranean region, the most populated area, has the lowest proportion of woodland 

(roughly 22%) because of an extended wildland-urban interface caused by the expansion of urban and 

tourism developments during the last few decades (Moreno et al., 2014) 

The Spanish population is currently around 47,007,367 inhabitants according to 2019 INE provisional data 

and therefore, the fifth most populated country in the EU, behind Germany, France, the United Kingdom 

and Italy, according to Eurostat 2018 (European Union Statistics). The distribution of the population is 

characterized by the sharp contrast between the hinterland and coastlines, with the highest density located 

mainly along the Mediterranean corridor, and also in some coastal areas in the north. The remaining inland 

regions have a lower demographic density, except the Madrid area.  

Spain has a diversity of agricultural landscapes closely related by climatic conditions. In the northwest, the 

main type of cropland is a mosaic of cereals interspersed with patches of forest (mainly Eucalyptus 

plantations). In the hinterlands, most of the territory is occupied by the so-called Mediterranean trilogy (i.e. 

extensive cereal, olives and vineyards) with few wildlands. In the western hinterland, the dehesa is the 

predominant agroforest landscape. Finally, in the Mediterranean corridor, apart from the Mediterranean 
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trilogy, intensive fruit farms are commonly found, which also dominate the banks of the main rivers (Ebro, 

Guadalquivir, Guadiana, Tajo and Duero). According to Delgado-Serrano and Hurtado-Martos (2018), 

who analyzed the CLC changes between 1987-2011, the major expansion in land use was in olive groves 

and irrigated land. On the contrary, the largest reduction was found in complex crop mosaics, in addition 

to mixed zones (natural vegetation-crops).Due to the variety of landscapes, climate and socioeconomic 

conditions, three different regions - Northwest (NW), Hinterland (HL) and Mediterranean (MED) – were 

outlined (Figure 2), following the criteria established by the Spanish Environmental Ministry in their annual 

fire reports (MAGRAMA, 2012, 2007, 2002).  

Figure 2. Spatial distribution of the three regions (Northwest, Hinterland and Mediterranean), NUTS3 and 
NUTS2 administrative units in mainland Spain. 

Administratively, the NW region includes the autonomous communities of Galicia, Asturias, Cantabria and 

the Basque Country, as well as the provinces of León and Zamora. This region is located within the 

Eurosiberian region, excluding the Pyrenees. The HL region includes all of the autonomous communities 

without a coastline, except for the provinces of León and Zamora (included in the NW region). This region 

is located in the transition boundary between the Mediterranean and Eurosiberian regions, thus sharing 

characteristics in terms of climate influence and plant species. Finally, the MED region, situated completely 

within the Mediterranean biogeographical area, includes all the autonomous communities along the 

Mediterranean coast, as well as the western provinces of Andalusia. 

These regions exhibit homogeneous areas in terms of wildfire activity and seasonal averages by merging 

entire provinces or autonomous communities and have been previously used in other recent works like 

Moreno et al. (2014) as they are expected to have self-defining fire regimes. The spatial coverage of these 
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regions is similar to other zoning proposals from authors such as Sousa et al. (2015) or Trigo et al. (2016) 

that are also based on NUTS3 aggregations, although they include Portugal as well. In terms of fire 

occurrence, the number of winter fires is noticeably high (35.7%), especially in the Northwest region. In 

turn, burned area caused by lightning represents a low fraction of the total amount (around 6.5%) and it is 

usually concentrated in mountain areas (mainly in the provinces of León-Zamora and the Iberian Range). 

Generally, the spatial distribution of fires is characterized by the heavy concentration of fire activity in the 

northwest, but also in the Mediterranean corridor, and inner mountain ranges. In terms of inter-annual 

distribution, mainland Spain features two distinct peaks of fire activity. The first during the summer months, 

which affects the whole territory, but with a significant incidence in the hinterlands and the Mediterranean 

region. The second occurs during late winter- early spring and is located mainly in the northwest. On the 

other hand, the evolution of the main fire features throughout the study period can be summarized as an 

increase in generalized activity up to a peak in the mid-1990s, since when there has been a gradual decrease 

in both frequency and burned area (Figure 3). 



Chapter 3: Study area 

20 

Figure 3. Temporal evolution of the main fire features in the period 1974-2015. 



4 CHAPTER 4: MATERIALS AND 
METHODS 

This chapter describes in detail all data and methods employed 
to conduct this thesis. The research has been addressed at three 
different spatial scales: regional, provincial (NUTS-3) and local 
(grid or cell). In addition, the fire features have been adapted 
depending on the objective proposed and/or the availably of the 
explanatory variables. 
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4.1. Datasets and sources 

4.1.1. The Spanish fire database 

The General Statistics of Wildfires (Estadística General de Incendios Forestales: EGIF) database stands 

out for its precision and completeness, being one of the oldest wildfire databases in Europe, beginning in 

1968 (Moreno et al., 2011; Vélez, 2001). Its inception coincided with the adoption in the same year of Law 

81/1968 on Forest Fires, the first legal mandate expressly designed to address a serious problem. by means 

of prevention and control actions (López Santalla et al., 2017). The Bureau of Defense Against Forest Fires 

(Área de Defensa Contra Incendios Forestales: ADCIF) is the institution responsible for standardizing, 

maintaining, drafting and publishing these statistics, based on the information submitted by autonomous 

communities for every fire occurring in the country. All the baseline information collected is organized in 

different sections in the Spanish Forest Fire Reports (Parte de Incendio Forestal: PIF), which currently 

collects more than 150 data fields for each fire. It should be noted that this structure, sections and type of 

information gathered has varied over the years, undergoing a total of eight modifications from its first 

publication. 

Systematic collection of statistical data on forest fires began in 1956. Until then they were collected manually 

and on an irregular basis by the provincial services. In 1967, the Calculation Office of the Institute of 

Forestry Research and Experiences acquired a computer, which enabled a new model of PIF to be created 

that came into operation in the second semester of that year. Therefore, the first Annual Forest Fire Report 

was published in 1968, but included data on fires that had occurred since 1961. With regard to the quality 

of the data, it should be noted that, in the early years, it only included fires that affected forest masses or 

large non-forest areas, although subsequently, the rest of the fires were taken into account, even those of 

less than 1 ha.  

The spatialization of information has changed over the years from its beginning, when the minimum spatial 

unit of reference was the province (NUTS3), with a 10 x 10 km reference grid adopted after 1974. Until 

1979, only those fires occurring in public and reforestation forests were recorded. Later, in the period 1980-

1988, all fire events were collected, regardless of ownership. Since 1982, the municipality was added as a 

field in each fire location. Later, in 1989-1992, the PIF was reformed to incorporate important fields such 

as time, use of air, means or motivations related to intentionality. Since 1990, the General Statistic has been 

submitted to the European Commission for integration into the Community database EFFIS (European 

Forest Fire Information System). 

On the other hand, the traditional demarcation by region employed in the annual fire reports was the same 

for the period 1968-1977 with a total 7 regions (excluding the Balearic and Canary Islands): Galicia, North, 

Northeast, Ebro, Levante, the Hinterland and Andalusia. Since 1978, the number of regions increased to 

10 (excluding the Canary Islands): Galicia, North or Cantabric (Asturias and Cantabria), Ebro (Aragón), 

Northeast (Catalonia-Baleares), Duero (Castilla-León), Center (Castilla–La Mancha), Levante (Valencia-

Murcia), Extremadura, West Andalusia and East Andalusia. Moreover, from 1982 a more extensive section 

referring to weather conditions throughout the particular year was added, provided by the National Institute 

of Meteorology. From 1983, the previous regions were replaced by the Autonomous Communities. The 

sections of the current PIF contain the following common information: 

a) Location data: Includes the ID of the fire (IDPIF) as 10 digits. The codes of the autonomous

community, province, municipality containing the fire ignition point (created in 1983), tile and grid

(created in 1974) and UTM coordinates.
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b) Time data: Day, month, year, hour and minutes when the fire was detected, but also first arrival
of engines by land (created in 1988), first arrival of fire-fighting aircraft (created in 1989), first
airborne brigade arrival (created in 2005), and time when the fire was controlled and extinguished.

c) Detection: Who first detected the fire (permanent guard, forestry officer, aircraft, etc.) and place
of origin (road, path, house, train rail, crops, etc.).

d) Ignition causes: Differences between known and supposed cause (since 1998), lightning,
negligence and accidental causes, arson (created in 1989), unknown cause, rekindled fire (since
1998), identification or otherwise of the person causing it, and type of day (festival, Saturday, festival
eve and working day).

e) Danger conditions when the fire starts: Meteorological data (days from last rain, maximum
temperature, relative humidity, wind) fuel model (since 1989) and probability of ignition.

f) Type of fire: Surface, crown or subsoil (since 1989).
g) Fire suppression media: Type of land transport (vehicles, helicopters), number of different

personnel (technical staff, forestry agents, professional firefighters, civil staff, army, etc.) and
extinguishing methods (aircrafts, helicopters, retardants, etc.).

h) Fire suppression techniques: Direct or indirect attacks, firewall opening, etc.

i) Losses: People killed and injured, civil protection incidents, type of surface affected, environmental

impacts.

4.1.2. Fire data and fire features 

Fire features were retrieved from the General Wildfires Statistics (EGIF) database. Generally, fire records 

for 1974-2015 were selected and spatialized according to the 10 x 10 km UTM reference grid which is used 

by firefighting crews for approximate locations of fire ignition points. Fire count data, total burned area 

size, ignition triggering date and fire cause were retrieved for each event. In all cases, only information on 

fires larger than 1 ha was retained because small fires (i.e. fires with less than 1 ha affected) were not fully 

compiled until 1988. This is a well-known issue affecting other regions in the Mediterranean, such as 

Portugal (Pereira et al., 2011). Additionally, it is important to remember that in the autonomous community 

of Navarre, fire data were only available from 1988. Hence, all the analyses conducted in Navarre were 

based on a slightly different study period (from 1988 to 2010, 2013 or 2015). 

The start year was set as 1974, since it was the first year to use the 10 x 10 km grid. Prior to that time, fire 

data were only recorded at province level, so grid information was not available. The end year fluctuates 

depending on the temporal frame of other databases required for different analyses. For the first objective, 

the end year (2010) was chosen because of the availability of climate data from the MOTEDAS and 

MOPREDAS datasets (described below). For the second objective, the final year was set at 2013, because 

the sole input was the EGIF database, and at the time of the research, fire data was only available until then. 

As stated in section 1.2., regions were outlined following MAGRAMA specifications. In turn, two fire 

seasons were defined according to Moreno et al. (2014). Thus, annual data were divided into a spring-

summer season (S), from April to September; and an autumn-winter season (W) from October to March. 

From all available fire data information, several fire regime features were constructed separately for the 

season, region, NUTS3 and grid level. The final number of fire features changes according to each specific 

objective (see Table 2).  
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Table 2. Summary of fire regime features constructed, their description and corresponding time period for each 

specific objective.  

Objective 
Fire Feature Description Time 

Period 

1st. Explore the spatial-temporal 

distribution of fire regime features and 

their relation with climate-human 

factors 

Fire frequency 

(F) 

Total number of fires, regardless 

of size or ignition source 

1974-

2010 

1974-

2013 

Burned area (B) 
Total fire affected area, regardless 

of size or ignition source 

Number of large 

fires (N500) 

Number of fires above 500 ha 

burned, regardless of ignition 

source 

Burned area from 

large fires (B500) 

Overall affected area from fires 

above 500 ha, regardless  of  

ignition source 

Number of 

natural fires (NL) 

Number of fires triggered by 

lightning 

Burned area from 

natural fires (BL) 

Overall burned area from fires 

triggered by lightning 

Number of 

human fires 

(NH) 

Number of fires triggered by an 

anthropogenic source 

Burned area from 

human fires (BH) 

Overall burned area from fires 

triggered by an anthropogenic 

source 

2nd. Estimate the contribution of fire-

weather danger on the temporal 

evolution of fire activity. 

Fire frequency 

(F) 

Total number of fires, regardless 

of size or ignition source 
1979-

2013 

Burned area (B) 
Total fire affected area, regardless 

of size or ignition source 

3rd. Analysis of spatial-temporal 

changes in the role of anthropogenic 

drivers on wildfires. 

Fire counts Number of fires by grid 

1988-

2010 

1988-

2013 

Fire presence or 

absence 

Recoded into a binary presence or 

absence of fire recorded 

25 subsets of 

occurrence 

Combination of two periods, two 

seasons, two causes and three fire 

sizes. 

4th. Characterize the dynamics of 

recent-future fire regimes and know the 

drivers of their changes. 

Fire frequency 

(F) 

Total number of fires, regardless 

of size or ignition source 

1974-

2015 
Burned area (BA) 

Total fire affected area, regardless 

of size or ignition source 

Burned area from 

natural fires 

(BAL) 

Overall burned area from fires 

triggered by lightning 
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Burned area from 

large fires 

(BA100) 

Overall affected area from fires 

above 100 ha, regardless of 

ignition source 

Winter fire 

frequency (FW) 

Number of fires occurred in 

autumn-winter season, (W) 

regardless of size or ignition 

source 

In total, the calculation of fire occurrence (a total of 229,068 fires in the period 1974-2015, excluding small 

fires – i.e. less than 1 ha) was constructed by the method developed by De la Riva et al. (2004). This method 

consists in spatializing fire data as an input for fire modeling by using a kernel approach to interpolate 

historic fire observations. In terms of monthly mean and total values of the main fire features, a double 

annual peak can be found (the highest is usually found in August, with a second one in March, see Table 

3). However, the second peak disappears for the area burned by large fires (>100 ha) and those caused by 

lightning, the latter showing a displacement of the summer peak to July.  

Table 3. Summary of monthly mean, standard deviation (sd) and total number of fires and burned area for each 

fire feature in the period 1974-2015 (small fires less than 1 ha are excluded). 

Fire feature Month Mean Sd Total 

Fire frequency 

January 0.05 188.33 7,199 

February 0.13 479.82 18,691 

March 0.24 754.77 33,329 

April 0.12 428.94 17,311 

May 0.06 135.09 7,921 

June 0.07 163.06 9,892 

July 0.17 387.86 24,226 

August 0.34 675.74 47,657 

September 0.29 808.65 40,296 

October 0.09 398.99 13,160 

November 0.03 103.22 3,979 

December 0.04 167.94 5,407 

Burned area 

January 2,477.85 3,278.01 104,069.51 

February 6,133.04 8,977.37 257,587.55 

March 11,321.46 11,995.31 475,501.25 

April 6,277.16 7,694.76 263,640.90 

May 2,985.79 4,329.85 125,403.29 

June 5,778.87 9,068.18 242,712.68 

July 28,265.16 37,616.06 1,187,136.62 

August 44,804.75 34,226.26 1,881,799.50 

September 25,413.33 35,333.18 1,067,360.03 

October 7,011.48 12,163.58 294,482.01 

November 1,865.65 3,731.95 78,357.49 

December 3,024.84 5,501.75 127,043.30 

Large burned area (> 100 has) 

January 1,004.03 1,775.17 42,169.42 

February 2,349.64 4,567.64 98,684.74 

March 3,859.71 4,371.90 162,107.73 
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April 2,623.81 4,282.10 110,199.93 

May 1,520.87 3,105.52 63,876.42 

June 4,033.21 8,588.28 169,394.96 

July 23,179.12 35,556.11 973,523.08 

August 34,094.29 27,675.81 1,431,960.15 

September 16,189 25,104.63 679,938.17 

October 4,087.58 7,829.04 171,678.17 

November 1,071.2 3,344.38 44,990.17 

December 1,795.32 3,886.1 75,403.49 

Natural burned area 

January 0.39 1.51 16.50 

February 5.01 22.38 210.30 

March 38.91 226.98 1,634.38 

April 20.30 53.86 852.43 

May 49.33 93.17 2,071.79 

June 593.73 1,194.33 24,936.83 

July 5,772.42 16,780.78 242,441.65 

August 2,469.47 4,578.96 103,717.77 

September 523.36 1,081.92 21,980.98 

October 16.06 46.77 674.57 

November 5.89 30.26 247.40 

December 0.22 0.76 9.30 

On the other hand, several explanatory variables can be taken into account when addressing a fire regime 

characterization. These are usually divided into two groups: natural and human. In the first case, factors 

related to environmental conditions were selected to represent the general climate gradients and fire-

weather. The second group refers to anthropogenic conditions related with the fire ignition and were 

chosen on the basis of other previous research (Rodrigues et al 2014). 

4.1.3. Climate and weather 

Climate data were extracted from MOTEDAS (Monthly Temperature Dataset of Spain) and MOPREDAS 

(Monthly Precipitation Dataset of Spain) datasets. These databases provide monthly climate information at 

a spatial resolution of 10 x 10 km. They were constructed from real measurements from the Spanish 

Meteorological Network of weather stations in the period 1951-2010 (González-Hidalgo et al., 2015, 2011). 

MOTEDAS and MOPREDAS stand out as one of the most accurate databases in the context of climate 

data for mainland Spain.  

Their development was based on the reconstruction of a meteorological data time series from each weather 

station in the region. This process includes a quality control, consisting of two steps: suspect data 

identification and inhomogeneity detection. Firstly, a set of reference series was calculated for each original 

station by means of a monthly correlation matrix between the candidate series and all the others, and 

selecting the neighboring series with the highest positive monthly correlation coefficient (mean greater than 

0.60 and 0.50, for MOPREDAS and MOTEDAS, respectively) within a critical threshold distance of 25 

km (for MOTEDAS) and 50 km (for MOPREDAS). The minimum overlapping period required for the 

correlation computation was set at 7 years from MOTEDAS and 10 years for MOPREDAS. 
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To assess the suspect data, authors use both ratio and inter-quartile methods, as well as direct and inverse 

ratios to avoid the zero effect. On the other hand, for homogeneity analyses they applied a combination of 

tests: Single Normal Homogeneity Test -SNHT, Bivariate, t-Student and Pettit test. Finally, in order to fill 

the gaps in the data, the method consists in producing a combination of neighboring series with no 

overlapping periods.  

The final database of MOTEDAS consists of 3,066, and MOPREDAS of 2,670 selected homogenous 

series without suspect data from the different stations of AEMET (Agencia Estatal de Meteorología). After 

interpolating the stations’ data onto the 10 x 10 km grid cells, using an improved version comprising a 

combination of two weights: one radial weight with a Gaussian shape, and an angular weight. The radial 

weight prevents undesired exchange of information between different climatic regions, and between either 

side of the largest mountain chains. The angular weight avoids undesired overweighting of the areas with 

the highest station density. The mean number of stations involved in the estimation of each grid is 

approximately 4 for MOTEDAS and 6 for MOPREDAS. 

For the first objective of this dissertation, monthly data on annual average maximum temperature (T - 

Figure 4) and total precipitation in mm (P - Figure 5) in the period 1974-2010 were extracted and adapted 

to the fire grid using a nearest neighbor procedure. Both maximum temperature and precipitation were later 

reclassified into 10 homogeneous (equal interval) categories used to construct climate codes for the later 

fire features relationship plots. 

Figure 4. Spatial distribution of average maximum temperature (in ºC) from 
MOTEDAS. 
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Figure 5. Spatial distribution of total precipitation (in mm) from MOPREDAS. 

The ERA-Interim Reanalysis datasets produced by the European Centre for Medium-Range Weather 

(ECMWF) dataset (Dee et al., 2011) was used to construct three different fire danger indexes (Fire Weather 

Index: FWI, US Burning Index: BI and Australian McArthur Forest Fire Danger Index: FFDI) necessary 

to achieve the 2rd objective. The main reason for this choice was due to the fact that this source has a higher 

spatial and temporal resolution (around 78 km). More specifically, 3-hourly 2 m air temperature, dew point 

temperature, surface total precipitation, and 10 m wind components were extracted to derive the following 

climate variables: maximum and minimum temperature, maximum and minimum relative humidity, 

maximum wind, total daily precipitation amount and total daily precipitation duration (see Jolly 2015 for 

more details). 

The WorldClim database is an interpolate climate surface for global land areas at a spatial resolution of 1 

km (Hijmans et al., 2005). Monthly precipitation and mean, minimum, and maximum temperature were 

included as climate elements, and all input data came from different sources, restricted to all records for the 

1950-2000 period. WorldClim was particularly chosen to create the Australian McArthur FFDI, providing 

the annual mean precipitation data, which when combined with the ECMWF maximum daily precipitation 

and temperature, produced the Drought Index (see Figure 2 in Chapter 6 and Jolly et al. (2015) for further 

details on the calculation process). It is therefore part of the achievement of the third objective of this 

dissertation. 

4.1.4. Anthropogenic drivers 

The first of the human drivers refers to land use data, and was retrieved from Corine Land Cover 1990 

(CLC), since it is centered on the study period. CLC information was used to outline the Wildland-

Agricultural Interface (WAI) and the Wildland-Urban Interface (WUI), two variables strongly related to 

anthropogenic ignitions (V. Leone et al., 2009; Martínez et al., 2004; Rodrigues et al., 2014). WAI represents 

the length of the boundary between agricultural and wildland areas, and WUI, the length between populated 

and wildland areas. Both were calculated at fire grid level (Rodrigues et al., 2016).  
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On the other hand, in order to represent the human pressure over the wildlands, we have  chosen the 

Demographic Potential (DP), which is an aggregate index for the ultimate future potential of the population, 

was retrieved from (J. L. Calvo and Pueyo, 2008) and based on the following formula:  

𝑃𝑂𝑇𝑖 =  ∑ (
𝑃𝑗

𝑑𝑖𝑗
2 ) + 𝑃𝑖

𝑛

𝑗=1

 ( 1 )

where POTi is the population potential accumulated in cell i, Pj are the inhabitants counted in each of the 

remaining accounting cells of the system and Pi are those of cell i itself, while d2 is the kilometre distance 

between each pair of cells i and j.  

In the cartographic values of POTi, those corresponding to its own resident population (Pi) plus those 

inferred by the rest of the system as a consequence of its positioning in the whole are accumulated, obtained 

by the sum of the population values of Pj divided by the distances (d) to which each accounting cell (j) is 

divided with respect to (i), and the latter elevated to an exponent, which in this case is 2, coinciding with 

the gravitational formula proposed by Newton. 

The demographic potential in 1991 was used at a spatial resolution of 5 x 5 km, later rescaled to the fire 

grid as the average value inside each cell (Figure 6). WAI, WUI (Figure 7 and Figure 8, respectively) and 

DP were normalized to a 0-1 interval and then aggregated to develop a Human Pressure Index (HPI, Figure 

9), representing the overall pressure of human activities likely to result in fire ignition.  

Figure 6. Spatial distribution of the Demographic Potential (DP) in 1991. 
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Figure 7. Spatial distribution of the wildland agricultural interface (WAI) length in 
meters. 

Figure 8. Spatial distribution of the wildland urban interface (WUI) length in meters. 
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Figure 9. Spatial distribution of the Human Pressure Index (HPI). 

Two variables regarding topography were obtained: elevation (Figure 10) and slope (Figure 11). The first, 

corresponds to the height above sea level in meters and the second, the inclination of the relief in 

percentages. Both variables were obtained initially from the digital elevation model GTOPO30 at 1 km of 

spatial resolution, resampled to a 10x10 km grid using the average value of the pixels (both forest and non-

forest).  

Figure 10. Spatial distribution of mean elevation per grid (in meters). 
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Figure 11. Spatial distribution of the mean slope per grid (in percentage).

4.2. Modelling techniques 

In this thesis a wide range of techniques were employed, ranging from those more related to the description 

and exploration of fire features, to the most advanced, such as trend detection, the classification of fire 

regimes and regression incorporating driving factors. Therefore, the methodological complexity of the 

thesis must be emphasized, with almost 20 different methods comprising the body of the research. 

4.2.1. Descriptive and explorative 

With the first objective of identifying the contribution of fire regime features from each region and season, 

a Principal Component Analysis (PCA) was carried out. PCA is a classic statistical technique that has been 

widely used in many research fields, and wildfire modeling is no exception. However, most of the examples 

of PCA applied to fire science are concerned with synthesizing or reducing the amount of information for 

regression purposes (Francos et al., 2016; Fréjaville and Curt, 2015; Marcoux et al., 2015; Xu et al., 2006). 

It is even less common to apply PCA to a fire regime features analysis, even though some examples can be 

found in Drobyshev, Niklasson, and Linderholm (2012) and Quazi and Ticktin (2016). A PCA estimates 

the common factors explaining the variance of the input parameters. Initially, variables must be 

standardized so that each one has mean zero and unit variance, regardless of its scale. This ensures that all 

variables have the same weight in the analysis (Mardia et al., 1979). 

More specifically, a multi-group PCA (MGPCA) procedure, evolved from the classic PCA (Krzanowski, 

1984), was implemented. MGPCA can be considered a development of a common principal components 

analysis (CPCA) of multi-group dataset components analysis proposed by Flury (1984). CPCA is defined 

as a generalization of PCA to a multi-group setting. This consists in examining the variance-covariance 

matrices linked to the groups and seeking common orthogonal vectors of loading associated with the 

components in the groups. However, determination of the common vectors of loadings, which is based on 

maximum likelihood estimation, leads to a complex algorithm which is time consuming and whose 
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convergence is not guaranteed. MGPCA is simpler and more straightforward than CPCA (Eslami et al., 

2013a). MGPCA can deal with the variance-covariance between different groups (in our case regions and 

seasons). Hence, it is more suitable for group comparison (Eslami et al. 2013a, 2013b) than ordinary PCA. 

MGPCA was applied by dividing fire data into 6 different groups, one per region (NW, HL and MED) and 

season (spring-summer and autumn-winter). 

The Kaiser Criterion (Kaiser, 1960) was applied to MGPCA outputs, thus retaining only those principal 

components (PCs) with eigenvalues greater than 1. Following this, a Varimax Rotation (VR) procedure was 

applied to determine the correlation between input variables (fire regime features) and PCs. VR consists of 

a PCA coordinates transformation which maximizes the sum of the variance to obtain higher or near-zero 

coefficients, thus with fewer intermediate values. Consequently, PCA results become easier to interpret 

(Horst, 1965; Kaiser, 1958). For each PC, the most representative fire regime features were selected, 

identified and as those with a coefficient furthest from 0. These features were the main contributors to the 

behavior of fire activity in time (season) and space (region) and thus were key parameters in the definition 

of fire regimes.  

On the other hand, for the first objective, a classic PCA was carried out on Sen’s slope values in order to 

synthetize the changes detected. Furthermore, the temporal behavior was retrieved from PCs on an 

additional map (see Figure 5, Chapter 5, page 67). Eigenvalues from PCs 1 and 2 were classified into four 

categories according to their sign (positive or negative trends) and significance level (above (significant) or 

below (non-significant)) a 90% confidence interval. PCs 3 and 4 were only shown when significant. In this 

way, homogenous areas according to the observed temporal evolution were outlined.  

Correlation 

Cross-correlation (CC) is a standard method that estimates the degree of similarity between two discrete 

time sequences (x and y) as a function of the displacement (lagged or the delay in synchrony of two temporal 

events) of one relative to the other (Venables and Ripley, 2002). The CC determined the extent to which 

weather controls the temporal evolution of the main fire regime features, more specifically, the intra-annual 

(seasonal) fluctuations of fire activity. To answer this question, CC was conducted at a regional level using 

the seasonal component from STL. The formula (4 and 5) followed for the definitions of the lags was 

established by Venables and Ripley (2002) who extended it to several time series observed over the same 

interval: 

𝑌ij (t) =  cov(Xi(t + T), Xj(T)) ( 2 )

Cij (t) =
1

n
∑ [Xi(s + 1) − Xi][(Xj(s) − Xj)

min (n−t,n)

s=max (1,−t)

( 3 )

where Xi and Xj are the two different time series, t is a particular observation, T is the whole time series, s 

is the scale estimator, c is the correlation or covariance of these observed pairs. In this case, autocorrelation 

is not symmetric in t for i ≠ j. 
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This seeks the association between time series of fire activity (y) in relation to past lags in each fire danger 

index (x). A set of 4 lags (0, 1, 2 and 3 months) was established as the maximum time window of weather 

influence. 

To identify spatial patterns in fire-weather associations, we applied a correlation analysis at 10x10 km pixel 

level by means of the Pearson’s R correlation coefficient (Best and Roberts, 1975; Hollander and Douglas, 

1973). Pearson’s R is a parametric statistical test that indicates the extent to which two variables are linearly 

related. The test requires at least one of the variables to be normally distributed and, in this case, the three 

fire danger indexes (FWI, BI and FFDI) fulfil this requirement. Pearson’s R ranges between +1 and -1, 

where +1 is perfect positive linear correlation, 0 is no linear correlation, and -1 is negative linear correlation. 

Pearson’s R was calculated and mapped at grid level for each fire-activity subset reporting the R correlation 

coefficient and its statistical significance (p < 0.05). This process was repeated using each weather index. 

Multidimensional scatterplots 

The visual examination of the relationships between climate/human variables and fire features was 

considered highly significant. Therefore, multi-dimensional scatterplots (MDS) were used. The construction 

process is as follows: (i) each grid cell in the study area was coded according to its respective combination 

of reclassified (from 1 to 10, see Table A1 in Appendix A) temperature and precipitation (henceforth 

referred to as climate code); (ii) cells were then grouped on the basis of their respective climate code; (iii) 

fire regime features and Human Pressure Index (HPI) were aggregated as the sum and average value 

respectively; (iv) multidimensional scatterplots were constructed. Two-dimensional climate space was 

created on the basis of climate codes for each region and season. On each plane, two additional variables 

were then plotted. Fire frequency is always represented by proportional circles. Next, another fire regime 

feature was plotted on the fire frequency circles using different color schemes. This led to multidimensional 

scatterplots, each one representing four variables (dimensions) in a single plot. Furthermore, in order to 

explore the relationship between the human pressure index, fire occurrence and climate, additional MDS 

were constructed representing HPI instead of fire features. HPI was, therefore, only compared to climate 

and fire frequency, as it mainly linked to fire occurrence.  

This kind of analysis proved its potential for identifying relations amongst vegetation, climate and fire in 

Whitman et al. (2015). However, in this case, a climate space was not included, but two climate gradients 

(temperature and precipitation) were used instead. The goal was to determine the extent to which fire 

regimes are controlled by either environmental, human or both factors. 

4.2.2. Time series analysis 

Change point detection 

Change detection or change point recognition aims to identify times when the probability distribution of a 

time series changes. In order to detect change points in fire features time series four different tests were 

applied. 

- The Pettitt test is a non-parametric method commonly applied to detect a single change-point in

hydrological or climate series with continuous data (Pettitt, 1979). It tests the H0 (no change) against the

alternative H1 (a change point exists). One of the advantages of this technique is its robustness to deal

with outliers. In the context of wildfire science, the Pettitt test has previously been applied to detect fire
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regime shifts as a consequence of policy and socioeconomic development in (Pezzatti et al., 2013) and 

(Moreno et al., 2014). 

The Pettitt test is calculated using the following equation: 

𝑈𝑡𝑇 =  ∑ ∑ sgn(𝑋𝑖 − 𝑋𝑗)
𝑇

𝑗=𝑡+1

𝑡

𝑖=1
 

( 4 )

where sgn(X) = 1 for X > 0, 0 for X = 0 and -1 for X < 0, and T is the length of the time series in years. 

The probability of a significant change existing is calculated as follows: 

𝑝 (𝑡) = 1 − exp (
−6 ∙ 𝑈𝑡∙𝑇

2

𝑇3 + 𝑇2
) 

( 5 )

where |Ut ,, T|reaches the maximum value where the most significant change point is found (Pettitt, 

1979). This methodology can identify the most probable change point for each fire feature by region 

and season, in the period examined. A specific function has been developed in R environment to 

calculate the change point using the Pettitt approach. 

As an alternative method to the Pettitt test, three additional algorithms were applied; more specifically, the 

cpt.meanvar function to identify changes in mean and variance, by calculating the optimal positioning of a 

change point for the input data (Chen and Gupta, 2000): 

- AMOC (at most one change) method is the simplest expression of the change detection algorithms

from the changepoint R package v2.2.2. It can detect a single change point (Hinkley, 1970), much the same

as the Pettitt test.

- PELT (pruned exact linear time) is one of the most widely used methods for change point detection. It

can detect multiple change points in large data sets (Killick et al., 2012), unlike the Pettitt test or AMOC.

It includes an enhanced optimal partitioning, leading to a substantially more accurate segmentation. This

ensures minimum change point detection in a time series, regardless of the applied penalty value. Thus,

PELT is known as a more precise algorithm, usually outperforming other methods such as binary

segmentation. The CROPS (change points for a range of penalties) penalizing type was selected. The

lower the pen.value is, the higher the numbers of change points detected. For this reason, we chose

many different minimum pen.values, in order to find at least one, or no more than two, break-points.

One of the advantages of this last option avoids continuous false change points commonly found at the

beginning/end of the time series (for example, many cases with the AMOC algorithm).

- BinSeg (binary segmentation) is an effective method for multiple change point detection (Scott and

Knott, 1974). It searches for the first significant change point in a sequence, then breaks the original

sequence into two sub-sequences: before and after the first significant change point. The procedure tests

the two sub-sequences separately for a change point, with the process repeated until no further sub-

sequences have change points (Chen and Wang, 2009). In this case, a possible change point limited in 1

(Q= 1) was previously defined to obtain only the most significant. To this end, the default penalty

parameter MBIC (modified Bayes information criterion penalty) was chosen, which has proved effective

in reducing overestimation in the number of change points and often detects the correct model (Bogdan
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et al., 2008). Therefore, there is no need to select a penalty value; hence in all the cases, this value is 

automatically established as 14.8. 

Mann-Kendall and Sen’s slope tests 

Once the change detection procedures were implemented to determine if and when a certain fire feature 

has undergone a significant change across the study period, new questions arose: does it imply an increase 

or decrease in the values of that feature? Moreover, how strong is that change? Is the change stationary or 

does it vary over space? To answer all these questions, a combination of Mann-Kendall (MK) and Sen’s 

Slope (SS) tests were used. 

MK is a non-parametric statistical test appropriate for identifying trends in time series of data (Kendall, 

1975; Mann, 1945). It is suitable for detecting linear or non-linear trends (Hisdal et al., 2001; Wu et al., 

2008). In this test, the null (H0) and alternative hypotheses (H1) are equal to the non-existence and existence 

of a trend in the time series of the observational data, respectively. Previous studies by San-Miguel-Ayanz 

et al. (2012) and Rodrigues et al. (2013) support the use of MK in the context of wildfire science. MK main 

outputs are the τ value and its associated significance level (p value). τ can be used to determine the sign of 

the trend, i.e. upward (τ > 0) or downward (τ < 0). Trends are considered significant when p-value < 0.05. 

To facilitate the interpretation of MK outcomes, an aggregated parameter was calculated combining the τ 

and p value, the so-called “signed p-value”. It combines information on both sign and significance, 

calculated as the multiplication of the significance level either by 1 when τ > 0 or by −1 when τ < 0.  

The magnitude of the change was subsequently assessed by means of the SS (Sen, 1968), a non-parametric 

alternative for estimating the median slope joining all possible pairs of observations, which enables a 

comparison of the magnitude of the detected trends. Both MK and SS were calculated for all fire features 

by region and NUTS3 level and for both seasons. 

Seasonal-Trend Decomposition  

In order to address the relationship between time series of fire activity (overall fire frequency and burned 

area) and weather, indices were decomposed using Seasonal-Trend Decomposition (STL; Cleveland et al., 

1990). STL is a very versatile and robust method to divide time series by detecting both gradual changes 

(trend) and cycles (season). More important, decomposing enables further analysis such as cross-correlation 

(CC) whose performance is affected by underlying temporal structures; hence it is strongly recommended

that time series are de-trended beforehand.

STL consists in a sequence of Locally Weighted Regression Smoother (LOESS) procedures that split a time 

series into three components: trend, season and remainder (see Figure 12). For a detailed description of the 

algorithm see Cleveland et al. (1990). To facilitate understanding, season, trend and remainder will mean 

the following: 

 Season: the component obtained that exclusively represents the positive and negative peaks of the

detected seasonal cycles within the year.

 Trend: the component extracted from the time period that only takes into account the inter-annual

evolution throughout the same, disregarding seasonal cycles.
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 Remainder: the component that is left over from the two previous ones, and which therefore can

be understood as anomalies or extreme events (both exceptionally high and low values) that are

outside the average values of the trend and seasonal time series.

Figure 12.  Example of fire frequency time series decomposition in the Mediterranean region of mainland Spain. 

Autocorrelation Function (ACF) 

This is one of the simplest methods to check that a time series fulfills the characteristic of being stationary. 

Specifically, the idea is to observe whether every signal differs by a high degree of 0 for each time lag. With 

this purpose in mind, the ACF signal graph is visualized. In particular, a stationary signal produces few 

significant delays exceeding the ACF confidence interval. In comparison, another time series with a trend 

would show that, in most of its time lags, the confidence interval of the ACF is exceeded. 

Autoregressive Integrated and Moving Average (ARIMA) 

To forecast the evolution of fire features, a set of auto-regressive, integrated and moving average (ARIMA) 

models were employed. They can be viewed as a “filter” that tries to separate the signal from the noise, and 

the signal is then extrapolated into the future to obtain forecasts. Their main advantage is that they adjust 

exclusively to the historical series of the input variable, which greatly reduces the complexity of the analysis, 

since it is not necessary to incorporate other explanatory variables. However, the main condition of ARIMA 

models is that time series are stationary, i.e. constant in mean and variance. As this condition is very difficult 

to find, all fire feature time series were previously transformed through the square root and then a de-

transformation was applied to return to their original units. The future target period was set at 2016-2036, 

so that it would be the same length as the rest of periods. This exploration presupposed a continuous 

scenario in which it is assumed that the evolution of the factors associated with fire activity develop as 

observed in the whole historic period (1974-2015). 

Monthly time series of fire features for the current period (1995-2015) were entered into the ARIMA. The 

reason was to include the seasonal component (intra-annual peaks and drops) because they would offer 

more information to the model so that the future projection would be as consistent and realistic as possible. 
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ARIMA offers several output data, the most important of which was the mean of the forecast, as well as 

the upper and lower limits of two confidence intervals (80% and 95%). 

An automatic ARIMA was applied to obtain future fire regime features, returning the best model according 

to the minimum Akaike information criterion (AIC) value, so its algorithm automatically calculates the p, i 

and q parameters. As reported by Hyndman and Khandakar (2008), the seasonal ARIMA formula is 

established as follows: 

Φ(𝐵𝑚)∅(𝐵)(1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + Θ(𝐵𝑚)𝜃(𝐵)𝜀𝑡 ( 6 ) 

where Φ(z) and Θ(z) are polynomials of orders P and Q respectively, each containing no roots inside the 

unit circle. If c≠0, there is an implied polynomial of order d + D in the forecast function. The main task in 

automatic ARIMA forecasting is selecting an appropriate model order, that is the values p, q, P, Q, D, d. 

When d and D are known, the rest of orders are chosen following an information criterion such as the AIC: 

AIC =  −2 log(𝐿) + 2(𝑝 + 𝑞 + 𝑃 + 𝑄 + 𝑘) 
( 7 ) 

where k=1 if 𝑐 ≠ 0 and 0 otherwise, and L is the maximized likelihood of the model fitted to the 

differenced data (1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑𝑦𝑡. The likelihood of the full model for 𝑦𝑡 is not actually defined

and so the value of the AIC for different levels of differencing are not comparable. In order to overcome 

this difficulty, for our case of seasonal data, we selected the seasonally differenced data D =1. 

4.2.3. Classification and regression 

Clustering 

The fire regime delimitation was done by Ward’s clustering method from the NbClust R package. This 

package provides a total of 30 indices for choosing the most adequate number of clusters and proposing 

the best clustering scheme from the different results obtained by varying all combinations of clusters 

(minimum and maximum desired), distance measurements and clustering methods. After several trial-and-

error changing function parameters and according to the results obtained, the minimum and maximum 

number of clusters was established at 5 and 7, respectively. The distance selected was Canberra (Cd), and 

the method for the clustering outlined was Ward.D2. Cd was proposed by Lance and Williams (1967) and 

examines the sum of series of a fraction of differences between the coordinates of a pair of observations 

(Teknomo, 2015). In general, the Cd terms with zero numerator and denominator are omitted from the 

sum and treated as if the values were missing (Charrad et al., 2014). The formula of Cd is as follows: 

𝐶𝑑 (𝑥, 𝑦) = ∑
|𝑥𝑗 − 𝑦𝑗|

|𝑥𝑗| + |𝑦𝑗|

𝑑

𝑗=1
( 8 ) 

where xj is the first observation with coordinates of the features and yj is the second observation with its 

corresponding coordinates of the same features. Each term of fraction difference has value between 0 and 

1, although in itself it is not really between zero and one. If one of coordinates is zero, the term becomes 1 
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regardless of the other value, thus the distance will not be affected. Consequently, Cd is very sensitive to a 

small change when both coordinates area near to zero. Therefore, Cd has the advantage of not being 

affected by the presence of zeros, which are abundant in some cells of the study area, more especially in 

fire features such as natural burned area and large burned area (above 100 has).   

At each step the pair of clusters is chosen which leads to a minimum increase in the total within-cluster 

variance after merging. The Ward.D2 option implements Ward’s clustering criterion in which the 

dissimilarities are squared before clustering updating. 

K-Nearest Neighbor 

In order to transfer current fire regime clusters for the remaining time periods (past and future), a KNN 

classification was performed. KNN is a nonparametric technique used in statistical estimation and pattern 

recognition (Ripley, 1996) widely used since the 1970’s. The current period was taken as a benchmark, 

because it has more robust and reliable data. KNN trains for each grid in the test dataset (past and future 

fire features), finds the nearest K by a distance measure (Canberra distance), and the cluster class is decided 

by a majority vote of its neighbors. The K parameter means the maximum number of nearest neighbors 

considered in the algorithm (Venables and Ripley, 2002), being set in 5. 

Generalized Additive Models (GAM) 

In order to fulfil the first research objective for unravelling potential cause-and-effect relationships between 

fire features and climatic/human variables, several GAM regressions were calibrated for each 

Multidimensional Scatterplot (MDS) subset. Generalized Additive Models (GAM) are Generalized Linear 

Models (GLM) in which the usual linear relationships between the response and predictor variables are 

replaced by non-linear ‘smooths’ (Hastie and Tibshirani, 1986; Jones and Almond, 1992). The same as 

GLM, GAM can use probability distributions other than Gaussian, so we applied Negative Binomial to 

model the number of fires (N) and log linear distribution in burned area variables (B500, BL). NB is 

particularly suitable to deal with zero-inflated response variables, as is the case of N (Boadi et al., 2015). On 

the other hand, we applied a log linear family in burned area fire features (Hernandez et al., 2015). Model 

selection, is based on the reduction of Generalized cross validation (GCV, Craven and Wahba, 1978; Golub 

et al., 1979). GVC determines the optimal amount of smoothing and estimates the mean squared prediction 

error over all datasets where a single observation is omitted from the model fitting, and then predicted 

Deviance is explained (analogous to variance in a linear regression) and partial effects in the predictors were 

also calculated. All analyses for GAM modeling were conducted using the R package mgcv, version 1.8–9. 

Random Forest 

In order to assess the role of the drivers in fire regime change, we selected Random Forest (RF; Breiman, 

2001) as the modeling algorithm, given its proven predictive accuracy (Bar Massada et al., 2011; Leuenberger 

et al., 2018a; Rodrigues and de la Riva, 2014a). RF is a tree-based ensemble algorithm that trains multiple 

decision trees by randomly bootstrapping the training sample, keeping 67% of the observations to train the 

decision tree and the remaining 33% (Out-of-bag, OOB) to evaluate the relative influence of the predictors 

and the model itself. The final stage assembles all trees into a final prediction as the average of all individual 

tree predictions (Bagging; Breiman, 2001). 
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For each fire regime transition type, we trained and validated 100 RF models, using a random sample of 

70% for training and the remaining 30% for testing the performance of the model. At the training stage, 

we conducted a 10-fold calibration procedure to identify the optimal parameters (mtry and ntrees) of the 

model. At the same time, we also evaluated the influence of each driver by calculating the percentage 

increase in the Mean Square Error (normalized between 1 and 0), and its explanatory sense by means of 

partial dependence plots (J.H. Friedman, 2001). To estimate the predictive performance of each model 

carried out, we calculated the Area Under the Receiver Operating Characteristic Curve (AUC; Bradley, 

1997). Additionally, the explanatory sense of the covariates (either positively or negatively related) was 

explored by visual inspection of partial dependence plots. 

Geographically Weighted Regression Models (GWLR) 

GWR is a statistical technique for exploratory spatial data analysis developed within the framework of Local 

Spatial Models or Statistics. Local models could be described as the spatial disaggregation of global statistics 

whose main characteristic is that it is calibrated from a set of spatially limited samples and, hence, yielding 

local regression parameter estimates (Fotheringham et al., 2002). Therefore, GWR techniques extend the 

traditional use of global regression models, enabling local regression parameters to be calculated. 

Mathematically, a conventional GWR is described by the following equation: 

𝑦𝑖 =  ∑ 𝛽𝑘 (𝑢𝑖 ,𝑣𝑖) 𝑋𝑘,𝑖 
𝑘

+ 𝜀𝑖
( 9 ) 

where yi, xk,i, and 𝜀i are dependent variables, kth is the independent variable, and the Gaussian error at 

location i;(ui, vi) is the x–y coordinate of the ith location; and coefficients 𝛽 (ui, vi) are varying conditionals on 

the location.  

Such modeling is likely to attain higher performance than traditional regression models, and reading the 

coefficients can lead to a new interpretation of the phenomena under study. However, GWR models are 

not just a simple local regression model like, i.e., moving window regressions. In a moving window example, 

a region is drawn around a regression point and all the data points within this region (neighborhood) or 

window are then used to calibrate a model. This process is repeated over all the regression points, resulting 

in a set of local regression statistics. However, in this example, each point within the neighborhood is treated 

equally for regression purposes, no matter its distance to the target regression point. GWR overcomes this 

limitation by applying a distance weight pattern; hence, data points closer to the regression point are 

weighted more heavily in the local regression than data points farther away. In addition to the regression 

coefficients, a GWR model calculates several useful statistical parameters to analyze the spatial behavior of 

each explanatory variable, such as the value of the Student’s t test, which is used to determine the level of 

significance. On the other hand, GLM approaches such as Geographically Weighted Logistic Regression 

(GWLR) and Geographically Weighted Poisson Regression (GWPR) have been incorporated to GWR to 

extend its functionality (Fotheringham et al., 2002; Nakaya and Fotheringham, 2009). The GWR approach 

has been already been explored in several papers such as Koutsias, Martínez-Fernández, & Allgöwer (2010), 

Martínez-Fernández et al. (2013) and Rodrigues et al. (2014). These two methodologies—GWLR and 

GWPR—are used in this study to complement the results from GLM. Several parameters have been 

included when calibrating GWR models. Kernel shape and type, bandwidth selection and optimization 

parameters, or the local or global nature of the predictors (see Nakaya and Fotheringham, (2009) for further 

details of both method and software). In this project, GWR model fitting was carried out using Fixed 
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Gaussian Kernel bandwidth, optimized according to the value of AICc, considering all the predictors as 

local covariates. 



5 
CHAPTER 5: SPATIAL-
TEMPORAL DISTRIBUTION OF 
FIRE REGIME FEATURES 

This chapter describes the results, discussion and main 
conclusions obtained from the analyses related to the 
identification of the major fire regime features and their temporal 
dynamics. We evaluate the relationships of fire features with 
climate gradients and human pressure, as well as the assessment 
of the contribution of small fires into the fire regime 
characterization. Multi-Group Principal Component analysis, 
GAM models, change point detection methods, Mann-Kendall 
and Sen’ slope have been applied to fire features at regional and 
provincial level. The main goals are: describe and characterize 
the fire regime, identify its shifts and trends, determinate the 
extent to which fire regime is linked to climate-human factors 
and discover potential relations in the evolutions of fire features. 
Therefore, we seek to improve the understanding of the spatial-
seasonal patterns of the key fire regime features. 
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6
CHAPTER 6: THE INFLUENCE 
OF FIRE-WEATHER ON THE 
EVOLUTION OF FIRE ACTIVITY

This chapter describes the results, discussion and main 
conclusions obtained from the analysis of spatial and temporal 
associations between monthly time series of fire weather danger 
indices (Fire Weather Index, Burning Index and Forest Fires 
Danger Index) at regional and local level. Decomposition of time 
series was the first step, then apply cross-correlation to explore 
seasonal associations at regional scale, as well as, a Pearson’s 
correlation was calculated between each index and 18 fire-activity 
subsets by fire size and cause at local scale. 
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7 CHAPTER 7: CHANGE IN 
ANTHROPOGENIC DRIVERS 

This chapter describes the results, discussion and main 
conclusions obtained from the analyses of spatial and temporal 
evolution of human drivers factors into the fire regime features. 
We employed various regression models (Logit and Poisson 
Generalized Linear Models), as well as, trend analysis by means 
of Mann-Kendall. In addition, Geographically Weighted 
Regression Models are applied to assess spatial-temporal 
patterns. 





Chapter 7: Change in anthropogenic drivers 

89 



Chapter 7: Change in anthropogenic drivers 

90  



Chapter 7: Change in anthropogenic drivers 

91 



Chapter 7: Change in anthropogenic drivers 

92  



Chapter 7: Change in anthropogenic drivers 

93 



Chapter 7: Change in anthropogenic drivers 

94  



Chapter 7: Change in anthropogenic drivers 

95 



Chapter 7: Change in anthropogenic drivers 

96  



Chapter 7: Change in anthropogenic drivers 
 

97   



Chapter 7: Change in anthropogenic drivers 

98  



Chapter 7: Change in anthropogenic drivers 
 

99   



Chapter 7: Change in anthropogenic drivers 

100  



Chapter 7: Change in anthropogenic drivers 
 

101   



Chapter 7: Change in anthropogenic drivers 

102  



Chapter 7: Change in anthropogenic drivers 

103 



Chapter 7: Change in anthropogenic drivers 
 

104   



Chapter 7: Change in anthropogenic drivers 

105 



Chapter 7: Change in anthropogenic drivers 

106  



Chapter 7: Change in anthropogenic drivers 

107 



Chapter 7: Change in anthropogenic drivers 

108  



Chapter 7: Change in anthropogenic drivers 

109 



Chapter 7: Change in anthropogenic drivers 

110  



Chapter 7: Change in anthropogenic drivers 

111 



Chapter 7: Change in anthropogenic drivers 

112  



Chapter 7: Change in anthropogenic drivers 

113 



Chapter 7: Change in anthropogenic drivers 

114  



Chapter 7: Change in anthropogenic drivers 
 

115   



Chapter 7: Change in anthropogenic drivers 

116  



Chapter 7: Change in anthropogenic drivers 

117 



Chapter 7: Change in anthropogenic drivers 
 

118   



Chapter 7: Change in anthropogenic drivers 

119 



Chapter 7: Change in anthropogenic drivers 

120  



Chapter 7: Change in anthropogenic drivers 

121 



Chapter 7: Change in anthropogenic drivers 

122  



Chapter 7: Change in anthropogenic drivers 

123 



Chapter 7: Change in anthropogenic drivers 

124  



Chapter 7: Change in anthropogenic drivers 

125 



Chapter 7: Change in anthropogenic drivers 

126 



8
CHAPTER 8: EVOLUTION AND 
CAUSES OF FIRE REGIME 
CHANGE

This chapter describes the main results, discussion and 
conclusions of the outlining of fire regime zones, their temporal 
evolution towards the near future and the analysis of the 
influence of drivers of fire activity in the observed fire regime 
trajectories. Random Forest is employed to evaluate the 
individual contribution of each fire driver, as well as, ARIMA 
models are used to forecast the immediate future trend of the 
main fire regime features. 
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Abstract 

Fire regimes are evolving worldwide driven by socioeconomic and environmental changes. Understanding 

the forces behind fire regime dynamics is essential to achieve effective wildfire management and 

policymaking. The current research belongs to a series of two manuscripts aimed at describing spatial-

temporal dynamics of fire regime and its drivers in mainland Spain. In this work, we identified the main 

transitional pathways of fire regime zones between past (1974-1994) and current (1995-2015) conditions to 

identify the influence of the main wildfire drivers (demographic potential, climate trends, forest interfaces 

and topography). Our methodology combined Principal Component Analysis and Ward’s hierarchical 

clustering to identify and spatialize homogenous regions of fire regime on the basis of the main fire regime 

features: number of fires, burned area, burnt area from lightning-caused fires, area affected by large fires 

(>100 ha) and seasonality. This procedure was replicated in current and past conditions to extract the most 

frequent combinations of fire regime typologies, eventually leading to a set of binary response variables 

(change versus persistence of fire regime). Finally, Random Forest regression was applied to estimate the 

explanatory performance of fire regime drivers for each transition path.   

Our results point to an overall decline in fire activity over most of the Spanish territory. The hinterlands 

and Mediterranean coast experienced the greatest decrease in fire activity. In contrast, winter activity has 

progressed in the North-western region. According to Random Forest outputs, demographic potential 

highlights as the main driver of fire regime change (both regressive and progressive), followed by climate 

dynamics (temperature and rainfall trends) and topographic features. In turn, Wildland-Agricultural 

Interface (WAI) and Wildland-Urban Interface (WUI) were also behind several noticeable trajectories as is 

the case of winter fire progression (WAI) or moderate increase in fire incidence linked to human-caused 

fires (WUI). 

Keywords: Forest fires, fire regime, fire features, wildfire drivers, Random Forest, suppression policy 

1. INTRODUCTION

Fire regime is usually defined as the average conditions of wildfire that are persistent and consistent within 

a particular region and over a given period (Krebs et al., 2010). Its inception depends on the confluence of 

various factors, i.e., climate, humans, fuel and ignition cause (Curt and Frejaville, 2018). Human beings have 

mailto:rmarcos@eagrof.udl.cat
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coexisted with fire during millennia, leveraging it as a tool to modify the landscape to their own needs (Pyne, 

2009; Wagtendonk, 2009). In human-dominated landscapes, the extensive use of fire has altered the once 

natural fire regime transforming it into an anthropogenic one. During the second half of the 20th century, 

the confluence of cropland abandonment in remote areas (promoting fuel accumulation) with the increased 

presence of human activities in the wildlands led to a sudden increase in fire activity in some Mediterranean 

countries such as Portugal or Spain (MAPAMA, 2017) and, thus, a growing interest in forest fire research 

(Leone et al., 2003a; J G Pausas and Vallejo, 1999; Piñol et al., 1998). However, ever since the extraordinary 

fire waves during the mid-90s a total fire exclusion policy was implemented (Moreno et al., 2014), leading 

to the progressive decline in fire activity (Jiménez-Ruano et al., 2017; Silva et al., 2019) and altering the 

contribution of human factors (Leone et al., 2003a; Vittorio Leone et al., 2009). For instance, in Spain 

agricultural activities seem to be losing significance in explaining fire occurrence over time whereas weather 

is growing in importance (Rodrigues et al., 2016). Furthermore, fire prevention and suppression have been 

increasingly funded, reaching a top investment of 78 million € in 2015.  

Despite the decreasing fire trends, fire-weather scenarios predict more hazardous conditions, threatening 

both ecosystems and society (Alcasena et al., 2019; Badia et al., 2011). In this sense, the so-called ‘fire 

paradox’ foresees larger fires as a consequence of sustained full fire suppression coupled with fire-prone 

climate conditions. Humans play a crucial role in shaping the incidence of wildfires acting either as initiators 

or suppressors, resulting in the alteration of the natural fire regime (Alcasena et al., 2019). The relationship 

between fire regime and socioeconomic and environmental factors has been addressed in the literature. 

Pechony and Shindell, (2010) suggested that climate will drive global fire trends to the point of overcoming 

human influence, and there is already evidence of how climate-driven vegetation change can affect regional-

scale fire regimes in Mediterranean type ecosystems (Liu and Wimberly, 2016). Nonetheless, under the 

current circumstances, housing density and proximity to roads promote human-related ignitions (Clarke et 

al., 2019; Martín et al., 2019; Rodrigues et al., 2019a) whereas lightning ignitions relate to intra-annual 

patterns of rainfall (Dickson et al., 2006; Pineda and Rigo, 2017; Wang and Anderson, 2010). In the 

European-Mediterranean region the main forces behind wildfire incidence relate to the proximity to roads 

and settlements or the recreational use of forest lands (Ganteaume et al., 2013). Likewise, agricultural 

activities explain a large fraction of arson and accidental fires (Camia et al., 2013; Rodrigues et al., 2018). 

Generally,  the combination of climate variations, fuels, and human activities what explains the geographical 

gradients for both human and natural-caused fires (Ganteaume et al., 2013). In this sense, the aggressive 

fire suppression strategy seems to counterbalance the effects of climate change and human activities (Curt 

and Frejaville, 2018) to the point of overriding the influence of weather-drought in some relatively humid 

regions of Portugal (Fernandes et al., 2014). Understanding the spatial and temporal extent of fire regime 

and the potential drivers fostering their change is essential to identify (and rectify) the ongoing trajectories 

in fire activity. To date, regional schemes for fire regime zoning in Spain are scarce and few of them deal 

with the underlying drivers of fire activity. The ‘official’ fire regime division in Spain was based on gross 

fire statistics, distinguishing between the Mediterranean coast, the northern Atlantic coast and a wide 

hinterland region between them (A Cardil and Molina, 2013). However, approaches that are more 

sophisticated have been developed recently. Some of them leverage the historical fire records alone 

(Jiménez-Ruano and et. al., 2018; Moreno and Chuvieco, 2013), while others rely on the role of fire drivers 

(Montiel Molina and Galiana-Martín, 2016; Rodrigues et al., 2019b). However, these studies provide a 

‘static’ picture of fire regimes without taking into account their temporal evolution.  

In this work, we developed a workflow to identify and outline the spatial-temporal evolution of fire regimes 

and investigate the drivers of change. We explored past (1974-1994) and current (1995-2015) fire features 
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using historical fire records from the Spanish fire database (EGIF, Estadística General de Incendios 

Forestales; MAPAMA, 2015). We combined cluster analysis and random forest regression to a) outline past 

and current fire regime zones, b) identify and characterize the most frequent transitions and, c) assess the 

role of drivers in observed trajectories. 

2. DATA AND METHODS

The proposed methodology was developed in three stages (see Fig. 1). First, we retrieved historical fire 

records from the EGIF database and organized them into two separate datasets, one depicting past 

conditions (1974-1994) and another covering the most recent period (1995-2015. According to Jiménez-

Ruano et al. (2017a) and Curt and Frejaville (2017), a major breakpoint in the temporal evolution of fire 

activity can be found in the mid-90s. Likewise, fire statistics pointed to the year 1994 as one of the worst in 

terms of fire incidence, especially in terms of large fires (MAPAMA, 2017). Then, we identified fire regime 

typologies in the current period by means of cluster analysis and projected them into the past using K-

Nearest Neighbor (KNN) classification to determine the main fire regime transitions. Finally, we fitted 

several Random Forest models with the most frequent fire regime transitions (change/no change) against 

the main fire drivers. All statistical procedures, maps and plots were developed using the R statistical 

programming language (R Core Team and R Development Team Core, 2017), stats package was used for 

PCA, NbClust for cluster analysis, knnGarden for past cluster assignation, splitstackshape for KNN 

validation. Random Forest models were trained and tested using caret (Kuhn, 2008) and pdp packages 

(Greenwell, 2017). 

Fig. 1. General workflow of the methodology including input data split, clustering, KNN classification-validation 

and Random Forest fitting recent cluster transitions and fire drivers.  

2.1. Study area 

The study area was mainland Spain, a region covering about 498,000 km2. The region is dominated by a 

Mediterranean climate extending from the eastern coast to the hinterlands, with Oceanic conditions along 

the northern coast. The Mediterranean climate characterized by high annual thermal amplitude with hot 
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summers in the inner region and milder conditions along the coast. Precipitation is distributed irregularly 

over the year, peaking in autumn and spring, with a clear minimum during summer. The driest areas extend 

across the southeastern region and the Ebro Valley. The Oceanic climate displays milder temperatures 

thorough the year and high precipitation distributed regularly throughout the year (average values over 

1,000 mm). The broad spectrum of vegetation (Fig. 2) within this region ranges from deciduous oak to 

evergreen oak woodlands (Quercus robur L., Fraximus excelsior L. or Fagus sylvatica L.) although this region is 

also heavily dominated by forest plantations such as Pinus radiate D.Don and Eucalyptus globulus Labill. The 

vegetation in the Mediterranean is characterized by complex mosaics of agricultural systems and plant 

communities such as sclerophyllous and evergreen vegetation, mainly pine species (Pinus halepensis Mill., 

Pinus sylvestris L., Pinus nigra J.F.Arnold, Pinus pinea L. or pinaster Ait.) and oak (Quercus ilex L. and Quercus suber 

L.) forest. In addition, altitudinal belts do exist along the highest mountain ranges such as the Pyrenees 

along the French border or Sierra Nevada on the southern Mediterranean coast. These sub-regions host a 

large variety of tree species that are common in central Europe.  

Fig. 2. Elevation map in meters above sea level (top-left), spatial distribution of main forest formations derived 

from the Spanish Forest Map –MAPA, 2013 (top-right), average annual temperature (bottom-left), and average 

annual precipitation (bottom-right).   
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Fires in Spain are mostly related to human activities, with 95% of fire occurrence linked to anthropogenic 

activities. In turn, natural fires are usually scarce, except for some enclaves around the inner mountain 

ranges along the Mediterranean coast. Agricultural activities controls fire incidence in the Northwest region, 

with a traditional use of fire in pasture clearing and stubble burning (Moreno et al., 2014). On the other 

hand, the Wildland Urban Interface promote fire ignitions in the peri-urban large metropolitan areas.   

2.2. Fire data 

We computed 5 fire features by grid level (Fig. 3), selected according to existing studies (Jiménez-Ruano et 

al., 2017b; Moreno and Chuvieco, 2013; Silva et al., 2019): 

 Fire frequency (F): total number of wildfires per grid and period.

 Winter frequency (FW): number of wildfires occurred during autumn-winter (from October to

March) by grid and period.

 Burned area (BA): total surface burned in hectares of the grid and period.

 Burned area by large fires (BA100): burned area by fires greater than 100 hectares by grid and

period.

 Burned area by nature cause (BAL): surface burned by lightning in the grid and period.

Fire data were acquired from the Spanish fire database (EGIF, Estadística General de Incendios Forestales; 

MAPAMA, 2015). The EGIF database compiles fire records since 1968, gathering information about the 

ignition date, fire size, cause and the approximate location of the starting point, among others. We retrieved 

fire records at 10x10 km grid level in the period 1974-2015, the longer available at the time this work was 

conducted. Fire events were organized in two separate datasets depicting periods of stable conditions in 

terms of fire regime features The selected periods were 1974-1994 and 1995-2015 (past and current 

henceforth). Small fires (less than 1 ha) were disregarded to ensure the temporal consistency of the analyses, 

since these were only compiled systematically after 1988 (Jiménez-Ruano et al., 2017b).  

2.3. Identifying fire regime typologies by means of cluster analysis 

2.3.1. Training clusters 

 The cornerstone of the analyses lies in the identification of homogenous groups of fire activity in the two 

analyzed periods. We applied cluster analysis, training clusters in the current period to later project them 

into the past. The rationale behind was to characterize current fire regimes and assess their evolution from 

the past as a necessary step to model the future distribution in the Jiménez-Ruano et al. (“Unpublished 

results”). Fire features were first submitted to Principal Component Analysis where components that met 

the Kaiser Criterion (Kaiser, 1960) were retained. Then optimized hierarchical clustering was applied to the 

selected principal components. The clustering strategy consisted of Canberra distance (Cd) and ward.D2 

agglomeration criteria (Sørensen, 1948). The optimal number of clusters was determined using the nbClust 

R package using to the highest ranked number of clusters out of the 30 indices available in the package 

(Charrad et al., 2014). The resulting clusters were considered representative fire regime typologies. 
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2.3.2. Projecting clusters into the past 

 The set of clusters obtained in the current period was ”projected into the past” using k-nearest neighbor 

(KNN; Ripley, 1996) classification. KNN is a nonparametric classifier that finds the closest K neighbors 

(K=5) according to their similarity/dissimilarity measured as the distance in an N-dimensional space (where 

N equals the number of features characterizing each observation, i.e., N=5 fire features). The assigned class 

in KNN is the most frequently observed among the K neighbors. The regular version of KNN determines 

the distance between neighbors calculating the Euclidean distance. To be consistent with the clustering 

strategy, we used the knnVCN algorithm (Venables and Ripley, 2002), an alternative implementation of 

KNN able to measure dissimilarity using the Cd. Cd measures distance as the sum of the fraction of 

differences between the coordinates of a pair of observations (Teknomo, 2015). Terms with zero numerator 

and denominator are omitted from the sum and treated as missing values (Charrad et al., 2014). The 

equation of the Cd is as follows: 

𝐶𝑑 (𝑥, 𝑦) = ∑
|𝑥𝑗 − 𝑦𝑗|

|𝑥𝑗| + |𝑦𝑗|

𝑑

𝑗=1

where xj is the first observation with coordinates of the features and yj is the second observation with its 

corresponding coordinates of the same features. Each term of fraction difference ranges from between 0 

to1.  

We used the current distribution of clusters and its corresponding values of fire features to reproduce their 

spatial distribution under past conditions, i.e. assign the most similar cluster to each grid cell in the past 

period. Given the critical importance of the proper identification of clusters, we evaluated the predictive 

performance of the KnnVCN approach, i.e., the capability of the method to transfer clusters according to 

the observed fire features. To that end, we randomly split the current set of clusters using a 70% of the grid 

cells for prediction and the remaining 30% to estimate the agreement in the classification calculating the 

Kappa Cohen’s index (Cohen, 1960). In this process, we train clusters using 70% of the data and then, 

using the remaining 30%, we compare the ‘observed’ cluster assign from the initial classification, with the 

cluster ‘predicted’ applying KnnVCN. This provides a measure of the reliability of the transposing 

procedure. The process was repeated resampling the data pool 100 times to ensure the consistency of 

agreement measurements. 

2.4. Modeling fire regime change 

The main goal of this work was to identify the drivers of fire regime dynamics and its marginal influence in 

the evolution of fire activity. To this end, we trained random forest models relating the observed trajectories 

of fire regime change and drivers of wildfires. 

2.4.1. Dependent variable 

The dependent variable, change versus no change in fire regime (cluster type), was constructed from the 

combination of current and past cluster typologies at grid level. To do so, we constructed the transition 

matrix of cluster typologies between the past and current periods. It must be noted that not all combinations 

of change were assessed but only those more frequently observed. Thus, according to the transition matrix, 
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we selected those combinations with at least 100 cells for each transition. Then, for each combination 

(further referred to as transition type), we built a separate response variable, classifying those cells where a 

change of fire regime was observed as 1 and those not changing as 0. For example, those grids where fire 

regime 1 was observed both in the past and current times are considered as ‘0’ or no change whereas those 

that changed from fire regime 1 to 2 would be labelled as ‘1’ or change.  

2.4.2. Explanatory factors 

Variables related to wildfire incidence and its temporal evolution were selected based on drivers commonly 

reported in the literature (Costafreda-Aumedes et al., 2017; Leone et al., 2003), granting special 

consideration to those already explored in Spain (Jiménez-Ruano et al., 2017b; Rodrigues et al., 2018, 2016). 

Variables related to human pressure on wildlands (WUI; or the demographic potential) and the presence 

of agricultural activities or machinery close to forested areas (WAI), were expected to increase wildfires. 

However, those locations close to populated places may also be subject to increased suppression capability, 

and thus, smaller fires. In some cases, the presence of agricultural activities alters the duration and timing 

of the fire season with increased fires during late winter or early spring. In addition, climate-related variables 

(temperature and precipitation) mainly influence the fuel load and moisture content. Consequently, under 

hazardous conditions they hinder suppression, leading to potentially larger fires. Finally, we selected 

elevation and slope as indicators of the complexity of the terrain. The first also connects with fuel 

distribution (altitudinal belts), whereas slope affects both accessibility and fire spread potential. Steeper 

slopes impede the movement of ground fire-suppression squads and boosts propagation, thereby fostering 

larger fires. 

Since we were dealing with a dynamic process (i.e., change in fire regime) we tried to integrate the temporal 

behavior of explanatory factors when suitable. In this sense, we built non-stationary indicators of 

demographic potential and climate factors. The remaining factors were considered static provided that (i) 

they did not change during the study period, as is the case of topographical variables or (ii) the performance 

of the model was higher when they were considered stationary, as happens with WUI and WAI. All variables 

were spatialized using the baseline geometry of the 10x10 km grid (Fig. A1 and Fig. A2, Appendix C). The 

following list presents the select drivers of fire regime change: 

 Wildland-Agricultural Interface - WAI (m): length of the boundary line between agricultural
lands (CLC code 2) and forest areas (codes 3.1 and 3.2). Land use data were retrieved from Corine
Land Cover 1990, thematic level 3.

 Wildland-Urban Interface - WUI (m): length of the boundary line between urban settlements

(CLC code 1.1) and forest areas (codes 3.1 and 3.2). Land use data were retrieved from Corine Land

Cover 1990, thematic level 3

 Demographic potential - DP (dimensionless): The demographic potential is an index reflecting

the “demographic power” as well as the ability to provide population growth in the near future in

terms of accessibility (Calvo and Pueyo, 2008). The calculation of DP is as follows:

𝐷𝑃𝑖 = ∑ (
𝑃𝑗

𝑑𝑟𝑖𝑗
2) + 𝑃𝑖

𝑛

𝑗=1
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where Pj is the population P at location j; Pi is the population P at location i; and drij is the distance 

by road between locations i and j. It was originally calculated at 5x5 km resolution and resampled 

to 10x10 km according to the average value. The demographic potential was expressed as the rate 

of change between 1991 and 2001, calculated as: 

∆𝐷𝑃 =
𝐷𝑃2001 −  𝐷𝑃1991

𝐷𝑃1991

 Temperature – T (Cº): average monthly temperature was retrieved from the MOTEDAS database

(González-Hidalgo et al., 2015). MOTEDAS data were distributed in a 10x10 km grid; values were

resampled according to the nearest neighbor cells. Temperature data were also converted into a

dynamic trend indicator. We calculated the Sen’s slope (Sen, 1968) of the maximum (daytime)

temperature for the period 1974-2010 as indicator of trend magnitude.

 Precipitation – P (mm): average monthly precipitation was retrieved from the MOPREDAS

database (González-Hidalgo et al., 2011). As for MOTEDAS, MOPREDAS data were distributed

in a 10x10 km grid, resampled to our grid according to the nearest neighbor cells. Same as

temperature, Sen’s slope was calculated to account for temporal dynamics in rainfall in the period

1974-2010 as indicator of trend magnitude.

 Elevation – Elev (m.a.s.l.): meters above sea level. Altitude was retrieved from the GTOPO30 1

km Digital Elevation model (Earth Resources Observation and Science Center/U.S., 1997). It was

resampled to the of 10x10 km grid as the average elevation of all pixels within a cell.

 Slope – Slp (%): percent of rise in elevation calculated from the altitude layer. Slope was calculated

using the original 1 km resolution, being later resampled into grid cell size as the average slope of

all pixels within a cell.

2.4.3. Random Forest modeling 

The procedure to assess the role of the drivers in fire regime change was based on the calibration of 

probabilistic binary models, i.e., change vs no change. We selected the Random Forest (RF; Breiman, 2001) 

modeling algorithm given its proven predictive accuracy (Bar Massada et al., 2012; Leuenberger et al., 2018b; 

Rodrigues and de la Riva, 2014b). RF is a tree-based ensemble algorithm that trains multiple decision trees 

by randomly bootstrapping the training sample, keeping 67% of the observations to train the decision tree 

and the remaining 33% (Out-Of-Bag, OOB) to evaluate the relative influence of the predictors and the 

model itself. The final stage assembles all trees into a final prediction as the average of all individual tree 

predictions (Bagging; Breiman, 2001). 

For each transition type, we trained and validated 100 RF models, using a random sample of 70% for 

training and the remaining 30% for testing the performance of the model. At the training stage, a 10-fold 

calibration procedure was conducted to identify the optimal parameters (mtry and ntrees) of the model. Also, 

during the training stage the influence of each driver was evaluated by calculating the percentage increase 

in the Mean Square Error (normalized between 0 and 1), and its explanatory sense by means of partial 

dependence plots (Jerome H Friedman, 2001). To estimate the predictive performance of each model 

realization the Area Under the Receiver Operating Characteristic Curve was calculated (AUC; Bradley, 

1997). Additionally, the explanatory meaning of the covariates (either positively or negatively related) was 

explored by visual inspection of partial dependence plots.  
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3. RESULTS

3.1. Fire activity in the study region

According to fire statistics from the Spanish fire database, fire activity has experience a great decline from 

past to current conditions (Table 1). There has been a huge decrease in BA, two time lower in the current 

period (4,106,790 ha vs 1,998,304 ha). Likewise, BA100 and BAL also diminished towards nowadays. The 

decline is also patent in F, though moderate compared with BA. The only feature that has experienced an 

increase in figures is FW, augmenting from 31,598 to 50,167 fires burning during winter. 

Table 1. Comparison of fire activity between current and past conditions. F: fire frequency, FW: number winter 

frequency, BA: burned area, BA100: burned area by large fires, and BAL: natural burned area. 

F FW BA (ha) BA100 (ha) BAL (ha) 

Past 117,463 31,598 4,106,790 2,838,328 288,149 

Current 111,605 50,167 1,998,304 1,185,599 110,645 

3.2. Observed clusters and transitions 

Fire features belonging to the current period were submitted to PCA as a preliminary step towards the 

cluster analysis. We retained the three first components, which gathered around 98% of the total variance. 

The first component (PC1, 58% of the variance) relates to intense human-caused fire incidence, correlating 

with all features apart from burned area from natural fires. The second (PC2, 25% variance) mostly 

correlated with BL and to some extent with BA100. Noticeably, the loadings of number of fires and winter 

fires were negative, thus suggesting PC2 related to rare, large and natural-caused fire events during summer. 

The third and last component (PC3, 15% variance), also correlated with natural fires but in this case smaller 

and most frequent events (negative correlation with BA100 and positive with F). 

3.2.1. Fire regime typologies 

Cluster analysis produced five fire regime types (Fig. 4 and Table 2). The KNN classification yielded a good 

agreement with an average accuracy of 93.3%. To facilitate the interpretation of the results, clusters were 

ranked from 1 to 5 according to their hazardousness. Overall, we considered that clusters leading to 

increased burned area or fire frequency, or pointing towards the increased of human influence as more 

dangerous and vice versa. Cluster 1 gathered areas with low fire activity. Cluster 2 grouped medium-sized 

wildfires with fair contribution of lightning-caused fires. Cluster 3 collected medium-sized fires, but with 

fair contribution of human-caused fires. Large fires with frequent lightning fires characterized cluster 4. The 

last cluster depicted the greatest fire incidence (fire frequency and burned area) and large fire occurrence, 

with a large fraction of winter fires.  

Low-to-moderate fire activity typologies (clusters 1 and 2) were the most frequently observed (48.8% and 

62.0 % of cells, past and current respectively). The spatial footprint of theses clusters extended over the 

hinterlands (Fig. 4), although towards the current period it has progressed towards the Mediterranean coast. 

Intermediate fire regime (cluster 3) was more frequent under current conditions (17.1%) than in the past 

(10.4%). Clusters showing the highest fire incidence (clusters 4 and 5) covered 20.9% of the fire-affected 

territory, decreasing from a 40.9% in the past. Fire regime 4 was observed both in the northwestern end 

and the Mediterranean coast in the past, being only observed in small enclaves in these same regions in the 

current period. Fire regime 5 was detected also in the northwest under past conditions and some sparse 
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locations within the hinterlands. Nowadays, it is only observed along the northern coast, progressing from 

cluster 4.  

Table 2. Summary of characteristics of fire regime typologies. F: fire frequency, FW: winter frequency, BA: burned 

area, BA100: large burned area, and BAL: natural burned area. Bold numbers indicate average values whereas median 

appear in italics. 

PAST 

Cluster ID Cells % F FW BA BA100 BAL 

1 989 29.9 0.02-0.01 0.00-0.00 0.28-0.09 0.08-0.00 0.00-0.00 

2 624 18.9  0.04-0.04 0.01-0.00 1.45-1.27 1.06-0.87 0.09-0.01 

3 344 10.4 0.07-0.06 0.03-0.02 0.68-0.47 0.04-0.00 0.02-0.00 

4 863 26.1 0.24-0.15 0.05-0.03 14.09-9.61 11.16-6.96 1.26-0.01 

5 488 14.8 0.37-0.20 0.12-0.06  5.94-2.71 2.17-0.44 0.03-0.00 

CURRENT 

Cluster ID Cells % F FW BA BA100 BAL 

1 1,657 50.1 0.01-0.01 0.00-0.00 0.13-0.02 0.03-0.00 0.00-0.00 

2 393 11.9 0.04-0.03 0.01-0.00 1.18-1.00 0.87-0.69 0.12-0.01 

3 566 17.1 0.08-0.06 0.03-0.02 0.50-0.35 0.04-0.00 0.01-0.00 

4 322 9.7 0.23-0.12 0.09-0.04 12.05-6.9 9.93-5.58 1.12-0.03 

5 370 11.2 0.78-0.55 0.40-0.23  8.37-6.03  2.98-1.43 0.06-0.00 

Fig. 4. Top: spatial distribution of clusters in the two periods. Bottom: distribution of current fire features per cluster (values 

were log-transformed to enhance visualization). F: number of fires; FW: number of fires during autumn-winter season; BA: 

overall burned area; BA100: burned area from large fires (>100 ha), and BAL: burned area from natural-caused fires. 
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3.2.2. Fire regime transitions 

Fig. 5 and Table 3 summarize the most frequent fire regime transitions (CT) and their spatial distribution. 

Our findings revealed that lower fire activity (type 1) progressed across the hinterlands towards the 

Mediterranean (959 cells out of 3,308). Medium-sized fires associated with lightning fires (type 2) were 

confined to the hinterlands in the past. Although its spatial extent shrank over time, this regime shifted 

towards the Mediterranean coast over time (119 cells). Intermediate fire regime (type 3) dominated the 

northeastern façade along the Pyrenees in the past. Currently, this typology of fire regime progressed from 

higher order types (4 and 5) across the territory, especially in the northwestern end and the Mediterranean 

coast. However, the sparse enclaves of type 3 within the hinterlands have usually transitioned from lower 

activity (type 1 and type 2) in the past. Large and natural fires (type 4) were most frequent in the past, 

covering vast regions in the Northwest, the western half of the hinterlands and most of the Mediterranean 

coast. However, their extent has greatly declined towards present, mostly replaced by low activity. Finally, 

regimes associated with large incidence of fires in fall-winter (type 5) was scatter over small clusters in the 

northwestern region, the hinterlands and a small enclave in the Mediterranean. However, it only persists in 

the northern coast, reaching a vast and continuous coverage in the current period. 

In general, the decline in fire activity was the most common pathway over time (2-1: 364 cells past-current, 

but also 4-1: 242 cells), perhaps being stronger in the Mediterranean area. Nonetheless, we have found 

some CTs exhibiting a major increase in fire activity (dark orange cells from Table 3), we consider them 

non-significant due to their low number of cells (less than 40). Finally, the most stable typologies were the 

1 and 4 (698 and 200 cells, respectively). These fire regimes more persistent are located mainly in the 

Northwest region and scattered over numerous mountainous areas of the hinterland (Fig. 5 - top). 

Fig. 5. Frequency histograms (number of cells) of current and past fire regimes (top-left), stable trajectories (top-

right), and transitions (bottom). 
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Fig. 6. Top: fire regime transitions between past and current conditions. Bottom: summary of main trajectories across 

the study region.  
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Table 3. Transition matrix between past-current clusters. The most frequent CT were highlighted in bold. In color 

each degree of CT (major decrease: dark green, minor decrease: light green, minor increase: orange, winter 

progression: red). The grey cells correspond to the non-change of clusters. Bold indicates those trajectories evaluated 

by RF modeling. 

Current 

1 2 3 4 5 Total 

P
a
st

 

1 698 (70.6%) 119 (12%) 125 (12.6%) 37 (3.7%) 10 (1.0%) 989 (100%) 

2 364 (58.3%) 105 (16.8%) 111 (17.8%) 39 (6.3%) 5 (0.8%) 624 (100%) 

3 142 (41.3%) 38 (11.0%) 127 (36.9%) 14 (4.1%) 23 (6.7%) 344 (100%) 

4 242 (28%) 112 (12.9%) 152 (17.6%) 200 (23.2%) 157 (18.2%) 863 (100%) 

5 211 (43.2%) 19 (3.9%) 51 (10.5%) 32 (6.5%) 175 (35.9%) 488 (100%) 

Total 1657 (50.1%) 393 (11.8%) 566 (17.1%) 322 (9.7%) 370 (11.2%) 3308 (100%) 

3.3. Drivers of fire regime transition 

Random Forest modeling provided insights into the overall contribution of wildfire drivers (Table 4). In 

general, the performance of the models was satisfactory, yielding AUCs above 0.70 in most of the 

transitions investigated. The change from large to low fire activity (5-1 and 4-1, Fig. B10 and Fig. B6 in 

Appendix C) attained the highest AUC (0.96 and 0.90, respectively). On the contrary, we obtained modest 

performances in those transitions depicting increased fire incidence (1-2: 0.59 and 2-3: 0.60).   

The change in the Demographic Potential (DP) was often found as the most influencing factor, displaying 

strong positive relationships in declining trajectories, though its contribution weakens in progressive 

pathways. For instance, DP portrayed a ‘v-shaped’ curve in trajectories 1-3 and 1-2 (Fig. B1 and Fig. B2 – 

Appendix C), corresponding to minor increments in fire incidence. Nonetheless, the increase in DP was 

linked with regressive trajectories. Conversely, an inverse relationship was observed in the progression from 

large fire activity during summer towards fall-winter. Thus, the incidence of wildfires in locations with 

increased human presence declined whereas the loss of DP promoted human-related fires during winter. 

Second in importance, we found trends in annual precipitation (P). Overall, increasing trends in P match 

declining fire incidence, and decreasing P led to increments in fire activity. There were however some 

exceptions to this behavior. For instance, the transition from low incidence to medium-sized natural fires 

was promoted by increasing trends in precipitation (Fig. B1 in Appendix C). In turn, slope consistently 

showed inverse relationships, regardless of the kind of trajectory. For instance, it promoted the change 

from winter and human dominated fire regimes to low activity, which took place mostly in the plains within 

the hinterlands or along the Mediterranean coast, only persisting in the northern coast, which is 

characterized by complex topography. On the other hand, it influenced progressive trajectories 

characterized by medium size fires strongly related to human activities (1-3 and 2-3, Fig. B2 and Fig. B4, 

Appendix C). The response to elevation is rather straightforward, the higher the altitude the lower the fire 

incidence and vice versa. Transitions leading to increased fire activity (1-3 and 2-3) were clearly related to 

the presence of WUI. Conversely, inverse relationships were observed either in trajectories linked to 

increased fires during fall-winter (4-5, Fig. B9 Appendix C) or showing a decline in fire activity (2-1 and 4-

3, Fig. B3 and Fig. B8, Appendix C). Finally, increased WAI boundary promoted the increase in winter fire 

frequency.   
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Table 4. Red values =direct relationship; blue = inverse relationship; purple = v–like curve. Grey-shadowed means 

no clear explanatory sense. Dark green indicates major decrease in fire activity, light green minor decrease, Dark red 

major increase and orange minor increase. 

Transition DP Elev Slp T P WAI WUI AUC Description 

4-1 100 0 11 45 10 6 30 0.90 From high to low 

5-1 100 25 71 30 70 5 0 0.96 From high with winter to low 

4-2 100 5 25 10 2 0 0 0.71 From high to medium with lightning 

3-1 75 55 10 50 100 70 0 0.78 From medium to low 

4-3 65 0 100 80 71 25 40 0.64 From high to medium 

2-1 100 24 12 15 20 0 50 0.65 From medium with lightning to low 

4-5 50 15 0 25 74 100 50 0.76 From high to high with winter 

2-3 50 60 60 20 40 0 100 0.60 Medium with lightning to human 

1-3 80 70 100 0 70 20 65 0.72 From low to human 

1-2 70 100 24 40 65 26 0 0.59 From low to medium with lightning 

Average 79.0 35.4 41.3 31.5 52.2 25.2 33.5 0.73 

4. DISCUSSION

In this work, we presented and applied a methodology to identify and spatialize fire regime typologies that 

enabled further insights into the underlying drivers of its spatial-temporal dynamics. To the best of our 

knowledge, this was the first attempt to incorporate the temporal perspective into fire regime zoning in 

Spain, complementing the findings by Curt and Frejaville (2017) in southern France. The main novelty of 

our proposal lies not only in applying the zoning scheme in two historical periods but in completing them 

with regression models, deepening into the traits behind the spatial-temporal behavior of fire regime.  

Cluster analysis revealed five fire regime typologies. (1) low fire activity, (2) medium-sized wildfires with fair 

contribution of natural-cause, (3) medium-sized forest fires with a high weight of human-caused fires, (4) 

large wildfires with a remarkable presence of lightning, and (5) the high fire incidence with noticeably winter 

activity. The suggested fire regime delimitation (Fig. 4) resembled that from previous work in the same 

region (Moreno and Chuvieco, 2013). Although conceptually the approaches were similar, ours 

distinguished five fire regime typologies (instead of 4) and required fewer fire features.  

These fire regime typologies were successfully transferred into the past using KNN classification (Kappa ≈ 

0.9), ensuring the reliability of the observed changes in fire regime. In line with previous studies about 

trends in fire activity, the most common pathway led to decreased fire activity, especially along the 

Mediterranean coast (Jiménez-Ruano et al., 2017; Rodrigues et al., 2013; Silva et al., 2019). In some enclaves 

within the hinterlands and, most of all, in the northwestern end, the observed dynamics pointed towards 

the “humanization” of fire regime while keeping the impact of fires in terms of burned area and fire size 

(Fig. 5). 

According to RF models, the change in DP appeared to be the strongest feature behind fire regime 

dynamics, being positively related with higher likelihood of change in all decreasing transitions (Table 4). 

Thus, increased DP diminished fire incidence. As population grows so does fire incidence (Costafreda-

Aumedes et al., 2017b). However, the aforementioned relationship is not necessarily true in those regions 

under a total fire exclusion policy (Silva et al., 2019) and, paradoxically, there is a tipping point in population 
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density (Fig. B3, Fig. B6 and Fig. B7 in Appendix C) from which likelihood of large fires declines (Syphard 

et al., 2009). Indeed, human beings foster fire occurrence but under milder temperature and low wind speed 

conditions most fires are controlled and extinguished during the initial attack (Duane and Brotons, 2018; 

Rodrigues et al., 2019a). However, increased human pressure in the WUI has been observed to foster 

human-related fire progression (Fig. B2 Appendix C) in the surroundings of Madrid and Central System 

Range (Romero-Calcerrada et al., 2008; Vilar del Hoyo et al., 2008). Contrary to the DP, which depicts 

overall trends in population and accessibility, the WUI comprises residential settlements in contact with 

forestlands. WUI may act both as a source of fire ignitions and as an accessibility corridor for firefighting 

brigades enhancing fire containment (Leone et al., 2003b). This may explain the moderate increase in fire 

activity but modest size of the resulting fires. Of course, we are talking in terms of average values and trends 

and, evidently, large fires still happen. Noteworthy, the loss in DP in confluence with WAI boundaries, 

decreased rain and no WUI explained the progression of winter fires (Table 4). We considered the 

increment of fire incidence outside the main wildfire season (4-5) as the most hazardous trajectory, since it 

implies the shift towards human-related fire activity and an extended wildfire season. Weather conditions 

during fall-winter are unfavorable to fire incidence, but under persistent drought events, fires can still occur 

and become uncontrolled (Bedia et al., 2014). We found evidence of this in the extraordinary large fire 

events during 2017 when 68% of large fires (>500 ha) started during winter (ADCIF, 2017). This peak in 

forest fires in the winter season is closely related to both intentional and accidental fires linked to agricultural 

activities (Moreno et al., 2014; Prestemon et al., 2012; Rodrigues et al., 2018).  

Climate trends showed contrasted relationships. From a geographical point of view, the decreasing 

transitions of fire incidence experiencing a rise in temperature are widespread in the hinterlands and along 

the Mediterranean coast, supporting the observed disconnection between fire weather danger and fire 

incidence due to fire suppression (Jiménez-Ruano et al., 2019). On the other hand, the transitions of 

increased weather hazardousness overlapped the mountainous areas in the northern plateau, which showed 

growing fire activity due to intensified fire prone conditions in densely vegetated areas (Castedo-Dorado et 

al., 2011; Vázquez and Moreno, 1998). In turn, the increase in precipitation connected with downward 

trends in fire activity. Abundant rainfall means higher fuel moisture content which ultimately constrains the 

spread of wildfires (Argañaraz et al., 2018). By contrast, inverse associations, i.e. decreasing trends in 

precipitation matched both winter progression and minor raise in fire incidence in the northwest (de Luis 

et al., 2010; Paredes et al., 2006). Finally, elevation and slope displayed a negative link with fire activity, thus 

low and flat lands experienced increased fire incidence (González and Pukkala, 2007; Viedma et al., 2018). 

In fact, this pattern matched the distribution of urban settlements in Spain, which proliferated in coastal 

zones and lowlands preferably. 

From a managerial and policymaking perspective, our findings may provide valuable guidance and 

recommendations. For instance, those regions where a drastic decrease in fire activity was observed 

(transitions from types 4 and 5 to 1) are more likely to experience a gradual increase in fuel loads and 

continuity. Likewise, cropland abandonment and the decline of extensive livestock envisage larger fires in 

the future (Pausas and Paula, 2012). To some extent, the current suppression policy seems to be 

counterbalancing this effect but it might become override under an scenario of increased fire weather 

danger exceeding the suppression capacity (Fernandes et al., 2014; Jolly et al., 2015; Turco et al., 2018). On 

the other hand, the advance in fire activity in some locations highlights the necessity of improving fire 

management. For example, more attention must be paid to the autumn-winter wildfire season in 

forthcoming years, to a point of even redefining the timing of the fire seasons as suggested by Costafreda-

Aumedes et al. (2018). In summary, the role played by the driving factors is strongly valuable for forest fire 
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planning and management, and should be used to help budget allocation and contribute to the design of 

extinction and prevention plans (i.e., prescribed burning, fuel cleansing...). 

5. CONCLUSIONS

In this work, we proposed the first attempt to outline fire regime regions incorporating a temporal 

perspective in Spain. We explored historical past (1974-1994) and current (1995-2015) fire activity (retaining 

only the fires burning more than 1 hectare), engaging zoning schemes with exploratory regression analysis. 

We identified and characterized five fire regime typologies depicting (1) low fire activity, (2) medium-sized 

wildfires with fair contribution of natural-cause, (3) medium-sized forest fires with a high weight of human-

caused fires, (4) large wildfires with a remarkable presence of lightning, and (5) the high fire incidence with 

noticeably winter activity. These five typologies were spatialized in the two aforementioned periods to 

ascertain the most frequent trajectories of fire regime change. Overall, declining transitions (i.e., conducive 

to lower fire activity) were the most common pathways, covering a remarkable extension. However, fire 

regimes associated with winter activity have advanced in the Northwest and persisted along the northern 

coast. 

Our results revealed the link between drivers of wildfire and the observed dynamics. Demographic potential 

appears as the main factor involved in most transitions, followed by climate trends. The wildland interfaces 

(WAI and WUI) displayed a direct association with increasing transitions (including winter progression) 

and inverse in the declining ones.  

Finally, from a managerial perspective, our findings may help to identify regions that may experience fuel 

accumulation, targeting them as priority interventions areas to decrease the chances of large fires in the 

coming years. 

Finally, from a managerial perspective, our findings may help to identify regions that may experience fuel 

accumulation, targeting them as priority interventions areas to decrease the chances of large fires in the 

coming years. 
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Abstract 

The current research belongs to a series of two manuscripts aiming at describing spatial-temporal dynamics 

of fire regime and its drivers in Spain. In this work, we present the first attempt to produce a spatial-

temporal delimitation of homogeneous fire regime zones in Spain providing insights into the near future. 

The analyses were based on historical fire records; leveraging autoregressive ARIMA models to project fire 

features into the near future. We evaluated the spatial extent of homogenous fire regime zones in three 

different periods: past (1974-1994), current (1995-2015) and future (2016-2036). To do so, we applied 

Principal Component Analysis (PCA) and Ward’s hierarchical clustering to identify zones of fire regime on 

the basis of the spatial and temporal arrangement of their main fire features: number of fires, burned area, 

burnt area from natural-caused fires, incidence of large fires (> 100 ha) and seasonality. Clusters of fire 

regime were trained in the current period, being later projected into the past and future periods using of k-

Nearest Neighbor classification.  

ARIMA modeling forecasted a shrinkage in all fire features except natural-caused fires that remained stable. 

Overall, we detected a transition from significant fire incidence in the past towards a situation with moderate 

impact of fires in the near future. The Mediterranean coast experienced the largest decline in fire activity 

with few locations maintaining the historical levels of occurrence of large fires. On the other hand, the 

Northwestern end of Spain depicted a progression towards winter fire activity while still linked to large 

fires. This pattern persisted in the near future along the northern coast, whereas an intermix of minor fire 

progression and regression was expected thorough the hinterlands and the Mediterranean. 

Keywords: Forest fires, fire regime, fire features, ARIMA, future projection, suppression policy 
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1. INTRODUCTION

Forest fire management and prevention have gained attention over the years, being currently under the 

spotlight due to the uncertain effects of climate and socioeconomic changes. Expenditures in fire 

suppression and prevention are increasing globally, especially in fire-prone developed countries where a 

total fire exclusion policy is often implemented (Stephens et al., 2014). For instance, the US Federal Land 

Management bureau spent more than 2 billion $ in fire management during 2015 (Doerr and Santin, 2016). 

The annual budget in firefighting in the European Union raises to approximately 2.2 billion € (Faivre et al., 

2018). In the case of Spain, one of the most fire affected countries within the European Mediterranean 

region currently ranking second in fire incidence only after Portugal (San-Miguel-Ayanz et al., 2017), fire 

suppression and prevention have been increasingly funded up to circa 78 million € in 2015 (MAPAMA, 

2017). Therefore, it seems clear that firefighting agencies envisage a worsening fire danger scenario in the 

future, with more hazardous weather conditions increasingly threating human and environmental assets 

(Alcasena et al., 2019; Badia et al., 2011). For instance, fire incidence seems to be increasing in the 

Scandinavian countries. In 2018 this region experienced the warmest fire season within the recording 

period, which undoubtedly contributed to boost fire spread and overcome the extinction capacity (Martin 

Ruiz de Gordejuela and Puglisi, 2018). However, outside these exceptional cases, the current situation in 

those regions and countries historically affected by recurrent fires tells otherwise. In the Mediterranean 

Europe the observed number of fires and burned area is decreasing (Turco et al., 2016). At the same time, 

a remarkable decline in global fire-related emissions since 1930s is reported reaching the minimum in 2013 

(Arora and Melton, 2018; Van Der Werf et al., 2017). One of the main reasons behind this trend relates to 

the fire exclusion policy, i.e., suppressing all wildfires in a region (Smith, 2000). Such policy considers 

wildfires as a negative hazard and consequently they must be suppressed by all means. Notwithstanding 

some authors believe the persistence of such policy will lead to increased large fire activity in the long-run 

due to substantial fuel accumulation (the so-called ‘fire paradox’, Otero and Nielsen 2017; Regos et al., 

2014; Westerling, 2016) in conjunction with drier and warmer conditions (Chaparro et al., 2016; Ruffault et 

al., 2017; Turco et al., 2017). At the same time, questions about its sustainability are starting to raise (Curt 

and Frejaville, 2018).  

Projections of fire incidence into the future have been extensively addressed in the literature. They were 

usually conducted according to climate change scenarios mostly based on General Circulation Models 

(GCM) coupled to IPCC’s emissions scenarios or Regional Climate Models (RCM). Conversely to the 

observed trend (overall decrease in fire incidence) most works leveraging climate models envisage increased 

fire activity through the XXI century. Without being exhaustive, an increment in burnt area was reported 

in Portugal (DaCamara et al., 2014), Canada (Hope et al., 2016), California (Westerling et al., 2011) or the 

Iberian Peninsula (Sousa et al., 2015); gross fire activity was expected to augment in Canada (Boulanger et 

al., 2013; Wang et al., 2015), Northeast China (Liu et al., 2012), Finland (Kilpeläinen et al., 2010). Similarly, 

some works foresee a global (Liu et al., 2010) or regional (Jolly et al., 2015; Moriondo et al., 2006; Wotton 

et al., 2017) raise in fire weather danger. Some studies point out diverse tendencies depending on the global 

regions (Krawchuk et al., 2009; Pechony and Shindell, 2010), or even opposite trends with increasing 

frequency and a stability or slight decrease in burnt area in the Northeast of Spain (Turco et al., 2014). 

Although the goal of this work is not criticize climate-based approaches, they mainly address long-term 

trends while often disregard suppression efforts in their prediction. Moreover, several authors have pointed 

out the bias found between GCM’s simulations and observations (Maraun, 2012). Differences in 

precipitation and surface temperature between the present and future climates indicate that present‐climate 

biases are systematically propagated into future‐climate projections at regional scales (Liang et al., 2008). In 
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the particular case of Spain, the correlation between fire weather danger and fire incidence has been found 

to be rather weak, with weather controlling the seasonal patterns but exerting limited influence in the 

observed trends (Jiménez-Ruano et al., 2019). In this sense, suppression-related features such as the time 

elapsed until fire brigades reach the fire site or the scattering of suppression media during simultaneous fire 

events control the success of the initial attack whereas fire weather relates to sporadic large fire events 

(Connor et al., 2017; Duane and Brotons, 2018; Rodrigues et al., 2019a). Accordingly, we propose 

decoupling the temporal behavior of fire activity from other covariates (either climate or human related) to 

explore the near future evolution of wildfire features under the premise that their temporal behavior already 

integrates the influence of their underlying drivers. By doing so, we assume that weather conditions and 

human influence in wildfire activity would remain ‘stable’, i.e., they follow the same evolving trajectory and 

exert the same influence observed from past to current conditions as described in (Rodrigues et al., 

"Unpublished results", further referred to as 'Part 1'). 

Among the few modeling techniques that allow to forecast time series of data, the most well-known and 

widespread are the Auto-Regressive Integrated Moving Average (ARIMA) models. ARIMA only requires 

a univariate time series to forecast its future evolution, although versions that are more sophisticated allow 

incorporating additional covariates. ARIMA models are best known for its performance in economics and 

marketing (Loi and Ng, 2018; Matyjaszek et al., 2019), but also, environmental studies, such as vegetation 

dynamics (Jiang et al., 2010) or climate change (Afrifa-Yamoah, 2015). There are also experiences of 

ARIMA modeling in wildfire science. In North-America, Preisler and Westerling (2007) employed ARIMA 

to forecast temperature 1-month ahead to evaluate fire danger whereas Miller and Safford (2012) explored 

trends in large high severity fires. In Spain, Boubeta et al. (2016) applied ARMA (ARIMA without the 

integrated component) to predict weekly burnt area in Galicia. However, to the best of our knowledge there 

was no experience assessing the mid-to-long term evolution of fire regime features using ARIMA or any 

other autoregressive technique, at least in Spain.  

In this work, we developed and exemplified a framework to identify and outline fire regime regions over 

time. The proposed approach included for the first time a near-future prospective based on the ongoing 

evolution of fire regime features. In the case of Spain, fire regime zoning experiences are scarce, finding 

some examples in Jiménez-Ruano et al. (2018), Montiel Molina and Galiana-Martín (2016) and Moreno and 

Chuvieco (2013). Nevertheless, these works provide a stationary picture of fire regimes without taking into 

account their temporal evolution. But fire incidence is non-stationary (Jiménez-Ruano et al., 2017a; Silva et 

al., 2019), a feature that encourages embracing a temporal perspective in fire regime assessments. Our core 

methodology allowed to identify homogenous fire regime zones in three different time periods. Past (1974-

1994) and current (1995-2015) situations were addressed using historical fire records from the Spanish fire 

database. A third period was set in the near-future (2016-2036) forecasted by means of ARIMA extending 

from the current period. We hypothesized that the immediate evolution of fire regime would follow the 

ongoing pathway, thus assuming that climatic and human drivers of fire activity (both related to ignition 

and suppression) remain stable towards the near future. Our main goals were to a) outline current and past 

fire regime zones, b) forecast their immediate future evolution and c) describe the most representative 

spatial and temporal trajectories of fire regimes to (e) evaluate the disruptive effects of the current fire 

suppression policy. 
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2. DATA AND METHODS

The proposed methodology was sequenced in three stages. First, we retrieved historical fire records in the 

period 1974-2015 and organized them in two separate datasets (1974-1994 and 1995-2015). Then, we 

forecasted the evolution of fire incidence in the near future (2016-2036) using ARIMA models. Finally, we 

identified fire regime typologies in the current period (1995-2015) by means of cluster analysis and projected 

them into the past (1974-1994) and near future (2016-2036) using K-Nearest Neighbor (KNN) 

classification (see Fig. 1). All statistical procedures and plots were developed using the R statistical 

programming language (R Core Team and R Development Team Core, 2017), packages forecast and stats for 

future predictions, NbClust for cluster analysis, knnGarden for past and future cluster assignation, 

splitstackshape for KNN validation and ggplot2 for mapping and plotting. Mapping was conducted using both 

R (ggplot2) and ArcGIS Desktop 10.6. 

Fig. 1. General workflow of the methodology including input data split, clustering, KNN classification-validation 

and ARIMA validation from current to past and future fire features.  

2.1. Study area 

The region under study was mainland Spain. The region is mostly dominated by Mediterranean climate, 

with Oceanic conditions covering the northern end. Mediterranean climate was characterized by high 

annual thermal amplitude with hot summer in the inner region and milder conditions along the coast. 

Precipitation distributed irregularly over time and space, with maximums in autumn and spring, and 

minimum during summer months. The driest areas are located in the southeast region and the Ebro Valley. 

On the other hand, Oceanic climate distinguishes by milder temperature all over the year and high 

precipitation regularly distributed throughout the year (average values over 1,000 mm) peaking during 

winter. In terms of fire occurrence, the relevance of winter fires is really notable (35.7%), especially in the 

Northwest region. In turn, burned area by lightning represents a low fraction of total amount (around 6.5%) 

and it is usually concentrated in some mountainous areas. The surface affected by large fires (above 100 ha) 
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accounts for 66% of the overall burned area. Comparatively, Spain ranks second in fire frequency (excluding 

small, i.e., fires < 1ha) among the most fire-prone countries in Mediterranean Europe (Table 1), after 

Portugal and before Italy, France and Greece. In the case of total burnt area, Spain stands out as the most 

fire affected, followed by Italy and Portugal. 

Table 1. Number of fires and burned area (excluding fires <1 ha) per fire feature in mainland Spain for the period 

1980-2016.Source: European Forest Fire Information System. 

Portugal Spain France Italy Greece 

Burned area 3,973,670 5,991,140 912,309 3,899,998 1,661,816 

Yearly burned area 107,396 161,923 24,657 105,405 44,914 

Number of fires 669,698 547,135 174,462 337,722 53,983 

Yearly number of fires 18,100 14,787 4,715 9,128 1,459 

2.2. Fire data 

Fire data was collected and organized following the procedure described in Part 1. However, we set a 

coarser grid of 30x30 km as spatial unit of analysis to warrant the ‘stability’ of future estimations via ARIMA 

models (by holding a larger pool of observations within each cell). Therefore, data from 10x10 km grids 

cells was aggregated into 30x30 km resolution as the sum of fire features, leading to a final set of 545 grids. 

As in Part 1, we built five fire features to further explore fire regimes distribution and evolution. 

 Fire frequency (F): total number of wildfires per grid, month and period.

 Burned area (BA): total surface burned in hectares of the grid, month and period.

 Burned area by nature cause (BAL): surface burned by lightning in the grid, month and period.

 Burned area by large fires (BA100): burned area by fires greater than 100 hectares by the grid,

month and period.

 Winter frequency (FW): number of wildfires occurred during autumn-winter (from October to

March) by the grid, month and period.

2.3. Forecasting future fire regime features 

As step further from Part 1, we applied auto-regressive models to forecast fire features into the near future. 

The targeted period was set at 2016-2036, extending twenty years beyond the historical period. This 

prospection assumes a continuant scenario in which the drivers controlling fire activity keep evolving 

following the same pathway observed between past and current conditions. The working premise was that 

drivers of fire activity are implicitly integrated in fire features and, thus they are a reflection the drivers 

themselves. To this end, we used ARIMA, a set of auto-regressive, integrated and moving average models 

for time series analysis. The use if ARIMA results advantageous to achieve our goal since it allows adjusting 

and forecasting models from univariate time series of a response variable, i.e., each fire feature. ARIMA 

models can be understood as a ‘filter’ that separates the signal from the noise, extrapolating only the signal 

into the future.  ARIMA models can be only applied to stationary time series, i.e. with constant in mean 

and variance over time. In this work we submitted monthly time series of the aforementioned fire regime 

features in the period 1995-2015 to forecast their temporal evolution into the near future. Since fire features 

were known to be non-stationary (Jiménez-Ruano et al., 2017a) they were transformed using their square 

root forecasting purposes, and de-transformed afterwards to return to the original scale before being 

submitted to cluster analysis.  
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The ARIMA model provided several outputs, the most important of which was the mean forecasted value. 

Complementarily, ARIMA calculates two confidence intervals (80% and 95%), allowing setting upper and 

lower limits in the prediction. As reported by Hyndman and Khandakar (2008), the mathematical 

expression of the ARIMA formula is established as follows: 

Φ(𝐵𝑚)∅(𝐵)(1 − 𝐵𝑚)𝐷(1 − 𝐵)𝑑𝑦𝑡 = 𝑐 + Θ(𝐵𝑚)𝜃(𝐵)𝜀𝑡

where Φ(𝓏) and Θ(𝓏) are polynomials of orders P and Q respectively, each containing no roots inside the 

unit circle. If c≠ 0, there is an implied polynomial of order d + D in the forecast function. The main task 

in automatic ARIMA forecasting is selecting an appropriate model order, that is the values p, q, P, Q, D, d. 

When d and D are known, the rest of orders are chosen by minimizing the Akaike Information Criterion 

(AIC; Akaike, 1974). 

Finally, we evaluated the performance of the ARIMA prediction. We calculated the Pearson’s R2 between 

ARIMA mean estimations (using data from 1974 to 2004) versus historical observations during the last 10 

years of available fire reports (2005-2015). The analysis was applied comparing average values on the 

original 10x10 km grid and in the 30x30 km grid, to ascertain the effect of the spatial unit size, which 

ultimately justifies the use of the coarser 30x20 km grid. 

2.4. Modeling clusters of current fire regimes 

In order to identify fire regime typologies and zones, we applied cluster analysis, training clusters in the 

current period to later project them into the past and near future. We followed the procedure described in 

Part 1, but replicated to the 30x30 km grid. Principal Component Analysis and hierarchical clustering were 

applied to obtain fire regime typologies whereas KNN classification was used to project fire regimes into 

past and future periods. Finally, we identified the most frequent cluster transitions (CT) building two 

specific transition matrixes, one from past-current and another from current-future progressions. 

Additionally, we mapped the spatial distribution of cluster change (either towards the future or from the 

past), displaying CT categories and calculating the Canberra distance between the cell of origin (current) 

and the center of the destination cluster in order to illustrate the magnitude of the change. 

3. RESULTS

3.1.  Evolution of the fire regime features 

Taking the historical period as baseline, future fire features showed a general decrease in their total values 

(Fig. 2). According to, Pearson’s R2 coefficient between forecasted and observed fire features (Fig. 3), 

ARIMA predictions were reliable, capturing at least the 46% of variance (fire frequency) up to 76% in 

burned area. The coefficient of determination was consistently higher in the 30x30, compared to the original 

10x10 grid. 

The overall decreasing trend in fire activity was also observed in the spatial disaggregation of fire features 
(Fig. 4). At first glance, the spatial coverage of the highest interval in the past was greater than any other 
period. In fact, the temporal evolution showed a gradual decrease in all features, more noticeably in those 
related to burnt area (BA, BAL and BA100) that in the ones expressed as counts (F and FW). The spatial 
pattern of the future fire features largely matches the past and current, except in BAL and BA100, where 
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values were generally lower and scattered across sparse grids over the territory. The highest activity 
concentrates in the Northern region, which in turn, was the most stable. The most pronounced decline in 
all fire features was observed along the Mediterranean coast. One of the most striking finding was the 
persistence of winter fire counts along the northern coast in the near future. 

Fig. 2. Temporal evolution of fire features during the historic period (black line) and the near future (ARIMA 
forecast, blue line) mean with its corresponding upper and lower limits at 80% and 95% (in dark blue and light blue, 
respectively). Original values have been transformed to their square root. Red line represents the moving average. 
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Fig. 3. Scatter plots and Pearson’s R2 coefficients between observed and predicted of ARIMA for each fire 

features at both grid sizes (left: 30x30 km; right: 10x10 km) in the period 2005-2015. 
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Fig. 4. Spatial distribution of mean values for each fire feature in the three periods of analysis and the administrative 

boundaries of NUTS3 level. 

3.2. Spatial-temporal evolution of fire regime zones 

Fire features in the current period were submitted to PCA and cluster analysis to outline homogeneous 

zones of fire activity. We selected three components from the PCA analysis, gathering up to 98% of the 

variance (Table 2). The first component (67.2% of the variance) relates to overall fire activity with moderate 

loads in all features, excluding natural fires, while being the sole component relating to winter fire 

occurrence. Overall, this component was considered to depict the gross of human-caused fire activity. The 
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remaining two components accounted for natural and large fires, respectively. Component 2 (21.5% 

variance) positively correlated with BAL and BA100, suggesting that natural fires were somewhat linked to 

large fires. Component 3 (10.5% variance), correlates positively with both large fires and overall burnt area. 

Both PC2 and PC3, displayed opposed correlation between the highest ranked features (BAL and BA100, 

respectively) and winter fire activity, which indicates that either natural or large fires were better linked to 

summer season. 

Cluster analysis yielded a total of four clusters, i.e., fire regime typologies (Fig. 5 and Table 3), one less than 

those obtained in Part 1 due to the disaggregation of the intermediate fire activity cluster (type 3, Part 1) 

into ‘adjacent’ clusters (types 2 and 3, Part 2). Clusters were ranked from 1 to 4 according to its 

hazardousness. Cluster 1 gathered those locations with low fire activity. Cluster 2 was composed of 

Medium-sized wildfires starting in summer with slight contribution of lightning-caused fires. Cluster 3 

collected those cells with the greatest occurrence of large fires and natural-caused fires. The last cluster 

depicts large fire occurrence and burned area, with almost no contribution of natural fires and with the 

highest incidence of winter fires. In terms of spatial extent, low-to-moderate fire activity situations (clusters 

1 and 2) were the most frequently observed (38% of cells each). Clusters depicting high fire activity (clusters 

3 and 4) accounted for 24% of the cells together. 

Table 3. Summary of cluster description. F: fire frequency, FW: winter frequency, BA: burned area, BA100: large 

burned area, and BAL: natural burned area. Bold numbers indicate average values whereas median appears in italics. 

Cluster ID Cells % F FW BA (ha) BA100 (ha) BAL (ha) 

1 205 37.6 0.10-0.06 0.03-0.01  0.96-0.39  0.33-0.00  0.03-0.00  

2 208 38.2 0.27-0.19 0.08-0.05  5.09-3.83  3.30-2.23  0.31-0.06  

3 80 14.7 1.25-0.61 0.51-0.15  43.48-31.52  32.61-26.56  4.42-2.46  

4 52 9.5 5.14-4.63 2.63-1.92  61.45-44.01  25.81-11.53  0.29-0.09  

Fig. 5. Top: spatial distribution of clusters in the three periods. Bottom: distribution of fire features per cluster (values 

were log-transformed to enhance visualization). F: number of fires; FW: number of fires during autumn-winter 

season; BA: overall burned area; BA100: burned area from large fires (>100 ha); and BAL: burned area from natural-

caused fires. 
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Fig. 6 and Table 4 summarize the observed cluster transitions and their spatial distribution across periods. 

The KNN classification yielded a good agreement with an average accuracy of 89.6% and a Kappa 

coefficient around 0.80 (Altman, 1991). Lower fire activity (cluster 1) advanced across the hinterlands 

towards the Mediterranean from past to future (110 cells in past-current and 176 current-future, out of 

545). Medium-sized fires (cluster 2) were confined to the hinterlands during the past, progressing over the 

Mediterranean coast in the current period (62 cells). In the future, its footprint was predicted to reach some 

areas of Galicia transitioning from cluster 3 to 2 (36 cells). Large and natural fires (cluster 3) were the most 

frequent situation in the past, covering vast regions in the Northwest, the western hinterlands and most of 

the Mediterranean coast. However, its extent has greatly declined towards present, mostly replaced by 

medium-sized and natural fires. This typology was envisaged to be the least frequent in the near future, 

confined to some locations in the Northwest and small enclaves within the Mediterranean and the Central 

Mountain Range. Finally, cluster 4 covered mainly the northwestern area, reaching its largest extension in 

the current period. We foresaw the persistence of this situation along the northern Cantabrian cornice, and 

sparsely located in a small number of cells along the border with Portugal.  

Overall, low fire activity gained importance over time (2-1: 80 cells past-current and 147 cells current-future, 

but also 3-1: 30 cells and 29 cells). Natural fires were expected to decrease in size (3-2: 62 cells in past-

current and 36 cells in current-future), but at the same time they showed a modest increase in overall area 

during the next twenty years (2-3 with 14 cells past-current and 5 cells in current-future). On the other hand, 

regions experiencing a minor increase in fire activity will be likely in the future (1-2: 64 cells) with a moderate 

enlargement of fire size during summer in the hinterlands. In turn, the highest fire activity (cluster 4) was 

envisaged to persist along the northern coast (27 cells), though some spots will transition towards decreased 

fire incidence in the future (4-2: 16 cells). Pathways leading to increased winter fires (leading to cluster 4) 

were commonly observed in past-current transitions, but less frequent in current-future. Conversely, 

naturalization of fire cause (4-2 and 4-3) were expected more often in the current-future transition. Finally, 

the most stable fire regimes were clusters 2 and 1 from past to current and cluster 1 in transitions into the 

near future. 

Fig. 6. Cluster transitions (CT) more frequent and magnitude of change (in Canberra distance) between current 

clusters and past-future fire features. 
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Table 4. Transition matrixes between past-current and current-future clusters. The most frequent CT were 

highlighted in bold. Color depicts overall trajectories. Major decrease: dark green; minor decrease: light green; 

minor increase: orange; winter progression: red). The grey cells correspond to no-change. 

4. DISCUSSION

In this work, we conducted the multitemporal outline of homogeneous fire regime typologies and zones in 

mainland Spain to a) outline fire regime zones for past and current periods, b) predict their immediate future 

evolution, and c) analyze the main transitions in terms of spatial and temporal patterns. We aimed at 

improving the identification and definition of fire regimes in Spain, as well as providing insights into the 

effects the current of fire suppression policy. A better knowledge of the fire regimes involves not only 

assessing their geographical distributions but considering a temporal framework able to reflect ongoing 

changes resulting from policy and managerial practices. To the best of our knowledge, this, and the 

complementary work from Part 1, were the first attempts to investigate spatially explicit temporal dynamics 

of fire regimes exploring the near future evolution. 

Same as in Part 1, the methodological approach sufficed to capture the spatial (cluster plus KNN) and 

temporal (ARIMA) patterns of fire regimes (Kappa ≈ 0.8). In turn, ARIMA faithfully outlined both the 

temporal and geographical arrangement of fire features, yielding a good predictive performance (R2 ranging 

from 0.48 to 0.76). However, the size of the spatial unit of analysis had to be downgraded to ensure the 

consistency of ARIMA projections (Fig. 3). Fire regime typologies remained mostly equal, although the 

number of fire regimes reduced to 4 due to the disaggregation of human-related intermediate activity (type 

3 in Part 1). Nonetheless, the nature of the remaining regimes was consistent with Part 1 (see Fig. 3 Part 1 

and Fig. 5 Part 2). 

ARIMA modeling anticipated a generalized drop in all fire features (A. Jiménez-Ruano et al., 2017a; M. 

Rodrigues et al., 2013; San-Miguel-Ayanz et al., 2017; Silva et al., 2019; Turco et al., 2016).  Silva et al. (2019) 

reported a decline in burned area as a direct effect of the intensification of fire suppression, promoting the 

rebound of forest area (i.e., fuel accumulation) as a side effect. It is well known that fire suppression in 

Spain (and most countries in the European Mediterranean region) has been overemphasized since the mid-

90s, as a result of an extraordinary fire wave (Badia et al., 2002). Our findings were consistent with the 

overall decrease forecasted in fire incidence, particularly patent in features depicting burned area size (A. 

Jiménez-Ruano et al., 2017a; Turco et al., 2016).  
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Of course, the change in fire regime was not expected to be spatially stationary, nor was it between historical 

periods (past to current) neither towards the near future. During the historical period, we observed a pattern 

very similar to that from Part 1, with a generalized drop in fire activity in the hinterlands and the 

Mediterranean coast, the most densely populated area of Spain. Since the mid-90s, suppression and 

prevention have been increasingly funded (MAGRAMA, 2012) aiming at protecting human assets often 

located within the wildland-urban interface (Alcasena et al., 2019). The WUI region is often considered a 

priority protection target due to the increased presence of people and housing (Darques, 2015; Salis et al., 

2014). Due to its specificities, the WUI acts both as a source of potential fire ignitions from increased 

pressure on wildlands (Leone et al., 2003b) but at the same time it facilitates accessibility to firefighting 

brigades, thus enhancing fire containment. For instance, the most frequent transitions where those coming 

from fire regimes dominated by large fires with fair contribution of natural-caused fires towards medium-

sized fires (3-2) or even low fire activity (1-2), especially in the Mediterranean. On the other hand, a 

progression towards anthropogenic fires was detected in Galicia (Northwest end of Spain). The most 

prominent change in that zone followed the path from fire regime 3 to regime 4, i.e., from large and natural 

fires towards increased fire counts, overall burnt area and increasingly hazardous winter season. This 

transition is most likely related to accidental fires associated agricultural labors (Moreno et al., 2014; 

Prestemon et al., 2012; Rodrigues et al., 2018). From a fire regime perspective, we considered the transition 

‘3-4’ as a progressive (worsening) one given the increased impact of human-caused fires. The foretold 

pattern of transition towards the near future resembles the historical one, with decreased fires, especially 

along the Mediterranean. The Northwestern region, known as the area with highest fire activity within 

Spain, is likely to experience a shift towards more frequent intermediate-size fires during summer. The sole 

exception appears in the Northern coast, which was expected to maintain similar fire regimes in the future, 

with persistent winter fire activity (González-Olabarria et al., 2015; Rodrigues et al., 2018), suggesting 

increasing role of human activities (Turco et al., 2018). 

Despite the overall observed and expected decrease in fire incidence we do not intend to be indulgent nor 

minimize the impact of the fire hazard phenomena. The observed patterns and trends would most likely 

involve several undesired effects. A wide fraction of wildfire managers and practitioners warn about the 

unforeseen consequences of a sustained total fire exclusion policy. The main side effect relates to fuel 

accumulation, particularly in abandoned agricultural lands (Pausas and Paula, 2012) but also in those zones 

in which the natural fire regime was disrupted (Fréjaville and Curt, 2017), thus consistently excluded from 

burning (Piñol et al., 2005). The progression of forested lands coupled to more hazardous climate, envisaged 

by most long-term climate projections (Vicente-Serrano et al., 2014), may eventually lead to a raise in the 

frequency devastating and severe fires (Costa et al., 2011; San-Miguel-Ayanz et al., 2013) potentially 

threatening forest resilience (Stevens-Rumann et al., 2018). In a context of increasing funding of firefighting 

means, a shift towards a more proactive management of fuels is recommended. Forest management is 

becoming increasingly linked to fire management, progressively integrating prescribed burns or fuel control 

into management strategies. Our findings may serve as guideline to identify ‘fire-excluded’ regions, i.e., 

those areas displaying the most pronounced declining trajectories that would eventually lead to increased 

fuel loads. The careful inspection of observed (past-current) and predicted (current-future) changes in fire 

regimes can be very informative to further analyze the relative role of fire drivers (land use, climate, 

vegetation and topography) and their complex interplay (Morgan et al., 2001b).   

However, our proposal has some limitations that must be clearly stated. The spatial unit of analysis was 

rather coarse after downgrading from the original 10x10 km resolution. Despite it sufficed to capture the 

nature and distribution of fire regimes, it may preclude more in depth analyses such as explanatory 
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regression models of fire regime change (similar to those from Part 1). We assumed a conservative scenario 

of evolution that projects the current evolution of drivers but, even though it is likely to happen, it is not 

necessarily going to be case. Furthermore, we extended the observed trend until twenty years beyond the 

historical period but that trend may ‘stabilize’ earlier. In that case, we might be overestimating the magnitude 

of the forecasted decline. 

5. CONCLUSIONS

The current research belongs to a series of two manuscripts aiming at describing spatial-temporal dynamics 

of fire regime and its drivers in Spain. In this work, we proposed the first attempt to outline fire regime 

zones that incorporates a temporal perspective towards the near future. We investigated three different 

temporal spans. Two historical periods, i.e., past (1974-1994) and current (1995-2015), which were built 

from historical fires (>1 ha), and a third located in the future (2016-2036), projected from current 

observations. 

We identified four fire regime typologies depicting (i) low fire activity, (ii) medium-sized wildfires starting 

in summer with slight contribution of lightning-caused fires, (iii) large fires linked to natural-caused fires, 

and (iv) large fire incidence linked to winter activity. These four typologies were spatialized in the three 

aforementioned periods to ascertain the most frequent trajectories of fire regime change. As in Part 1, 

regressive trajectories (decline in fire activity) were the most common pathway into the future, with a 

significant increase of zones with low fire activity. Nonetheless, fire regimes linked to winter activity were 

observed to advance in the Northwest, being expected to persist along the northern coast. 

From a managerial perspective, our results allow identifying priority intervention areas that may experience 

fuel accumulation, leading to more hazardous conditions and increased chances of large fires in the future. 
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CHAPTER 9: TRANSLATING 
FIRE REGIME ZONING 
SCHEMES INTO PYROREGIONS

This chapter summarizes the final delimitation and 
characterization of the pyroregions in mainland Spain, based on 
the previous fire regime typologies and trajectories obtained. 
Moreover, it adds the spatial overlapping of climatic, 
topographical and human factors more related to fire activity to 
offer a complete pyrogeographic entity. The methodology has 
been based on geo-processing tools in a GIS framework. 
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Abstract 

The geographical delimitation of pyroregions (homogenous fire regime regions) and their temporal 

evolution is an important task in forest fire research. First, it requires an adequate selection of fire features 

and drivers; and second, the evolutionary dimension must be included. This article presents a collection of 

geographic datasets in a map format created by GIS tools. It includes the first map of pyroregions where 

fire regime trajectories over time are included. In addition, reclassified environmental (temperature-

precipitation trends, average elevation and slope) and human variables (WAI, WUI and Demographic 

Potential percentage of variation) were overlapped onto the fire regime transitions.  The final pyro-

geography scheme consists of 4 general pyroregions with 16 sub-regions, comprising a complete description 

of fire regime in mainland Spain and the underlying fire drivers. The novelty of this data brings the 

opportunity for fire-forest management in other countries to apply a similar dataset on a national scale in 

order to outline their pyroregions.  

Keywords 

Pyroregion, pyro-geography, fire regime, spatial modeling, Spain 

1. Data

The data presented here shows the spatial distribution of the pyroregions in mainland Spain (Fig. 4), which 

includes the most important fire regime trajectories detected over time. In addition, each of the 

environmental-human variables is introduced in map format. Environmental factors (Fig. 1) consist of 

climate dynamics, more specifically trends in the average temperature and precipitation (over the 1974-2010 

period) and topographical aspects (such as average elevation and slope) which are crucial for fuel 

distribution, accessibility and fire propagation potential. Finally, anthropogenic drivers are depicted by 

variables related to human pressure on wildlands: wildland-urban interface (WUI, top left Fig. 2), the rate 

of variation in demographic potential (DP, bottom left Fig. 2), the existence of agricultural activities close 

to forested areas, and wildland-agricultural interface - (WAI, top right Fig. 2). 
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2. Experimental Design, Materials, and Methods

The project design was based first on the characterization of 7 environmental-human variables from 

different data sources (see following subsections for more details) strongly linked to the spatial-temporal 

behavior of fire regimes in Spain. These factors were selected by the Random Forest regression with the 

most frequent fire regime trajectories, see Rodrigues et al. (unpublished results), for more details. In 

addition, each of these environmental and human factors were reclassified into three major categories. Low-

medium-high for WAI, WUI, elevation and slope; and decreasing, stable and increasing for the climatic 

trends (temperature and precipitation) and Demographic Potential (DP) rate of variation. Environmental-

human mapping was carried out by applying a forest mask to discard grids with less than 25% forest area.  

2.1. Climatic factors 

We extracted the climatic and topography information from different databases. For climatic variables, the 

average monthly temperature was retrieved from the MOTEDAS database (González-Hidalgo et al., 2015), 

spatialized using a 10x10 km grid, which was assigned to our grid according to the nearest neighboring cells. 

Next, the temperature trend was estimated by means of Sen’s slope (Sen, 1968) of the maximum (daytime) 

temperature for the period 1917-2010. The average monthly temperature was retrieved from the 

MOPREDAS database (González-Hidalgo et al., 2011) and also assigned to our 10x10 km grid following 

the nearest neighboring cells method. As with temperature, we calculated the Sen’s slope to obtain temporal 

dynamics in rainfall for the period 1974-2010. 

2.2. Topographical factors 

Both elevation and slope were retrieved from the GTOPO30 1 km Digital Elevation Model (Earth 

Resources Observation and Science Center/U.S, 1997). The first variable refers specifically to meters above 

sea level, and the second to percentage rise elevation calculated from the elevation layer. Both variables 

were resampled from the original 1 km resolution to the 10x10 km grid as the average value of all pixels 

within a cell.   
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Fig.1. Spatial distribution of reclassified environmental and topographical fire drivers. Top left: temperature trend, 

top right: precipitation trend, bottom left: elevation, bottom right: slope 

2.3. Human factors 

The Corine Land Cover 1990 was used to outline both the Wildland Agricultural Interface (WAI) and 

Wildland Urban Interface (WUI). The first refers to the length in meters of the boundary line between 

agricultural lands and forest areas, and the second to the length in meters between urban settlements and 

forest areas. On the other hand, the Demographic potential is a dimensionless variable which reflects the 

demographic power as well as the ability to provide population growth in the near future (J. L. Calvo and 

Pueyo, 2008). The original database was estimated at 5x5 km resolution; thus we have resampled it to 10x10 

km according to the average value. The final demographic potential was expressed as the rate of change 

between 1991 and 2001. 
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Fig. 2. Spatial distribution of the reclassified Wildland Agricultural Interface (WAI) 

2.4. Mapping pyroregions 

For the construction of the pyroregions map several phases were carried out (Figure 3): 

1) We gathered all the fire records from the EGIF database for the period 1974-2015, the longest

time span available when conducting this research. It is important to note that all fire events below

1-hectare were excluded from the process to avoid temporal inconsistencies, since those were only

registered systematically after 1988.

2) We split the original data into two different datasets, according to Jiménez-Ruano et al. (2017a)

and Fréjaville and Curt (2017), who found a significant change point in the evolution of fire activity

in the mid-1990s. Therefore, the periods obtained were 1974-1994 and 1995-2015 (from now on

referred to as past and current).
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Figure 3. Workflow of the mapping pyroregion process. 

3) For each dataset, we extracted information on the number of fires, burned area, natural fires, large

fires (burnt area over 100 hectares) and fires occurring during winter (October to March). Finally,

from this data we computed five fire features on a 10x10 km grid level: fire frequency (F), winter

frequency (FW), burned area (BA), burned area by large fires (BA100) and burned area by natural

cause (BAL).

4) Cluster analysis produced five fire regime types on a 10x10 km grid and four typologies on a 30x30

km grid. We finally decided to focus on the coarser spatial unit (30x30 km) in order to outline the

main fire regime types, thus using 4 typologies of fire regime transitions. These four categories of fire

regime trajectory are ranked according to the danger they pose.
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5) A transition table related the different grids from the 4 fire regime types between past and current

periods obtained a total of 8 final fire regime transition zones (1, 2, 3 and 4) and their corresponding

stable ones (1-1, 2-2, 3-3 and 4-4) for the whole period (1974-2015).

6) The last step was obtaining the final delimitation of pyroregions by geo-processing tools in a GIS

framework. The main task was the spatial overlapping between the 8 final fire regime transition zones

with respect to the 7 environmental-human factors.

1.1. General and sub-pyroregions 

The scheme of pyroregions was designed using two hierarchical levels and defining general regions 

according to overall transition paths reported by Rodrigues et al. (unpublished results) and Jiménez-Ruano 

et al (unpublished results), later dividing them into minor subregions characterized by local drivers and 

conditions (Figure 4). 

A geographical and toponymical description, with its specific fire regime description coupled with the 

contribution of environmental-human fire drivers is provided for each subregion. As a result, we obtained 

a total of 4 general pyroregions and 16 sub-pyroregions characterizing the fire regime in mainland Spain. A 

detailed description of each of these pyroregions and sub-regions is given below, beginning with a 

description of the general regions in terms of the geographical context within mainland Spain, and 

concluding with a presentation of the overall trajectory of fire activity and the characterization of the most 

influential fire drivers.  

(1) Northwest Atlantic. This general pyroregion is located in the Northwest, Cantabrian Cornice and the

west of the provinces of León and Zamora and is divided into 4 different sub-pyroregions.

1.1. Atlantic Galicia: This pyroregion is located in the western half of Galicia and province of 

Ourense. It is characterized by an intensified and persistent winter fire regime. In terms of the fire 

drivers, the region presents a medium-high WAI, a low WUI, a generalized decrease in the DP – 

although stable in the low estuaries-, a stable temperature but with a south-north gradient from a 

decreasing to increasing precipitation tendency. Finally, elevation is generally low, but there are 

medium altitudes in the province of Ourense with low-medium slopes across the whole region. 

1.2. Cantabrian Cornice: This covers the north face of the Cantabrian Range, more specifically the 

Autonomous Communities of Asturias and Cantabria. It is notable for its strong trajectory towards 

winter fire activity and maintaining that progression over time. In terms of fire drivers, it has the 

longest WAI in northern Spain, a low WUI, a general decrease in DP, although some are stable on 

the Cantabrian coast. Climatic trends show stability for temperature and precipitation, but in 

Cantabria, a general decrease in rainfall is found. Finally, this region has an elevation gradient from 

flat coastal areas to the high altitudes of the Cantabrian Range, resulting in a generally rugged 

landscape. 

1.3. León and Zamora: This sub-region is located in the western half of the inland provinces of León 

and Zamora, as well in the south-eastern corner of Lugo. It can be considered as a transition region 

between purely Atlantic and Mediterranean conditions. For this reason, it has mixed fire activity 

trajectories, although the persistence and tendency towards minor increases in forest fires is especially 

noticeable.  From the point of view of the driving factors, it displays a general low-medium WAI, an 
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overall low WUI (although with medium areas in León), and a decline in DP. Temperature is generally 

stable with some areas of increases in the western mountain ranges. Rainfall presents a similar picture, 

although with more and larger areas of increases. Finally, it is a region characterized by its medium 

elevations and high areas in the province of León, so that the latter has a slope gradient ranging from 

the flattest areas in the east to the steepest in the west. 

1.4. Northeast Galicia: This region mainly covers the province of Lugo and the east of A Coruña. It 

is characterized by an overall minor decrease in fire activity. Drivers in this region exhibit a medium-

high WAI, low WUI, a general decline in the DP, increases and stable trends both in temperature 

and precipitation. It is a flat region with both low and medium slopes. 

(2) Inner Mediterranean. This upper pyroregion has the most extensive surface area, occupying most of

the mainland hinterland. It is composed of a total of 6 sub-pyroregions.

2.1. North plateau and Basque Country: This sub-pyroregion is located in the north plateau, the 

Basque Country, western half of La Rioja and northwest of Navarre. In general, it shows a minor 

decrease in fire activity. With human drivers, high WAI can be found in the Basque Country, many 

areas of Salamanca, the north of Palencia and scattered over the province of Burgos, a medium 

agricultural interface occupies the remaining territory as well as the low WAI in mountainous regions. 

Demographic potential shows both stability (flat areas) and decreases (mountainous regions and 

western Salamanca). In terms of climatic trends, stable temperatures dominate the region with a few 

increasing enclaves (southwest Salamanca and north Burgos). The precipitation trend is stable in most 

of the region, although a noticeable decrease is found in the Basque Country and La Rioja, as well as 

a notable increase in an area in north Palencia. Finally, medium elevation and low slopes dominate 

this unit, but also high altitudes and steep slopes in the Cantabrian Range and the northwest of the 

Iberian Range. In turn, low areas are located in Basque Country. 

2.2. Ebro valley, Pre-Pyrenees and Lleida plain-highlands: This region mainly covers the Ebro basin, 

specifically the provinces of Zaragoza, south of Navarre, most of Huesca, northeast of Teruel and 

the flat Pyrenean regions of Lleida. It is characterized by an overall decrease in fire activity, although 

it has scattered enclaves of minor increasing trajectories. Regarding human drivers, medium-high 

values of WAI dominate, with low values in the mountainous areas. A stable DP is the main category, 

although some falls are found in the southwest of Zaragoza and northeast of Teruel. Climate 

tendencies in the region exhibit a general rise in temperature, and stability in the rest. Precipitation 

trends are stable, except for part of Pyrenees of Lleida, where they are falling. Finally, the topography 

gradient ranges from low, flat areas in the Ebro valley to higher, steep slopes in the Pyrenees.  

2.3. Eastern of Castilla-La Mancha: This covers the southwest face of the Iberian Ranges, more 

specifically part of the provinces of Guadalajara, Cuenca, Albacete and some inland areas of Valencia. 

It is characterized by an overall minor decline in fire activity. In terms of fire drivers, WAI depicts 

medium and some high values, low WUI and stable DP. In turn, stable and rising (east of Albacete 

and southeast of Cuenca) temperatures are found in this region, whereas a general stability in rainfall 

predominates with some increases in mountain areas. Finally, medium elevations and low slopes are 

found. 
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2.4. Extremadura and North-Andalusia: This sub-region is located in the north of the Andalusian 

provinces of Jaén and Córdoba, as well as the eastern half of Extremadura. It shows a general minor 

decrease in forest fires. From the point of view of human drivers, this region generally has a medium 

WAI, low WUI and stable DP with some decreases in southeast Caceres, some enclaves in Badajoz 

and the southwest of Albacete. Climatic trends display mainly stable temperatures, but also falling in 

southwest Albacete-northeast Jaén and rising in the northwest of Jaén-east of Córdoba. In turn, 

rainfall shows both stable (east of Cáceres, Badajoz and Jaén) and increasing trends (hinterlands of 

Cáceres and Córdoba, as well as the south of Badajoz). 

2.5. Iberian, southern plateau and mountains: This region extends across the northeast face of Central 

System Range, the whole Iberian Range, the south plateau, hinterlands of the Murcia Region, the 

Betic mountain systems and the western half of the Sierra Morena. It is characterized by a general 

major decrease in fire activity. Fire drivers show medium-high WAI (mainly in the Iberian Range, 

Albacete, and northwest border of Andalusia), a generalized low WUI – although medium-size ones 

can be found in the south of Ávila (surroundings of Madrid). A stable DP dominates the region, with 

some increases in areas of Murcia and the south of the province of Avila, whereas decreases can be 

found in the western end of north Andalusia and in the east of the province of Badajoz.  With climatic 

trends, a general increase in temperature can be found in the Iberian Range, in the Sierra of 

Guadarrama area, some enclaves of the Betic systems and the east of Badajoz, leaving the rest of the 

territory with a stable tendency. However, there are some decreases in temperature in the northwest 

of Córdoba and southwest of Albacete. On the other hand, precipitation shows a general stable trend 

over this region (mainly in the north half of Iberian Range, west Toledo, Albacete and east of 

Badajoz), although it is important to note the presence of extensive areas of rainfall increases in the 

northwest border of Andalusia, the Betic systems and the southern half of Iberian Range. Finally, 

elevation is mainly high-medium with some low altitudes in inland Valencia, Murcia, Badajoz and the 

south-western face of the Sierra Morena. In turn, flat areas dominate the region, although mainly 

medium slopes can be found in the mountain ranges. 

2.6. Pyrenean mountain range: This region mainly covers the Central Pyrenees (north Huesca, 

northeastern Navarre and northwest Lleida). It is notable for a significant decrease and persistence 

of low fire activity. The fire drivers are notable for low WAI and WUI, a stable DP increasing in an 

enclave in northwest Lleida. With climatic factors, the temperature shows an increase with stable 

trends, while precipitation has more stable tendencies, with a region of increases between Huesca 

and Lleida. Finally, the outstanding topographical variables are high elevation with very steep slopes. 

(3) Inner Mediterranean. This general pyroregion extends through the mountain area and surroundings

of the Central System range. It is formed by 3 different sub-pyroregions:

3.1. Western Central System Range: This sub-pyroregion is located in the western half of the Central 

System mountains, more specifically in the north of Cáceres, the southeast of Salamanca and the 

southwest of Avila. It can be considered as an inner enclave that has experienced a progression of 

fire activity in winter. With human drivers, WAI shows medium-high values, a low WUI and a decline 

in the DP trend. The climatic drivers show that temperature is stable, although some increasing areas 

are found both in west-east extremes. Rainfall is predominantly stable, with an area of rising trend in 

the west. Finally, there is a topographical gradient from the southwest, with low altitudes, to the 

northeast with higher elevations, resulting in a predominance of both moderate and high slopes.  
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3.2. Central System Range area: This covers the middle part of Central System Range (south-half of 

Avila and southeast of Salamanca), the whole Autonomous Community of Madrid, as well as some 

areas in the north of Toledo and the west of the province of Guadalajara. Fire activity exhibits minor 

increases over the historic period. From the point of view of anthropogenic factors, this area is 

dominated by a mainly low-medium WAI, a low WUI in most of the territory but with medium-high 

values in the northwestern surroundings of Madrid. The DP presents a west-east gradient from 

decreasing (Salamanca-west Avila) to an increasing variation (areas near Madrid). Regarding climate 

variables, this region is dominated by rising temperatures, while a stable trend characterizes 

precipitation. Finally, high-medium elevations are prevalent together with low-medium slopes.  

3.3. Northwest Extremadura: This specific sub-pyroregion is located mainly in the western half of 

the province of Cáceres. It is formed by two different enclaves that have certain similarities as well 

as differences. Fire activity shows a minor decrease in forest fires in the west, while in the east there 

is a mix of decreases and some enclaves of minor increases. With human drivers, medium-low WAI 

dominates the region, low WUI, and stable-decreasing DP variation. Temperature exhibits no 

significant trend, although there is a general increasing trend in precipitation on the west side, whereas 

stability-increases are found in the east. Finally, the area is flat with very low slopes. 

(4) Levante and southwest coast. This last upper pyroregion covers the whole of the Spanish

Mediterranean coast, as well as the Andalusian Atlantic coast. It comprises 3 sub-pyroregions:

4.1. Mediterranean corridor and southwest coast: This covers almost the entire Spanish 

Mediterranean coast, as well as the Andalusian Atlantic coast. In general terms, it is characterized by 

a minor decline in fire activity; however, throughout the region many small enclaves of minor 

increases can be found (especially in the provinces of Valencia and Huelva). Human drivers present 

a medium-high WAI predominating in the northeast and east of the corridor, whereas, low-medium 

WAI is more noticeable in the south. A similar picture is observed for WUI, where the highest urban 

contact is located on the Catalonian coast. In turn, stability and increases in DP dominate the sub-

region. Climatic variables exhibit a general rise in temperature (concentrated on the Catalonian and 

Valencian coasts) and stability in the south. On the contrary, rainfall trends are stable on the 

Catalonian coast, while there is a rising trend on the Valencian and south coasts. Finally, elevations 

are predominantly low, although some medium-high altitudes are found in the hinterland of Valencia 

and along the south face of the Betic ranges. Slopes are in general moderate-high (rugged relief), with 

the exception of flat plains of Huelva. 

4.2. Hinterlands of Girona and Lleida: This covers the western half of the province of Girona, the 

center-east of the province of Lleida and inland Barcelona. It is dominated by a general and 

remarkable decrease in fire activity. Human drivers display mostly medium-high WAI, low WUI and 

decreasing DP, although medium-high values of urban interface and increasing population variations 

are found in the coastal area of Girona. On the other hand, temperature shows a general rising trend, 

while precipitation tends to be stable. Finally, medium-high elevations and slopes dominate this 

territory. 

4.3. Southern mountainous end: This sub-region is located in the extreme south of mainland Spain, 

covering Cádiz, the west of Málaga and south-eastern Seville. It stands out for its general and 
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significant decline in fire activity. The anthropogenic factors show a low-moderate WAI and low 

WUI although a continuous corridor of medium-high urban interface can be found on the 

Mediterranean coastline. In turn, DP exhibits overall stability but with some areas of rising variation 

in the east coast. Climatic variables present no trend in temperature, whereas precipitation shows 

both increasing (east half) and stable (west half) trends. Finally, it is an area of low elevations with 

some medium altitudes in the province of Málaga, thus medium-high slopes dominate the rugged 

territory. 

Figure 4. Spatial distribution of the 4 general pyroregions and their corresponding 16 sub-pyroregions. 



Chapter 9: Translating fire regime zoning schemes into pyroregions 

193 

Funding 

The present work was supported by the Spanish Ministry of Education, Culture and Sports (FPU grant 

13/06618) and partially by the Regional Government of Aragón (GEOFOREST research group S51_17R) 

co-financed with FEDER 2014-2010 “Construyendo Europa desde Aragón”. Marcos Rodrigues is a 

postdoctoral researcher in th “Juan de la Cierva” program supported by the Spanish Ministry of Economy 

and Finance (FJCI-2016-31090). 

References 

Calvo, J.L., Pueyo, A., 2008. Atlas Nacional de España: Demografía. Geográfica 104, 393–396. 

Earth Resources Observation and Science Center/U.S, 1997. USGS 30 ARC-second Global Elevation 

Data. https://doi.org/https://doi.org/10.5065/A1Z4-EE71 

Fréjaville, T., Curt, T., 2017. Seasonal changes in the human alteration of fire regimes beyond the climate 

forcing. Environ. Res. Lett. 12, 035006. https://doi.org/10.1088/1748-9326/aa5d23 

González-Hidalgo, J.C., Brunetti, M., de Luis, M., 2011. A new tool for monthly precipitation analysis in 

Spain: MOPREDAS database (monthly precipitation trends December 1945-November 2005). Int. J. 

Climatol. 31, 715–731. https://doi.org/10.1002/joc.2115 

González-Hidalgo, J.C., Peña-Angulo, D., Brunetti, M., Cortesi, N., 2015. MOTEDAS: a new monthly 

temperature database for mainland Spain and the trend in temperature (1951-2010). Int. J. Climatol. 

35, 4444–4463. https://doi.org/10.1002/joc.4298 

Jiménez-Ruano, A., Rodrigues Mimbrero, M., de la Riva Fernández, J., 2017. Exploring spatial–temporal 

dynamics of fire regime features in mainland Spain. Nat. Hazards Earth Syst. Sci. 17, 1697–1711. 

https://doi.org/10.5194/nhess-17-1697-2017 

Sen, P.K., 1968. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 63, 

1379–1389. 





10 CHAPTER 10: CONCLUSIONS
AND FUTURE RESEARCH 

This chapter summarizes the main conclusions of this thesis as 
well as, presents potential future lines of a further research. 





Chapter 10: Conclusions and future research 

197 

The methodologies employed in this PhD dissertation have sought to cover the following general purposes: 

a) to describe the spatial-temporal distribution of fire features that best characterize the general fire regime,

b) to evaluate the contribution of meteorological danger in the temporal evolution of fire activity, c) to

analyse the spatial-temporal changes of the influence of anthropogenic drivers in human-caused wildfires,

d) to describe and characterize the evolution and causes of fire regime changes, and e) to obtain a general

pyroregion map from the fire regime zoning.

Delimiting and characterizing homogenous fire regime regions (pyroregions) constitutes a laborious and 

complex task that must take into account various aspects of forest fires. Firstly, the selection of fire features, 

which is an important step as they have undergone spatial-temporal changes. Secondly, knowing which fire 

drivers are involved in the trajectories shown by wildfire regimes. 

The temporal dimension of fire regimes was the cornerstone of the research. In this respect, we have proved 

that fire regimes are non-stationary, showing both trends and marked seasonality in certain regions of 

mainland Spain. Therefore, this has facilitated the identification of regions more prone to fires which, in 

certain cases, have also been shown to experience a lengthening of the summer fire season.   

It is important to emphasize the strong potential of the methods employed throughout the investigation to 

characterize fire regimes. In particular, we highlight the performance of multivariate regression, such as 

Random Forest in identifying factors underlying fire regime changes, GAM to describe the climate-human 

conditions relationship with fire regime features, or GWLR which enabled us to discover the spatial patterns 

of drivers. In turn, ARIMA models made it possible to project the temporal inertia of the main fire features 

into the near-future. Moreover, classification algorithms, such as KNN, were essential for replicating fire 

regime categories in both the past and future; and hierarchical clustering to optimize the fire regime 

typologies process. In addition, Mann Kendall and Sen’s slope tests contributed to extracting the temporal 

evolution (sign and magnitude of the trend) of time series for the features time series in different stages of 

the dissertation.  

On the other hand, it is necessary to be aware of some uncertainty in the fire phenomenon models as an 

analysis technique. For instance, working with averaged fire features or integrated in main components 

(PCA) may mask their variance. The Spanish fire database (EGIF), although it is one of the most extensive 

and complete in Europe, contains several changes of criteria in the way fire events were recorded over the 

years, which affects wildfire characterization. However, taking as a reference the concept of fire regimes, 

such as the mean conditions of fire features in a given area and time, this perspective was deemed more 

appropriate for the purposes of simpler and clearer interpretation. 
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Main conclusions 

The specific conclusions according to the objectives (Chapter 2) are summarized below. 

a) Explore the spatial-temporal distribution of fire regime features and their relation with climate-human

factors:

 We have confirmed our hypothesis that, in mainland Spain, there are various fire regimes. The main

fire features are fire frequency, burned area from large fires (>500 ha) and burnt area caused by

lightning. The northwest region constitutes an example of human impact during winter, while

seasonal variability in fire activity in the hinterland and Mediterranean has been mainly driven by

weather conditions. Specifically, the northwest and hinterland regions exhibit high frequency of

summer fires (including large fires), whereas during winter human-induced fires are more common.

The Mediterranean region is best characterized by burned area features, and although fire frequency

is important in summer, it takes second place in winter.

 Two main trends based on seasonality were detected: an increase in fire frequency during winter

and a decrease in burnt area during summer. In both cases, human causality is strongly associated

to fire tendencies and changes. At province or NUTS3 level, different behaviors are found in the

northwest region (increasing in frequency and decreasing in burned area). On the other hand,

change point detection found a common breakpoint in the late 1980s and in the first half of the

1990s. In turn, the Mann-Kendall test indicated that the Mediterranean showed the strongest

negative tendencies, in contrast to the other regions. Finally, Sen’s slope suggested wide spatial-

seasonal variability and some trend gradients related to overall frequency and natural fires.

Generally, the total number of fires depicts a rising trend (greater in winter) whereas there is an

overall decline in burnt area.

b) Estimate the contribution of fire-weather danger on the temporal evolution of fire activity:

 Weather conditions control seasonal cycles of fire activity but have a limited influence on long-term

trends. Fire danger is better related to fire frequency than burned area size; however, diverse spatial

patterns are found, depending on the causality and final fire size. The seasonal influence of weather

is most noticeable in the two months prior to the fire, although in the hinterland this influence

stretches to three months. In the northwest region, seasonal burned area correlations are more

associated with intentionality. The trend component of the Mediterranean has desynchronized with

fire-weather danger since 1994, indicating the predominance of human factors. Finally, FWI and

FFDI indices can be deemed useful for studying fire-weather associations at a regional level, while

BI is significant at local level.

c) Analysis of spatial-temporal changes in the role of anthropogenic drivers on wildfires:

 GWR points out that some human drivers vary over time and are losing ground to climate factors,

probably due to a successful fire prevention policy. Therefore, new explanatory factors should be

taken into account (for example: arson variables or climate conditions). However, this temporal

evolution is not stationary in space or time. In particular, both wildland interfaces and protected

natural areas seem to be losing the power to explain the probability of fire ignition.
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d) Characterize the dynamics of recent-future fire regimes and know the drivers of their changes:

 Five regime typologies are outlined at 10x10 km grid level (1) low fire activity, (2) medium-sized

wildfires with a fair contribution from natural causes, (3) medium-sized forest fires with a high

proportion of human-caused fires, (4) large wildfires with a significant presence of lightning, and

(5) the high incidence of fire during winter. Overall, falling trajectories are most commonly found,

covering an extensive area, although winter activity has progressed into the northwest and remains

across the north. Demographic potential seems to be the main driver behind most transitions,

followed by climatic tendencies. Wildland interfaces appear to be (WAI and WUI) directly

associated with upward transitions (also winter progression) and inverse to downward ones.

 Four fire regime typologies were preserved at 30x30 km grid level (1) low fire activity, (2) medium-

sized wildfires in summer with a small contribution from natural fires, (3), large fires caused by

lightning, and (4) large fires related to winter activity. A reduction in fire activity is the most common

scenario for the future, with a general increase in regions with a low incidence of fire.

e) Translating fire regime zoning schemes into pyroregions:

 Four large pyroregions have been outlined and characterized:

(1) The Northwest-Atlantic, which concentrates the strongest winter progression of human-

caused fires, and is driven by moderate-high wildland agricultural interface (WAI), an overall decline

in demographic potential (DP), stable-increasing trends in climate variables in a region with diverse

topography. The main sub-regions are Atlantic Galicia and the Cantabrian Cornice, both

represented by the most noticeable winter progression of wildfires. The León and Zamora sub-

region is also noteworthy for a minor increase in fire activity.

(2) The inner Mediterranean, which shows major and minor decreases in fire activity; is influenced

by low WAI in the Pyrenees but medium-high in the remaining territory; stable DP in northern flat

areas, increases in Madrid and Murcia, decreases in the southern plateau; there are temperature

increases in mountain areas; rainfall exhibits a decreasing-increasing gradient from north to south;

medium-high elevation in flat areas with steep slopes in the east.

(3) The inland mountain ranges combine winter fire progression and minor increases in fire

activity; it is driven by medium WAI, low-medium WUI near Madrid; a falling to rising west-east

gradient in DP; stable precipitation and increases in temperature; topographical gradients are also

found. It must be pointed out that there are two regions with a moderate increase in forest fires

(the area of the Central System Range and northwest Extremadura). There is also a region with

a strong increase in winter fires in the west of the Central System.

(4) The Levante and southwest coast have slightly reduced fire activity with some enclaves of

minor rises in wildfires, it is influenced by a generalized medium-high WAI, low WUI (but with

medium-high urban interface in Catalonia), stable-increasing DP, significant increases in climate

drivers, and low-medium altitudes with rugged territory.
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Future research 

Although this PhD Thesis provides innovative insights into the identification and characterization of fire 

regimes, it is logical that there are many aspects which can be explored and improved by promoting further 

research. Although the spatial perspective has been assessed at three different levels (regional, provincial, 

grid) and the minimum official unit of reference (10x10 km) seems to be the most appropriate, it might be 

necessary to move towards a more detailed spatial unit, due to the finer resolution of explanatory variables 

which are currently available.  

Many and innovative future research lines are opened in terms of a more profound characterization of the 

evolution of fire regimes. The temporal dimension has been addressed in detail; however, it is evident that 

future estimations entail high uncertainty. Therefore, specific proposals for future research are presented: 

i. Deeper insights into causes explaining temporal behavior of the main fire regime features should be

explored, especially those linked to changes in land use.

ii. Small fires (1 < ha) could be included, thus enriching fire regime assessment in order to avoid

potential bias caused by their exclusion.

iii. Move towards fine tuning the existing fire-weather indices, depending on the environment analyzed.

iv. Further investigation into the temporal behavior of driving factors, taking into account seasonal

variability in fire occurrence (divided into summer and winter).

v. Isolate the influence of large fires and analyze fire drivers separately in order to assess the degree of

contribution of fire size.

vi. Consider taking into account fire features in several subsets (e.g. season, cause and size) in the

context of fire modeling, as it helps to more clearly unravel the variability in the occurrence of fire.
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Las metodologías empleadas en la presente tesis han perseguido cubrir los siguientes propósitos generales: 

a) determinar la distribución espacio-temporal de las métricas de incendio que mejor caracterizan al régimen

general del fuego, b) evaluar  la contribución  del riesgo meteorológico en la evolución temporal de la

actividad del fuego, c) analizar los cambios espacio-temporales  de la influencia de los factores antrópicos

en los incendios forestales causados por el hombre,  d) describir y caracterizar la evolución y las casusas de

los cambios en el régimen de incendios, y e) obtener una cartografía general de la piroregiones a partir de

la zonificación del régimen de incendios.

Delimitar y caracterizar regiones homogéneas de régimen de incendios (piroregiones) constituye una tarea 

laboriosa y compleja que debe tener en cuenta diversos aspectos de los incendios forestales. En primer 

lugar, la selección de las características del fuego, paso importante debido que estas experimentan cambios 

espacio-temporales. En segundo lugar, conocer los factores dirigentes de los incendios involucrados en las 

trayectorias mostradas por los regímenes de incendio forestales. 

La dimensión temporal de los regímenes de incendio ha sido la piedra angular de todas las etapas de la 

investigación. En este sentido, se ha demostrado que los regímenes de incendio no son estacionarios, 

mostrando tanto tendencias como una marcada estacionalidad en determinadas regiones de la España 

peninsular. Por lo tanto, esto ha facilitado la identificación de regiones con una mayor propensión a los 

incendios, que, en algunos casos, también han demostrado estar experimentando un alargamiento de la 

temporada estival de incendios. 

Es importante destacar el alto potencial de los métodos empleados a lo largo de la investigación para 

caracterizar los regímenes de incendios. En particular, destacamos el rendimiento de la regresión 

multivariante: como Random Forest en la identificación de los factores que están detrás de los cambios en el 

régimen de incendios, GAM para describir la relación entre las condiciones climáticas-humanas y las 

métricas del régimen de incendios, o GWLR que nos permitió descubrir los patrones espaciales de los 

factores dirigentes. A su vez, los modelos ARIMA permitieron proyectar la inercia temporal de las 

principales métricas del fuego en el futuro cercano. Incluso los algoritmos de clasificación como KNN 

fueron esenciales para replicar las categorías de régimen de incendios hacia el pasado y el futuro, o el clúster 

jerárquico para optimizar el proceso de obtención de las tipologías de régimen de incendios. Además, las 

pruebas de Mann-Kendall y pendiente de Sen han contribuido a extraer la evolución temporal (signo y 

magnitud de la tendencia) de las series temporales de las métricas de incendio en diferentes etapas de la 

tesis.  

Por otro lado, es necesario recordar la cierta incertidumbre de los modelos del fenómeno del fuego como 

técnica de análisis. Por ejemplo, trabajar con métricas de incendio promediadas o integradas en 

componentes principales (PCA) puede enmascarar en cierto grado su varianza. La base de datos de 

incendios española (EGIF), aunque es una de las más extensas y completas de Europa, contiene varios 

cambios de criterio en la forma en que se registran los sucesos de incendios a lo largo de los años, lo que 

afecta a la caracterización de los incendios forestales. Sin embargo, tomando como referencia el concepto 

de regímenes de incendios, como las condiciones promedias de las características del fuego en una zona y 

momento determinados, esta perspectiva se ha considerado más apropiada a efectos de una interpretación 

más simple y clara. 
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Conclusiones principales 

A continuación, se resumen las conclusiones específicas según los objetivos presentados en el Capítulo 2. 

a) Explorar la distribución espacio-temporal de las métricas del régimen de incendios y su relación con las

factores climáticos-humanos:

 Hemos confirmado nuestra hipótesis de que las tres regiones tradicionales de la España peninsular

tienen regímenes de incendio diferentes. Las principales métricas de incendio son: la frecuencia de

incendios, el área quemada por grandes incendios (> 500 ha) y el área quemada por causa de rayos.

La región Noroeste representa un ejemplo claro del impacto humano durante el invierno, mientras

que la variabilidad estacional en el interior y el Mediterráneo ha sido impulsada principalmente por

las condiciones climáticas. Concretamente, las regiones del Noroeste y del Interior muestran una

alta frecuencia de incendios en verano (incluidos los grandes incendios), mientras que durante el

invierno los incendios humanos desempeñan un papel más notable. La región mediterránea está

mejor caracterizada por las métricas del área quemada, y aunque la frecuencia de incendios es

relevante durante el verano, ocupa el segundo lugar en invierno.

 Se han detectado dos tendencias principales basadas en la estacionalidad: aumento de la frecuencia

de incendios durante el invierno y el descenso del área quemada durante el verano. En ambos casos,

la causalidad humana está fuertemente asociada a las tendencias y cambios de los incendios. A nivel

provincial o NUTS3 se encuentran diferentes comportamientos en la región noroeste (aumento de

la frecuencia y disminución de la superficie quemada). Por otra parte, la detección de puntos de

cambio ha encontrado un punto de ruptura común a finales de la década de 1980 y en la primera

mitad de la década de 1990. El test de Mann-Kendall reveló que el Mediterráneo presenta las

mayores tendencias negativas, en contraste con el resto de regiones. Finalmente, la pendiente de

Sen sugirió una gran variabilidad espacio-temporal y algunos gradientes de tendencia relacionados

con la frecuencia general y los incendios naturales. En general, el número total de incendios

representa un aumento (mayor en invierno), mientras que el área quemada experimenta una

disminución general.

b) Estimar la contribución del riesgo de incendio meteorológico en la evolución temporal de la actividad de

los incendios:

 Las condiciones climáticas controlan los ciclos estacionales de la actividad del fuego, pero tienen

una influencia limitada en las tendencias a largo plazo. El riesgo de incendio está más relacionado

con la frecuencia de incendios que con el tamaño del área quemada, sin embargo, se encuentran

diversos patrones espaciales dependiendo de la causalidad y el tamaño final del incendio. La

influencia estacional del clima es más notable en los dos meses anteriores al incendio, aunque en el

interior esta influencia alcanza significativamente los tres meses. Para el caso de la región Noroeste,

las correlaciones estacionales de áreas quemadas están más asociadas a la intencionalidad. En cuanto

al componente de tendencia del Mediterráneo, muestra una desincronización con el peligro de

incendios desde 1994, revelando la supremacía de los factores humanos. Por último, los índices de

FWI y FFDI pueden considerarse útiles para el estudio de las asociaciones de entre incendios y

meteorología a nivel regional, mientras que el índice BI destaca a nivel local.
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c) Análisis de los cambios espacio-temporales en el peso de los factores antropogénicos en los incendios

forestales:

 GWR señala que algunos factores humanos varían con el tiempo y están perdiendo protagonismo

dando paso a los factores climáticos, probablemente debido a una exitosa política de prevención de

incendios. Por lo tanto, deberán tenerse en cuenta nuevos factores explicativos (por ejemplo:

variables relacionadas con incendios provocado o condiciones climáticas). Sin embargo, esta

evolución temporal no es estacionaria ni en el espacio ni en el tiempo. En particular, tanto las

interfaces forestales como las áreas naturales protegidas parecen estar perdiendo poder explicativo

en términos de la probabilidad de ignición del fuego.

d) Caracterizar la dinámica de los regímenes de incendios recientes-futuros y conocer las causas de sus

cambios:

 Se han esbozado cinco tipologías de régimen de incendios a nivel de cuadrícula de 10x10 km (1)

baja actividad de incendios, (2) incendios forestales de tamaño medio con una contribución justa

de causa natural, (3) incendios forestales de tamaño medio con un alto peso de incendios de origen

humano, (4) incendios forestales de gran tamaño con una presencia notable de los causados por

rayo, y (5) la alta incidencia de incendios durante el invierno. En general, las trayectorias de descenso

son la situación más común, cubriendo un territorio extenso. Aunque, la actividad invernal ha

progresado hacia el noroeste y persiste a lo largo del norte. El potencial demográfico parece ser el

principal impulsor de la mayoría de las transiciones, seguido de las tendencias climáticas. Las

interfaces forestales (WAI y WUI) aparecen asociadas directamente a transiciones ascendentes

(también progresión invernal) e inversamente a tendencias descendentes.

 Asimismo, se han conservado cuatro tipologías de régimen de incendios a nivel de cuadrícula de

30x30 km: (1) baja actividad de incendios, (2) incendios forestales de tamaño medio en verano con

baja contribución de incendios naturales, (3) incendios de gran superficie relacionados con los rayos,

y (4) grandes incendios relacionados con la actividad invernal. La disminución de la actividad de los

incendios es la situación más común hacia el futuro inmediato, con un aumento general de las

regiones con baja incidencia de incendios.

e) Trasladar los esquemas de zonificación del régimen de incendios en piroregiones:

- Se han trazado y caracterizado cuatro grandes piroregiones:

(1) El noroeste Atlántico, que concentra la mayor progresión invernal de los incendios provocados

por el hombre, y está impulsado por una interfaz agrícola forestal moderada y alta (WAI), una

disminución general del potencial demográfico (DP) y tendencias estables en aumento de las

variables climáticas en un territorio de topografía diversa. Las principales subregiones son la Galicia

Atlántica y la Cornisa Cantábrica, ambas representadas por la más notable progresión invernal

de los incendios forestales. Destaca también la subregión de León y Zamora, que se caracteriza

por un leve aumento de la actividad de incendios.

(2) El Mediterráneo interior, que presenta disminuciones mayores y menores de la actividad de

los incendios; está influenciado por un WAI bajo en los Pirineos pero medio-alto en el resto del
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territorio; DP estable en las zonas llanas del norte, aunque con aumentos en Madrid y Murcia, así 

como disminuciones en la meseta sur; la temperatura muestra aumentos en las zonas montañosas 

y las precipitaciones presentan un gradiente decreciente que aumenta de norte a sur. Por último, la 

elevación es media-alta con zonas llanas y pendientes pronunciadas en el este.  

(3) Las cordilleras interiores combinan la progresión invernal del fuego con pequeños

incrementos de la actividad del fuego; está impulsada por un WAI medio-bajo, WUI medio cercano

a Madrid; DP presenta un gradiente oeste-este de decrecimiento a aumento; estabilidad en la

precipitación y aumentos de temperatura; existen gradientes topográficos. Cabe destacar dos

subregiones con un aumento moderado de los incendios forestales (entorno del Sistema Central

y el Noroeste de Extremadura), pero también encontramos una región con un marcado aumento

de los incendios invernales en el oeste del Sistema Central.

(4) El "Levante" y la costa suroeste destaca por una ligera disminución de la actividad de los

incendios con algunos enclaves de pequeños incrementos en los incendios forestales, está

influenciado por una generalizada WAI media-alta, una WUI baja (pero con una interfaz urbana

media-alta en Cataluña), una DP estable y creciente, incrementos significativos en los generadores

de cambio climático, en las altitudes medias-bajas y en el territorio escarpado.

Futuras investigaciones 

Aunque esta tesis proporciona nuevas perspectivas sobre la identificación y caracterización de los regímenes 

de fuego, es lógico que existan muchos aspectos en los que profundizar y mejorar, promoviendo otras 

investigaciones futuras. Aunque el aspecto espacial se ha evaluado en tres niveles diferentes (regional, 

provincial, cuadrícula) y la unidad mínima oficial de referencia (10x10 km) parece ser la más adecuada, 

podría ser necesario avanzar hacia una unidad espacial más detallada, debido a la mayor resolución de las 

variables explicativas actualmente disponibles.  

Se abren muchas e innovadoras líneas de investigación futuras en términos de una caracterización más 

profunda de la evolución de los regímenes de incendios. La dimensión temporal ha sido abordada en detalle, 

sin embargo, es evidente que en la estimación futura se asume una alta incertidumbre. Por lo tanto, se 

presentan algunas propuestas específicas de investigación:  

i. Se debe ir una comprensión más profunda de las causas que explican el comportamiento temporal

de las principales métricas del régimen de incendios, especialmente las relacionadas con los cambios

en el uso del suelo.

ii. Podrían incluirse los conatos (1 < ha), lo que enriquecería la evaluación del régimen de incendios

para evitar los posibles sesgos causados por su exclusión.

iii. Avanzar hacia una puesta a punto de los índices meteorológicos existentes, en función del entorno

analizado.

iv. Se podría desarrollar una investigación más detallada sobre el comportamiento temporal de los

factores impulsores, teniendo en cuenta la variabilidad estacional de la ocurrencia de incendios (dividida

en verano e invierno).

v. Aislar la influencia de los grandes incendios y analizar por separado los factores dirigentes de

incendios para evaluar el grado de contribución del tamaño del fuego.
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vi. Considerar la posibilidad de tener en cuenta las características del fuego en agregados en varios

subconjuntos (por ejemplo, por estación, causa y tamaño) en el contexto de la modelización de

incendios, ya que ayuda a desentrañar con mayor claridad la variabilidad del fenómeno del fuego.
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A 
APPENDIX A: SUPLEMENTARY 
MATERIAL OF FIRE REGIME 
FEATURES

This appendix presents the supplementary material of the paper 
entitled “Understanding wildfires in mainland Spain. A 
comprehensive analysis of fire regime features in a climate-
human context” which shows complementary results obtained 
in this publication. 
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B APPENDIX B: SUPLEMENTARY 
MATERIAL OF FIRE-WEATHER 

This appendix presents the supplementary material of the paper 
entitled “The role of short-term weather conditions in temporal 
dynamics of fire regime features in mainland Spain” which 
shows complementary results obtained in this publication. 
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C 
APPENDIX C: SUPLEMANTARY 
MATERIAL OF DRIVERS OF 
CHANGE 

This appendix presents the supplementary material of the 
accepted paper entitled “Fire regime dynamics in mainland 
Spain. Part 1: drivers of change” which shows complementary 
results obtained in this publication. 
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D APPENDIX D: PRELIMINARY 
PYROREGIONS DELIMITATION 

This appendix presents the work “Identifying pyroregions by 
means of Self Organizing Maps and hierarchical clustering 
algorithms in mainland Spain” forming part of the conference 
proceedings in Advances in Forest Fire Research 2018. It 
summarizes a preliminary attempt to define spatial-temporal 
definition pyroregions employing Self Organizing Maps (SOM), 
including the structural and trend component of fire regime 
features. 
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E APPENDIX E: CONFERENCES 
CONTRIBUTIONS 

This appendix brings together several abstracts from different 
conference contributions, mainly from the European 
Geosciences Union General Assembly (EGU) held in 2017 and 
2018. Most of the abstracts refers to poster presentations and one 
to an oral dissertation.  
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