Machine Learning to Find Areas of Rotors Sustaining Atrial Fibrillation from the ECG
Financiación H2020 / H2020 Funds
Resumen: Atrial fibrillation (AF) is the most frequent irregular heart rhythm due to disorganized atrial electrical activity, often sustained by rotational drivers called rotors. The non-invasive localization of AF drivers can lead to improved personalized ablation strategy, suggesting pulmonary vein (PV) isolation or more complex extra-PV ablation procedures in case the driver is on other atrial regions. We used a Machine Learning approach to characterize and discriminate simulated single stable rotors (1R) location: PVs, left atrium (LA) excluding the PVs, and right atrium (RA), utilizing solely non-invasive signals (i.e., the 12-lead ECG). 1R episodes sustaining AF were simulated. 128 features were extracted from the signals. Greedy forward algorithm was implemented to select the best feature set which was fed to a decision tree classifier with hold-out cross-validation technique. All tested features showed significant discriminatory power, especially those based on recurrence quantification analysis (up to 80.9% accuracy with single feature classification). The decision tree classifier achieved 89.4% test accuracy with 18 features on simulated data, with sensitivities of 93.0%, 82.4%, and 83.3% for RA, LA, and PV classes, respectively. Our results show that a machine learning approach can potentially identify the location of 1R sustaining AF using the 12-lead ECG.
Idioma: Inglés
DOI: 10.22489/CinC.2020.181
Año: 2020
Publicado en: Computing in Cardiology 47 (2020), [4 pp.]
ISSN: 2325-8861

Factor impacto SCIMAGO: 0.257 - Computer Science (miscellaneous) - Cardiology and Cardiovascular Medicine

Financiación: info:eu-repo/grantAgreement/EC/H2020/766082/EU/MultidisciplinarY training network for ATrial fibRillation monItoring, treAtment and progression/MY-ATRIA
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2023-09-13-10:56:35)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-03-03, última modificación el 2023-09-14


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)