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SUMMARY 

  

In intensive ruminant feeding systems, carbohydrates are the main source of energy 

for both animals and ruminal microorganisms. In contrast to the fibrous carbohydrates 

that acts as a buffer of rumen environment, the non-fibrous carbohydrates are efficiently 

used as energy source, as they are rapidly fermented and to a large extent. However, this 

increases the risk of ruminal acidosis, especially in the case of young ruminants that are 

not well adapted to this type of diets.  

The primary objective of this Memory was to investigate in vitro the impact of the 

transition from a forage diet to another high in concentrate during the early fattening of 

ruminants by assessing the effect of the source of carbohydrate and additives 

supplementation on pH and overall microbial fermentation, under in vitro conditions. 

Two experiments were carried out under the same incubation conditions in the first 

section of the Thesis, in order to study the fermentation pattern of several carbohydrate 

sources (Experiment I.1) and of carbohydrate mixtures (Experiment I.2), and their 

interaction with the nature of microbial inoculum. Both experiments were carried out 

using an in vitro semicontinuous culture system maintaining poorly buffered conditions 

from 0 to 6 h of incubation and being gradually buffered to 6.5 from 8 to 24 h to simulate 

rumen pH pattern. The rumen inoculum was obtained from lambs (n=3) fed with either 

concentrate and barley straw (concentrated inoculum, CI) or alfalfa hay (forage inoculum, 

FI).  

In Experiment I.1, three cereal grains (barley, B; maize, M; and brown sorghum, S) 

and three agroindustrial by-products (sugarbeet pulp, BP; citrus pulp, CP; and wheat bran, 

WB) were tested. From 2 to 12 h incubation, medium pH was influenced by the inoculum 

source, recording lower values with CI than FI (P<0.05). Lowest incubation pH was 

recorded at 6 h with CI (5.96 ± 0.2) and at 8 h with FI (6.22 ± 0.2), thereafter increasing 

to an average of 6.64 ± 0.02 and 6.63 ± 0.04 at 24 h, respectively. The volume of gas 

produced and the total volatile fatty acids (VFA) concentration were higher with CI than 

FI throughout the incubation (P<0.05), but the nature of inoculum did not affect dry 

matter disappeared (DMd). Molar proportions of acetate, propionate, and butyrate did not 

record inoculum differences (P>0.05), whereas valerate was higher and branched-chain 

volatile fatty acids (BCVFA) were lower for CI at 6 and 10 h. Among incubated 



XII 

 

substrates, S, BP and M maintained the highest pH from 4 to 8 h (P<0.05), whereas CP 

recorded the lowest pH from 2 to 12 h with CI and from 4 to 10 h with FI (minimum 

values of 5.60 and 5.90), but recovered thereafter to 6.63 at 24 h. With CI, the highest gas 

volume throughout the incubation was recorded by CP, followed by WB and B, then BP 

and M, and the lowest volume was recorded by S (P<0.05). Similar trends were observed 

with FI except at 4 h, when the highest gas production was recorded with WB (P<0.05). 

At 6 and 10 h, with CI as well as with FI, total VFA concentration was higher with CP 

than M, S and BP (P<0.05), and at 6 h incubation lactic acid with CP was the highest for 

both inocula (P<0.05). The microbial structure was mainly affected by the incubation 

series (donor animal) than by the substrate type.  

In Experiment I.2, three carbohydrate mixtures (1:1 maize:barley, MB, and 

maize:sugarbeet pulp at either 1:1, MP, or 3:1, 3MP) were evaluated. The inoculum 

source markedly affected the medium pH, which was lower with CI (P<0.05) than FI 

during the first 8 h of incubation. However, the volume of gas recorded with CI as 

inoculum was always superior to that with FI (P<0.05), and the DMd with CI tended to 

be higher than that disappeared with FI (0.38 vs. 0.34; P= 0.077). At all sampling times, 

the concentration of total VFA was higher (P<0.05) with CI than FI, but this parameter 

was not affected by the type of mixture (P>0.05). At 24 h, the highest proportion of acetate 

was recorded by MP, whereas MB and 3MP recorded the high proportion of butyrate and 

valerate (P<0.05). At 6 h, the highest and lowest lactic acid concentrations were promoted 

by 3MP and MP (P<0.05). As in Experiment I.1, bacterial diversity was markedly 

affected by the inoculum type. Similarly, inoculum effects were detected in Shannon 

index (P=0.004) and tended to be significant in Richness index (P= 0.074). When CI was 

used, minimum incubation pH was reached after 6 h, being higher (P<0.05) with MP than 

with MB and 3MP from then (6.06, 5.97 and 5.95 at 6 h, respectively) to 20 h (6.78, 6.67 

and 6.67). The gas production (GP) was highest for MB at 2 h and from 6 to 16 h, and 

lowest with 3MP from 2 to 8 h and with MP from 20 h onwards (P<0.05). Higher DMd 

was recorded by MB and 3MP compared with MP (0.440 and 0.396 vs. 0.305; P<0.05). 

Regarding the microbial diversity, MP and MB clustered together when rumen from 

lambs 1 and 2 was used; however, with rumen liquid from lamb 3 the two mixtures 

including sugarbeet pulp clustered together. With FI, pH was lower with MB than with 

3MP at 6 h (6.33 vs. 6.39, P<0.05), and with MB it was maintained lowest onwards 

(P<0.05). The volume of gas from 3MP was lowest (P<0.05) up to 4 h, and it was lower 
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with 3MP than with MB from 6 h onwards (P<0.05), whereas differences between MB 

and MP were only recorded after 24 h. Concerning the microbial diversity, when 

inoculum from lamb 6 was used the mixtures with sugarbeet pulp clustered together. No 

differences between mixtures were found in Shannon index (P= 0.753); however, 

mixtures effects were detected in Richness index (P= 0.041), mixtures ranking as follows: 

3MP (107.17) followed by MP (102.33) and then MB (96.67; P<0.05, SEM= 2.378). In 

both concentrate and forage environments, MP maintains a more stable pH pattern while 

microbial fermentation was not noticeably depressed compared to higher starch 

proportions mixtures (MB and 3MP). The microbial fermentation with MB and 3MP was 

depressed at a higher extent than that with MP.   

In section II, a first methodological in vitro experiment (Experiment II.3) was 

carried out to evaluate the potential effects of tannin extracts from quebracho (QCT), 

grape (GCT), chestnut (CHT) and oak (OHT), for reducing rumen fermentation of barley 

meal under high concentrate feeding. The four tannin sources were included at three 

levels (10, 20 and 30 mg/g substrate), in three 24 h incubation series. Intensive feeding 

conditions were simulated by adjusting incubation pH at 6.2 and by using inoculum from 

beef calves given 0.91 concentrate proportion ad libitum. Incubation pH at 8 and 24 h 

incubation ranged from 6.14 to 6.18 and from 5.94 to 6.00, respectively. Increasing 

addition of tannin extracts linearly reduced GP from barley meal alone (control; CTL), 

for CHT (P< 0.05 up to 6 h; P< 0.10 from 8 to 18 h), OHT (P< 0.05 from 2 to 12 h; P< 

0.10 from 18 to 24 h), GCT (P< 0.05 from 2 to 24 h) and QCT (P< 0.10 from 2 to 6 h). 

However, a quadratic trend (P< 0.10) was also detected on GCT up to 4 h and from 10 h 

onwards. Among extracts, the effect of GCT was the highest and that of CHT lowest, and 

the biological effect (BE) of tannins at 24 h tended to differ among tannin sources (P= 

0.069), showing higher values with GCT than CHT, irrespective of their level of inclusion 

(P> 0.10). Similar results were observed on DMd after 24 h, that showed a linear decrease 

with all sources of tannins (P< 0.05) and was lower with GCT than with both QCT and 

CHT (P< 0.05). All tannin sources linearly increased (P< 0.05) molar butyrate proportion 

from barley alone, at the expense of a linear reduction in propionate proportion in GCT 

(P< 0.01) and CHT (P< 0.10). The four tested tannin sources reduced rumen microbial 

fermentation of barley grain, with a maximum response being recorded with grape and 

chestnut extracts. Except for chestnut, all sources already reached their maximum level 
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of response at their first level of inclusion (10 mg/g). The inclusion of tannins in diets for 

fattening young ruminants did not negatively affect the microbial fermentation.   

In another experiment of this section (Experiment II.4), the effect of increasing 

levels of either fatty acids or essential oils on fermentation of barley grain was studied in 

two in vitro experiments (Experiment II.4.1 and Experiment II.4.2) under the same 

incubation conditions than in Experiment II.3. Treatments were: barley alone (CTL), 

medium-chain fatty acids (MFA; 2, 4 and 6 mg/g), palmitic (PAL) and linoleic (LIN) 

acids, these included at 15, 30 and 45 mg/g. Compared with non-supplemented barley 

(CTL), the inclusion of LIN quadratically reduced GP (P< 0.05 up to 24 h), whereas such 

reduction tended to be linear  (P< 0.10 at 12 and 24 h) with PAL, and a quadratic trend 

(P<0.10 at 24 h) was detected with MFA. DMd and estimated microbial mass in the liquid 

medium from CTL were quadratically reduced (P< 0.05) with MFA and LIN. Total VFA 

concentration and acetate proportion tended (P< 0.10) to increase linearly with LIN, 

whereas propionate proportion tended to decrease (P= 0.051). In Experiment 4.2, 

cinnamaldehyde (CIN; 30, 60 and 90 mg/g), eugenol (EUG; 60, 120 and 180mg/g), and 

a commercial blend of essential oils (CBC; 30, 60 and 90 mg/g), were tested in 

comparison with barley alone (CTL). The GP from CTL decreased linearly with CIN 

throughout the incubation (P< 0.001 up to 24 h) and decreased quadratically with EUG 

(P= 0.047 at 24 h), whereas it increased linearly with CBC (P< 0.05 at 12 h, and P<10 at 

8 and 24 h). Microbial mass decreased quadratically with EUG (P< 0.001). The total VFA 

concentration from CTL decreased both linearly (P< 0.05) and quadratically (P< 0.001) 

with CIN and EUG, respectively. Acetate proportion increased quadratically with the 

inclusion of EUG (P< 0.05) at the expense of propionate (P< 0.001), and a linear reduction 

in propionate proportion was also observed with CIN (P< 0.05). This study showed that, 

with different magnitude, both fatty acids and essential oils may reduce barley 

acidification potential. Among the different additive tested herein, the essential oil CBC 

can improve the rumen microbial fermentation of barley. 

The last Experiment (Experiment II.5) was designed to compare five additives of 

different nature included at a single dose (grape condensed tannins; GCT 20 mg/g, a 

mixture of medium-chain fatty acids; MFA 4 mg/g, linoleic acid; LIN 30 mg/g, eugenol; 

EUG 120 mg/g, cinnamaldehyde; CIN 60 mg/g) in their effect on in vitro barley 

fermentation under simulated intensive feeding conditions for beef diets. Rumen 

inoculum from beef calves fed ad libitum with a concentrate and straw 
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(concentrate:forage; 0.91:0.09) was used. Contrarily to both Experiments 3 and 4, this 

trial was carried out using the semicontinuous system, under a poorly buffered medium 

from 0 to 6 h, and allowed pH to rise to around 6.5 from 8 to 24 h. On average, the 

incubation pH reached its minimum after 6 h (6.89 ± 0.07), and thereafter the maximum 

was reached at the end of incubation (6.41 ± 0.03). From 6 h onwards, the highest pH was 

recorded by GCT, whereas a lower pH values were recorded by CIN (P< 0.05). 

Throughout all the incubation period, EUG and CIN produced lower volume of gas than 

CTR (P< 0.05); however, GCT produced lower volume than CTR after 8 h (P< 0.05). 

Similar to the results observed with GP, the inclusion of different additives reduced the 

dry matter disappearance (DMd) of barley, being highest with CTR (P< 0.05) and lowest 

with GCT (P< 0.05). High concentration of total VFA was recorded at 8 h (P< 0.05), as 

well as for acetate and propionate proportions (P< 0.05). Between treatments, on average, 

MFA recorded the highest concentration of VFA, while EUG and CIN recorded the 

lowest concentration of total VFA and propionate proportion. The highest proportion of 

propionate was promoted by LIN (P< 0.05), results that were supported by those showed 

by bacterial diversity. In contrast to cinnamaldehyde, grape condensed tannins and fatty 

acids may positively affect barley acidification potential. 

Methodologically, the semicontinuous system used in this experiment allowed to 

detect marked differences in the effect of the different additives on fermentation kinetics 

of barley, and provides with a useful tool for their relative comparison in non-

conventional fermentation conditions. 
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RESUMEN  

 

En los sistemas de alimentación intensiva de rumiantes, los carbohidratos son la 

principal fuente de energía tanto para los animales como para los microorganismos 

ruminales. A diferencia de los carbohidratos fibrosos, que actúan como tampón del 

ambiente ruminal, los carbohidratos no fibrosos se usan eficientemente como fuente de 

energía, ya que son fermentados rápida y extensamente. Sin embargo, este hecho aumenta 

el riesgo de acidosis ruminal, especialmente en el caso de rumiantes jóvenes que no están 

bien adaptados a dietas altamente concentradas. 

El objetivo principal de esta Tesis fue investigar in vitro el impacto de la transición 

de una dieta a base de forraje a otra dieta con alta inclusión de concentrado durante el 

engorde temprano de rumiantes, mediante la evaluación del efecto de la fuente de 

carbohidratos y la suplementación de aditivos sobre el pH y la fermentación microbiana. 

En la primera sección de la Tesis, se llevaron a cabo dos experimentos sujetos a las 

mismas condiciones de incubación, para estudiar el patrón de fermentación de varias 

fuentes de carbohidratos (Experimento I.1) y mezclas de carbohidratos (Experimento I.2), 

así como su interacción con la fuente de inóculo microbiano. En ambos experimentos se 

utilizó un sistema de cultivo semicontinuo in vitro para mantener un tamponamiento 

reducido de 0 a 6 h de incubación, aumentando gradualmente a 6,5 de 8 h y hasta 24 h 

para simular el patrón de pH del rumen. El inóculo ruminal se obtuvo de corderos (n = 3) 

alimentados con concentrado y paja de cebada (inóculo concentrado, IC) o heno de alfalfa 

(inóculo forrajero, IF). 

En el Experimento I.1, se probaron tres granos de cereal (cebada, C; maíz, M; y 

sorgo marrón, S) y tres subproductos agroindustriales (pulpa de remolacha azucarera, PR; 

pulpa de cítricos, PC; y salvado de trigo, ST). De 2 a 12 h de incubación, la fuente del 

inóculo influenció el pH del medio, registrando con IC valores inferiores a IF (P <0,05). 

El pH de incubación más bajo se registró a las 6 h con IC (5,96 ± 0,2) y a las 8 h con IF 

(6,22 ± 0,2), aumentando posteriormente a las 24 h hasta 6,64 ± 0,02 y 6,63 ± 0,04, 

respectivamente. El volumen de gas producido y la concentración total de ácidos grasos 

volátiles (AGV) fueron mayores con IC que con IF durante toda la incubación (P <0,05), 

pero el origen del inóculo no afectó la desaparición de la materia seca (dMS). Las 

proporciones molares de acetato, propionato y butirato no mostraron diferencias debidas 
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al inóculo (P >0,05), mientras que el valerato aumentó y los ácidos grasos volátiles 

ramificados (AGVR) disminuyeron con IC a las 6 y 10 h. Entre los sustratos incubados, 

S, PR y M mantuvieron un mayor pH a las 4 y 8 h (P <0,05), mientras que con PC se 

registró el pH más bajo, de 2 a 12 h con IC y de 4 a 10 h con IF (valores mínimos de 5,60 

y 5,90), recuperándose a las 24 h (6,63). Con IC, el mayor volumen de gas durante toda 

la incubación se registró con PC, seguido por ST y C, luego PR y M, y finalmente el 

volumen más bajo se registró con S (P <0,05). Se observaron tendencias similares con IF 

excepto a las 4 h, cuando la mayor producción de gas se registró con ST (P <0,05). A las 

6 y 10 h, la concentración total de AGV fue superior para PC que M, S y ST (P <0,05) 

con ambos inóculos, mientras que a las 6 h se observó el pico de mayor producción de 

ácido láctico con PC resultó para ambos inóculos (P <0,05). En cuanto a la estructura 

microbiana, ésta se vio afectada en mayor medida por las diferencias entre incubaciones 

(animal donante) que por el sustrato.  

En el Experimento I.2 se evaluaron tres mezclas de carbohidratos (1:1 M:C, MC, y 

M:PR a 1:1, MP, o M:PR a 3:1, 3MP). La fuente de inóculo afectó notablemente el pH 

del medio, menor con IC (P <0,05) que con IF durante las primeras 8 h de incubación. 

Sin embargo, el volumen de gas registrado con IC siempre superó al de IF (P <0,05), y a 

su vez, con IC la dMS tendió a ser mayor que con IF (0,38 vs. 0,34; P = 0.077). En todos 

los tiempos de muestreo, la concentración total de AGV fue mayor (P <0,05) con IC que 

con IF, aunque la mezcla de carbohidratos no incidió en este parámetro (P >0,05). A las 

24 h, MP registró la mayor proporción de acetato, mientras que MC y 3MP registraron la 

mayor proporción de butirato y valerato (P <0,05). A las 6 h, las concentraciones más 

altas y bajas de ácido láctico se observaron con las mezclas de 3MP y MP (P <0,05), 

respectivamente. Como en el Experimento I.1, la diversidad bacteriana se vio 

notablemente afectada por el tipo de inóculo. Del mismo modo, el efecto del inóculo se 

detectó en el índice de Shannon (P = 0,004) y tendó a ser significativo en el índice de 

riqueza (P = 0,074). Con IC, el mínimo pH de incubación se alcanzó después de 6 h (6,06, 

5,97 y 5,95 a las 6 h con MP, MC y MP), siendo posteriormente más alto (P <0,05) con 

MP que con MC y 3MP a 20 h (6,78, 6,67 y 6,67, respectivamente). La producción de 

gas fue mayor con MC a las 2 h y de 6 a 16 h, e inferior con 3MP de 2 a 8 h y con MP a 

partir de las 20 h (P <0,05). La dMS fue mayor con MC y 3MP en comparación con MP 

(0,440 y 0,396 vs. 0,305, respectivamente; P <0,05). Con respecto a la diversidad 

microbiana, MC y MP se agruparon cuando se incubaron con inóculo de los corderos 1 y 
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2; sin embargo, con el líquido ruminal del cordero 3 las dos mezclas que incluyeron PR 

se agruparon. Con el uso de IF, a las 6 h se observó un pH más bajo con MC que con 3MP 

(6,33 vs. 6,39, P <0,05), manteniéndose posteriormente esa diferencia (P <0,05). El 

volumen de gas producido con 3MP fue el más bajo (P <0,05) hasta las 4 h, y fue menor 

que con MC a partir de las 6 h (P <0,05), mientras que las diferencias entre MC y MP 

solo se registraron a las 24 h. Con respecto a la diversidad microbiana, las mezclas con 

PR se agruparon cuando se usó el inóculo del cordero 6. No se encontraron diferencias 

entre mezclas en el índice de Shannon (P = 0,753); sin embargo, sí influenciaron el índice 

de riqueza (P = 0,041), clasificándose de la siguiente manera: 3MP (107,17) seguido de 

MP (102,33) y finalmente de MC (96,67; P <0,05, EEM = 2,378). Tanto en los ambientes 

generados por una dieta concentrada como forrajera, la mezcla MP mantuvo un patrón de 

pH más estable, mientras que la fermentación microbiana no se redujo de forma notable 

en comparación con las mezclas con mayores proporciones de almidón (MC y 3MP).  

En la sección II, se realizó un primer experimento metodológico in vitro 

(Experimento II.3) para evaluar el efecto potencial de los extractos de taninos de 

quebracho (TQC), uva (TUC), castaño (THC) y roble (THR) en la reducción de la 

fermentación ruminal de la cebada bajo una alimentación alta en concentrados. Las cuatro 

fuentes de taninos se incluyeron en tres niveles (10, 20 y 30 mg/g de sustrato), en tres 

series de incubación de 24 h. Las condiciones de alimentación intensiva se simularon 

ajustando el pH de incubación a 6,2 y mediante el uso del inóculo de terneros con una 

proporción de concentrado ad libitum de 0,91. El pH de incubación a las 8 y 24 h osciló 

entre 6,14 y 6,18 y entre 5,94 y 6,00, respectivamente. Con la adición gradual de extractos 

de taninos se redujo linealmente la producción de gas comparado con la cebada sola 

(CTL): con THC hasta las 6 h (P <0,05) y de 8 a 18 h (P <0,10), con THR de 2 a 12 h (P 

<0,05) y de 18 a 24 h (P < 0,10), con TUC de 2 a 24 h (P <0,05) y con TQC de 2 a 6 h (P 

<0,10). Sin embargo, también se detectó una tendencia cuadrática (P <0,10) con TUC 

hasta las 4 h y a partir de las 10 h en adelante. Entre los extractos, el mayor efecto se 

obtuvo con TUC mientras que el menor se obervó con THC, y el efecto biológico (EB) a 

las 24 h tendió a diferir entre las fuentes de taninos (P = 0.069), mostrando valores más 

altos con TUC que THC, independientemente de su nivel de inclusión (P >0,10). 

Resultados similares se observaron sobre la dMS a las 24 h, mostrándose una disminución 

lineal con todas las fuentes de taninos (P <0,05), aunque fue menor con TUC que con 

TQC y THC (P <0,05). Todas las fuentes de taninos aumentaron linealmente (P <0,05) la 



 

 

XIX 

 

proporción molar de butirato de la cebada sola, a expensas de una reducción lineal en la 

proporción de propionato en TUC (P <0.01) y THC (P <0,10). Las cuatro fuentes de 

taninos analizadas redujeron la fermentación ruminal de la cebada, registrándose una 

respuesta máxima con los extractos de uva y de castaño. A excepción del castaño, todas 

las fuentes alcanzaron su nivel máximo de respuesta con su nivel de inclusión más bajo 

(10 mg/g). La inclusión de taninos en las dietas para engorde de rumiantes jóvenes no 

afectó negativamente la fermentación microbiana.   

En otro experimento de esta sección (Experimento II.4), se estudió el efecto del 

aumento de los niveles de ácidos grasos o de aceites esenciales en la fermentación del 

grano de cebada en dos experimentos in vitro (Experimento II.4.1 y Experimento II.4.2) 

bajo las mismas condiciones de incubación que en el Experimento 3. Los tratamientos 

fueron: cebada sola (CTL), ácidos grasos de cadena media (AGCM; 2, 4 y 6 mg/g), y 

ácidos palmítico (PAL) y linoleico (LIN), ambos incluidos a 15, 30 y 45 mg/g. En 

comparación con la cebada no suplementada (CTL), la inclusión de LIN redujo la 

producción de gas de manera cuadrática hasta las 24 h (P <0,05), mientras que dicha 

reducción tendió a ser lineal entre las 12 y 24 h con PAL (P <0,10), y a una evolución 

cuadrática con AGCM a las 24 h (P <0,10). La dMS y la masa microbiana estimada en el 

medio líquido de CTL se redujeron cuadráticamente con AGCM y LIN (P <0,05). La 

concentración total de AGV y la proporción de acetato tendieron a aumentar linealmente 

con LIN (P <0,10), mientras que la proporción de propionato tendió a disminuir (P = 

0,051). En el Experimento 4.2, se valoraron cinamaldehído (CIN; 30, 60 y 90 mg/g), 

eugenol (EUG; 60, 120 y 180 mg/g) y una mezcla comercial de aceites esenciales (CBC; 

30, 60 y 90 mg/g) frente la cebada sola (CTL). Con ésta, la producción de gas disminuyó 

linealmente con CIN durante toda la incubación (P <0,001 hasta 24 h) y cuadráticamente 

con EUG (P = 0.047 a las 24 h), mientras que aumentó linealmente con CBC (P <0,05 a 

las 12 h, y P <10 entre las 8 y 24 h). La masa microbiana disminuyó cuadráticamente con 

EUG (P <0.001). La concentración total de AGV disminuyó tanto linealmente (P <0,05) 

como cuadráticamente (P <0,001) al suplementar la cebada con CIN y EUG, 

respectivamente. La proporción de acetato aumentó cuadráticamente con la inclusión de 

EUG (P <0,05) a expensas del propionato (P <0,001), y también se observó una reducción 

lineal en la proporción de propionato con la adición de CIN (P <0,05). Este estudio mostró 

que, en diferente grado, tanto los ácidos grasos como los aceites esenciales pueden reducir 
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el potencial de acidificación de la cebada. Entre los diferentes aditivos probados aquí, el 

aceite esencial CBC puede mejorar la fermentación microbiana ruminal de la cebada.  

El último experimento (Experimento II.5) fue diseñado para comparar el efecto de 

cinco aditivos de diferente naturaleza incluidos a dosis única (taninos condensados de 

uva, TUC 20 mg/g; una mezcla de ácidos grasos de cadena media, AGCM 4 mg/g; ácido 

linoleico, LIN 30 mg/g; eugenol, EUG 120 mg/g; y cinamaldehído, CIN 60 mg/g) sobre 

la fermentación de la cebada in vitro simulando condiciones de alimentación intensiva 

para dietas de vacuno de carne. Como inóculo se empleó contenido ruminal de terneros 

alimentados ad libitum con un concentrado y paja (relación concentrado:forraje; 

0,91:0,09). Contrariamente a los Experimentos 3 y 4, esta prueba se llevó a cabo 

utilizando el sistema semicontinuo, bajo un medio con un sistema tampón reducido de 0 

a 6 h, y aumentado el pH hasta alrededor de 6,5 de 8 a 24 h. El pH de incubación alcanzó 

su mínimo después de las 6 h (6,89 ± 0,07), y aumentó posteriormente hasta alcanzar el 

máximo al final de la incubación (6,41 ± 0,03). A partir de las 6 h en adelante, el pH más 

alto se registró con TUC, mientras que con CIN los valores fueron más bajos (P <0,05). 

Durante todo el período de incubación, con EUG y CIN se produjo un volumen de gas 

inferior al de CTR (P <0,05); sin embargo, con TUC el volumen producido fue menor 

que el CTR después de 8 h (P <0,05). De manera similar, la inclusión de diferentes 

aditivos redujo la dMS de la cebada, siendo la mayor con CTR (P <0,05) y la menor con 

TUC (P <0,05). Se registró una alta concentración de AGV totales a las 8 h (P <0,05), 

con proporciones de acetato y propionato elevadas (P <0,05). Entre tratamientos, en del 

medio, con los AGCM se registró la concentración más alta de AGV, mientras que con 

EUG y CIN se registraron las concentraciones más bajas de AGV totales y de proporción 

de propionato. En este aspecto, la mayor proporción de propionato se asoció con LIN (P 

<0,05), respaldado por la diversidad bacteriana. A diferencia del cinamaldehído, los 

taninos condensados de uva y los ácidos grasos pueden afectar positivamente el potencial 

de acidificación de la cebada. 

Metodológicamente, el sistema semicontinuo utilizado en este experimento 

permitió detectar diferencias importantes en el efecto de los diferentes aditivos sobre la 

cinética de fermentación de la cebada. Ello proporciona una herramienta útil para realizar 

una comparación relativa en condiciones de fermentación no convencionales.
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Chapter I. General introduction  

Meat production livestock systems in Europe in general, and in particular in 

Spain have been suffered radical changes from extensive to intensive systems. Thus, early 

weaning of the young ruminant is the strategy followed to prepare the animal for 

fattening. The three pre-stomachs of neonatal ruminants, the rumen in particular is an 

organ sterile and nonfunctional. Its development starts when animals begin to consume 

solid feed at two to three weeks of age (Hungate, 1966; Drackley et al., 2008; Govil et 

al., 2017), but it reaches its full capacity few months later. The transition of monogastric 

digestion to a polygastric implies anatomical, physiological, and metabolic changes 

(Quigley at al., 1991; Reynolds et al., 2004; Wang et al., 2009; Jiao et al., 2015). Different 

microorganisms will colonize the rumen, so it becomes gradually functional (Fonty et al., 

1987; Rey et al., 2012). For a good development of the rumen, concentrates are more 

effective than forages, because the volatile fatty acids produced from the consumption of 

concentrate, mainly propionic and butyric acids, are responsible for the establishment of 

a functional rumen (Tamate et al., 1962; Quigley et al., 1997; Heinrichs, 2005). In this 

way Danielli et al. (1945) observed that the absorption of volatile fatty acids at pH 5.8 

was faster than at pH 7.5, and the rate of absorption is higher when the chain of the acid 

is longer (butyrate > propionate > acetate) owing to their liposolubility, which is highest 

for butyric acid and lowest for acetic acid. Another hypothesis, proposed by Baldwin 

(1999) indicates that the presence of butyrate indirectly contributed to an endocrine 

response, increasing the plasma insulin-like growth factor (IGF-1) concentrations, which 

stimulated the development of rumen papillae.  

In Spain, before weaning, young ruminants are fed with forages or pastures that 

are occasionally complimented. However, after weaning, the diets used for fattening are 

based on cereal-rich concentrates (high-energy diets) to reach the objective of slaughter 

at an early age, particularly for calves and lambs. In general, the former are slaughtered 

at 8-10 months of age and 280-300 kg carcass weight (García-Rebollar et al., 2008) and 

the later at 3-4 months and 10-15 kg carcass weight (Sañudo at al., 1998). The abrupt 

change in diet type without a good management of the transition phase leads to onset of 

digestive disorders, which would be the second cause responsible of mortality and 

morbidity of ruminants in feedlots after that of respiratory diseases (Nagaraja and 

Lechtenberg, 2007). The most common digestive disorder is rumen acidosis, which is 



General introduction  

2 

 

associated to the growth in consumption of high-energy diet with low forage supply. The 

acidosis processes cause a nonphysiologic accumulation of volatile fatty acids in the 

rumen, which are produced at a very high rate from microbial fermentation, that cannot 

be balanced by regulatory factors such as the buffering capacity of saliva produced during 

rumination, thus leading to reduced rumen pH (Martin et al., 2006; Nagaraja and 

Titgemeyer, 2007; Nagaraja and Lechtenberg, 2007). It has been known for a long time 

that the pH fluctuated inversely with the concentration of volatile fatty acids in the rumen 

(Balch and Rowland, 1957). Normally, the pH of rumen fluid is in the range of 5.8-6.8 

(Bergman, 1990), although Mialon et al., (2008) showed that the rumen pH is normally 

situated above 6.25 to ensure the optimal conditions for majority of microbial species. 

This pH is typically achieved by forage rich diets. In contrast, high concentration diets 

that characterised by rapid fermentation can decrease the pH to values below 6.0 or 5.5 

or even below 5.0 (Hungate, 1966; Bergman, 1990). The type and composition of diet 

strongly condition the microbial populations (Jouany and Ushida, 1998). Thus, during 

rumination, high fibrous diets stimulate saliva production that provides urea and minerals, 

for maintaining normal rumen microbial growth and development (Govil et al., 2017). 

However, these diets do not provide sufficient energy for the rapid fattening of the animal. 

In contrast, the increase of cereals inclusion in diets for intensive fattening provides high-

energy, but decreases the saliva and the arrival of bicarbonate ions in the rumen, which 

leads to drop rumen pH causing both a reduction of cellulolytic population and an increase 

of organisms that produce both propionate and lactate (Balch and Rowland, 1957). From 

this point, it is necessary to know in an accurate way the process of microbial fermentation 

of feeds commonly used in concentrate diets in order to better understand nutritive 

processes of intensively reared ruminants and to establish strategies to minimise the 

negative impact of this practice. These strategies must be focused on how to reach a good 

feeding management preserving the same energy level in diets for the intensive fattening, 

without involve the appearance of different digestive disorder especially rumen acidosis.  

In recent years, many studies have been interested in the addition of different 

types of products that are defined as additives in diets for ruminants, among them, the 

zootechnical feed additives like plant extracts (tannin, essential oils), fatty acids, etc. 

These additives are characterized by their specific capacity to enhance the fermentation 

of different carbohydrates in the rumen, modifying and modulating the microbial activity. 

Previous studies (Benchaar et al., 2007; Calsamiglia et al., 2007; Beauchemin et al., 2009; 
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Rodríguez et al., 2014) supposed that the use of these additives positively affect animal 

performances and their welfare. Nevertheless, sometimes the results from a study to 

another are contradictory. In fact, the incompatibility of results between research groups 

is due to different factors, among them the dose of the dietary inclusion of the additive, 

the type of active compound of the additive and its concentration, the nature of the diet, 

the experimental conditions (in vivo vs. in vitro), and the adaptation time of the ruminal 

bacteria to the additive. In addition, it is very important to note that major studies were 

focused on the effect of these additives in diets for beef or dairy cattle, marginalizing the 

small ruminants production sector. These factors are considered as limitations that make 

difficult to understand the pure effect of each additive.  

In vivo and in situ are methods that allow for the study and evaluation of nutritive 

value of animal feeds. However, these methods have many disadvantages, being 

expensive, laborious and need more time to obtain results. In contrast, the in vitro methods 

are less expensive and less time consuming. In addition, the in vitro methods allow to 

maintain experimental conditions under control in a more precise way than in vivo trials 

(Raab et al., 1983). The application conditions of the in vitro gas measurement technique 

are suitable to mimic high forage diets, by maintaining an incubation pH over 6.5 using 

a highly buffered medium (Goering and Van Soest, 1970; Mould et al., 2005a). These 

conditions, however, are not adapted to the study of fermentative processes in intensive 

feeding, and therefore estimation of concentrate fermentation is biased. The use of other 

buffers like citrate or phosphate or the acidification of the medium to get the required pH 

has been proposed (Grant and Mertens, 1992), but the former is often more expensive and 

the latter rapidly exhausts the buffering capacity (Mould et al., 2005a). Continuous and 

semi-continuous incubation systems (Hoover et al., 1976; Czerkawski and Breckenridge, 

1977) have been developed for maintaining pH at a low range through systematic infusion 

of a buffering solution, but this increases the complexity and price of the equipment. 

Using batch-culture systems and/or a simple semi-continuous incubation system 

(Fondevila and Pérez-Espés, 2008, modified by Prates et al., 2010), the procedures 

proposed by Amanzougarene and Fondevila (2018) allow for extending working 

conditions to the study of effects in intensive feeding systems.  
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Chapter II. Literature review  

1. Ruminal acidosis in weaned ruminants  

The rumen of young ruminants destined to intensive fattening must be reach its full 

development prior to weaning because of the strategies followed in this type of production 

system. To ensure the rumen development, young ruminant should be adapted to digest 

solid feeds, especially high carbohydrates diets. Church (1988) reported that, in contrast 

to liquid feeds, solid feeds are directed to the retículo-rumen for digestion, which will 

stimulate organ development. The lack of rumen development prior to weaning followed 

by the abrupt weaning and the introduction of high levels of concentrate in the diets for 

fattening of these animals negatively influences rumen pH, ruminal microbial activity, 

and rumen volatile fatty acids (VFA) production.  

1.1. Rumen pH and fermentation  

 

Rumen fermentation of feedstuffs is the result of coordinated activities of several 

microorganisms. Rumen pH is an important factor affecting fermentation. It affects the 

rate and extent of microbial fermentation, as well as the microbial species involved in the 

process (Russell and Dombrowski, 1980; Hiltner and Dehority, 1983). The pH of the 

rumen undergoes diurnal fluctuations and reflects the balance of acid production and 

absorption, as well as the buffering function provided by the bicarbonate ion from the 

saliva. Ruminal pH varies considerably during the day (Figure 1), and is particularly 

driven by the amount of fermentable carbohydrates in each meal (Krause and Oetzel, 

2006). Dado and Allen, (1993) and Nocek et al. (2002) indicated that from 0.5 to 1.0 units 

within a 24 h period are common changes in rumen pH. This represents a five to ten-fold 

change in the hydrogen ion concentration in the rumen (Krause and Oetzel, 2006). After 

feeding, VFA production from fermentation increases resulting in a drop of rumen pH. 

As the rate of VFA production decreases while absorption continues in the subsequent 

hours, the rumen pH will progressively rise again (Crater et al., 2007) until the next 

feeding. The nature of the diet is a key factor among those that contribute to change rumen 

pH, although ruminants have a highly developed system to maintain the pH within the 

physiological limits of 5.5 to 7.0 (Dehority, 2003) based on processes of salivation and 

absorption through the rumen wall, as well as by inversing rate of passage (Krause and 

Oetzel, 2006). A drop of pH to 6.00 and below should reduce microbial fermentative 
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activity (Hungate, 1966; Russell and Dombrowski, 1980), thus contributing to enhancing 

the negative effect of acidification. Mould et al. (1983) observed that cellulolysis was 

party inhibited at 6.3 and then almost totally inhibited when pH fell below 6.0. The 

reduction in the amount of forage in diets, and the increase in the amount of high 

fermentable carbohydrates can be negatively correlated to rumen pH (Yang et al., 2001; 

Krause et al., 2002). 

 

 

 

Figure 1. Post-feeding variations in ruminal pH over a period of 24h. The cow 

was fed dry cracked shelled corn and fine alfalfa silage twice daily (12h 

interval). Dry matter intake of the current day was 22.7 kg. Average ruminal 

pH for that day was 5.87 (data from Krause and Combs, 2003). 

 

 

1.2. Physiology of buffering capacity of the rumen 

 

The intensive livestock feeding systems are based on diets rich in ingredients with 

highly available nutrients that are digested or fermented at a high rate, in order to get high 

productive performances. This strategy causes changes on the physiological buffering 

capacity of the digestive system of the ruminants, especially on the pH ranges that may 
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result in rumen acidosis. In such scenario, a range of pH from 6.0 to 6.8 in the rumen 

should be desirable for ensuring an optimum microbial activity (Dehority, 2003).  

The buffering capacity is defined as the ability of a solution to resist changes in pH 

(Giger-Reverdin et al., 2002). This buffering capacity refers to the number of moles of 

H+ that must be added to one litre of solution to cause a change in pH (Counotte et al., 

1979), or specifically to decrease the pH by one unit (Segel, 1976). This value depends 

on the buffer system and on the initial pH (Kohn and Dunlap, 1998), and weak acids and 

bases provide buffering better than strong acids and bases because of the establishment 

of an equilibrium between the acid and the conjugate base. The buffering capacity of the 

rumen is mainly defined by the pH value, the partial pressure of CO2, and the 

concentration of volatile fatty acid and lactic acid (Counotte et al., 1979). Ruminal pH 

depends on CO2 partial pressure, as is shown in the reaction: 

CO2 + H2O ↔ H2CO3 ↔ HCO3
− + H+ 

The variations in the amount of CO2 dissolved in the medium automatically vary the 

amount of H+ ions (Marden et al., 2005). Then, the pH of the rumen is defined by: 

pH rumen = 7,74 + log (HCO3
−/pCO2)  

The most prevalent ruminal buffers are those originating from saliva (HCO3, HPO4). 

Counotte et al. (1979) and Erdman (1988) reported that the most important is HCO3. 

Phosphate is a minor component and is of minor value as buffering agent in rumen fluid, 

but it is very important in the regulation of rumen pH (Counotte et al., 1979). In bovine, 

saliva concentrations of HCO3 are 90 to 120 mM and those of HPO4 are 20 to 25 mM 

(Bartley, 1976). Araujo-Febres and Vergara-López (2007) reported that the rumen buffer 

system is very complex, based on an abundant production of saliva (mainly from 

secretions of bicarbonate and phosphate), the elimination of VFA by their absorption 

through the rumen wall, and the mineral salts which react with the organic acids from 

plants producing CO2. The saliva secreted by ruminants has a pH of 8.0 to 8.2 and a high 

concentration of sodium, bicarbonate and phosphate ions, and behaves as lubricant of the 

feed consumed, characteristics which allows their buffer action on the rumen fluid 

(Counotte et al., 1979, Krause and Oetzel, 2006). When the saliva pH is 8.0, 86% of the 

phosphate is in the HPO4
2- form, upon entering the rumen, the following reaction occurs 

HPO4
2- + H3O

+ ↔ H2PO4
- + H2O until 10% is in the form of HPO4

2- and 90% as H2PO4-. 

This reaction raises the rumen pH, but reduces the buffering capacity of the phosphate 
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system (Counotte et al., 1979). Bicarbonate acts similarly, but is more important when 

the rumen pH is 6.25 or lower because the pH value of the equilibrium reaction (HCO3
- 

+ H3O
+ ↔ H2CO3 + H2O ↔ CO2 + 2H2O) is 6.25 (Counotte et al., 1979). The 

measurement of the buffer capacity of rumen contents is useful to express the ability of 

this organ to remain more or less stable at certain pH range.  

The buffering capacity is influenced by different factors that alter the amount or 

quality of saliva produced. The high consumption of forage stimulates saliva secretions, 

and the carbohydrates of these forages are slowly digestible, while the consumption of 

cereal grains or feeds rich in starch or soluble sugars that are rapidly fermentable 

generates a high concentration of organic acids (Fischer et al., 1994). Thus, rumen pH 

drops below the physiological levels when ruminants consume excessive amounts of 

rapidly fermentable (non-fiber) carbohydrates. Besides, in intensive production systems 

where the use of concentrates is high, the rate and extent of degradation of the fibrous 

fraction of feed, which proportion is already reduced, is diminished by the low activity of 

cellulases of rumen microorganisms at low pH (Araujo-Febres and Vergara-López, 

2007). Under these conditions, the rumination decreases as well as the secretion of saliva, 

and thus the buffering capacity of the rumen fluid decreases.  

1.3. Rumen acidosis 

 

Rumen bacteria are considered the most important and diverse microbial group 

between the different types of microorganisms in the rumen that contribute in process of 

rumen fermentation and it has been classified in accordance with their main metabolic 

activity (Belanche et al., 2012). Several types of these bacteria are responsible for 

carbohydrate fermentation into VFAs, which are the main energy source for ruminants, 

providing approximately 70% of the total energy requirements (Bergman, 1990). 

Fernando et al. (2010) reported that the microbial population in the rumen can be modified 

depending on the type of carbohydrates consumed. Selenomonas ruminantium and 

Streptococcus bovis are the species that most contribute in the carbohydrate fermentation. 

Belanche et al. (2012) added that these two species are considered as lactate producers 

and Megasphaera elsdenii as lactate consumer. 

In the intensive fattening systems of ruminants, the increase of intake of highly 

fermentable organic matter leads to a rapid production and absorption of acids in the 

rumen (Pan et al., 2016) at the time it causes a reduction in the microbial activity and 
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ruminal pH (Mao et al., 2016). A frequent consequence of this feeding practice is acidosis, 

which has become an important problem in ruminant feeding. Two levels of acidosis are 

distinguished: acute ruminal acidosis (ARA) and subacute ruminal acidosis (SARA).   

1.3.1. Acute ruminal acidosis  

Acute rumen acidosis occurs with a rapid grain overload offed to non-adapted 

animals accompanied by clinical signs such as decreased appetite and ruminal motility 

(Allen, 1997), decreased salivation and redistribution of systemic water (Slyter, 1976), 

and also accompanied by an increase in rumen lactate concentrations that is caused by 

proliferation of Streptococcus bovis (Russell and Hino, 1985). In addition, ARA may 

result in severe illness, liver abscesses, and even in death of the animal. Nocek (1997) 

reported that when ruminal pH is maintained over 5.5, an equilibrium exists between 

producers and utilizers, and lactic acid does not accumulate in the rumen. In such 

conditions, Valente et al. (2017) indicated that when lactic acid is produced, it is 

immediately absorbed and converted into glucose in the liver, or oxidized to provide 

energy to tissue. Nocek (1997) added that a pH less than 5.5, no cellulolytic and relatively 

few amylolytic bacteria survive. However, Streptococcus bovis multiplies until ruminal a 

pH is lower than 5.0, a pH that allows an increase in growth of Lactobacillus sp. These 

later are more resistant to low pH than Streptococcus bovis (Nagaraja and Lechtenberg, 

2007) and finally predominant. Sharpe et al. (1973) showed that the two predominant 

species of lactobacilli that have been identified and well characterized are Lactobacillus 

ruminis and Lactobacillus vitulinus. The former species produces mostly L(+)- and about 

5 % D(-) lactic acid, and the latter produces D(-)- lactic acid. Giesecke and Stangassinger 

(1980) reported that in the rumen, the predominant isomer is L(+) lactate, and the 

proportion of D(−) lactate increases with lower pH. Bolton and Pass (1988) added that L- 

lactic acid is metabolised more rapidly than D- lactic acid, thereon the metabolic acidosis 

is due in large part to the accumulation of D- lactic acid. The sequence of events 

associated with the induction of acute ruminal lactic acidosis is shown in Figure 2.  

Schwartzkopf-Genswein et al. (2003) proposed that ARA is defined when the rumen pH 

ranged from 5.2 to 5.0. However, other studies (Britton and Stock, 1989; Owens et al., 

1998; Krause and Oetzel, 2006) reported that ruminal pH of 5.0 or below, approaching 

4.5 or lower is considered the benchmark for acute ruminal acidosis. The main reason for 

pH to reach 4.5 or below is lactic acid accumulation (Nagaraja and Titgemeyer, 2007), 
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which is the result of its increased production (50 to 120 mmol/L) and decreased 

fermentation.  

Lactic acid is a compound derived from the intermediary metabolism of 

carbohydrates that is found in very small amounts in normal ruminal conditions (0 to 5 

mmol/L; Nagaraja and Titgemeyer, 2007). This acid is stronger than the VFAs (pKa 3.9 

vs. ≈ 4.80), and is the first responsible for the alterations observed in cases of ARA. 

Subsequent absorption of organic acids into the bloodstream might overwhelm the 

bicarbonate buffering system, the excretion rate of acids and the capacity of tissues and 

organs to metabolize acids, resulting in systemic acidosis (Brown et al., 2000). The 

maintaining of the pH drop on time determines the death of a considerable number of 

rumen bacterial species, among them some lactate utilizing bacteria such as Megasphaera 

elsdenii and Selenomonas ruminantium, which are not adapted to survive under these 

conditions. This imbalance in rumen bacteria aggravates the ruminal dysfunction at the 

time of release endotoxins to the medium, which can be absorbed into the body (Sienra, 

2009). The direct action of acids on rumen epithelium determines its inflammation and 

the destruction of large areas, and finally the accumulation of lactic acid determines a 

significant increase in the osmotic pressure, so the water can pass from the organism into 

the rumen (Radostits et al., 1994; Owens et al., 1998; Sienra, 2009). The affected animals 

show symptoms in two to four hours after grain intake, including complete anorexia, 

abdominal pain, tachycardia, tachypnea, diarrhoea, lethargy, spasms, and death.  
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Figure 2. Sequence of events associated with the induction of acute ruminal lactic 

acidosis (data from Nocek, 1997). 

 

 

1.3.2. Subacute ruminal acidosis 

In contrast to ARA, SARA (chronic or sub-clinical acidosis) habitually is not 

accompanied with clear clinical signs. Nagaraja and Lechtenberg (2007) reported that the 

animals experiencing subacute acidosis seldom show any clinical symptoms, the 

reduction in feed intake being the most important sign of subacute acidosis, although it 

may observe some other signs like reduction in rumination, mild diarrhoea, foamy faeces 

containing gas bubbles, appearance of undigested grain (particles larger than 6 mm) in 

faeces, episodes of laminitis, weight loss and poor body condition and unexplained 

abscesses. Many studies have been done to investigate the benchmark of pH for subacute 

acidosis. For Krause and Oetzel (2006) SARA is defined by periods of moderately 

depressed ruminal pH from about 5.5 to 5.0. Schwartzkopf-Genswein et al. (2003) 

proposed a threshold of rumen pH ranging from 5.5 to 5.8 to define SARA. However, 
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Penner et al. (2007) reported that SARA is defined when ruminal pH values ranging 

between 5.2 and 5.8 for any extended period of time. This drop in ruminal pH is a result 

of the breakdown of dietary non-fibres carbohydrates (e.g. starch), particularly from 

cereal grains such as wheat and barley. Grains are high in readily fermentable 

carbohydrates that are rapidly broken down by ruminal bacteria, leading to the production 

of VFAs and lactic acid. Under normal feeding conditions, the total produced amount of 

VFA ranges between 60 and 150 mM depending on the type of diet (Bergman, 1990), 

these VFA being readily absorbed by papillae from the rumen wall. The same authors 

added that the concentration of the VFA rises to 200 mM or more when the animals fed 

starch rich diets. According to Nagaraja and Titgemeyer (2007), SARA results from 

excessive VFAs production (150-225 mM) that exceeds the ability of the ruminal papillae 

to absorb them, and therefore they accumulate in the rumen and as a result reduce ruminal 

pH. Lactic acid does not consistently accumulate in the ruminal fluid of ruminants 

affected with SARA (Oetzel et al., 1999; Schwartzkopf-Genswein et al., 2003) as it is 

supported by beef feedlot data (Britton and Stock, 1987). Goad et al. (1998) explained 

that during subacute acidosis the lactic acid produced does not accumulate because 

lactate-fermenting bacteria remain active and rapidly metabolize it to VFA. However, 

transient spikes of ruminal lactate up to 20mM can be discovered if ruminal lactate 

concentrations are frequently recorded during the day (Kennelly et al., 1999). To measure 

the duration and the severity of SARA, two important indexes must be known; the time 

during which the pH remains below the threshold of subacute acidosis, and the area 

(combination of pH drop and time) under the threshold (Penner et al., 2009; Figure 3). 

Wales et al. (2004) reported that continuous pH measurements rather than averaging 

multiple time-point measurements are necessary for diagnosis of rumen acidosis because 

of the daily variation in rumen pH.  

A common cause of SARA occurs at fattening, when animals often undergo acidic 

challenges in the feedlot when they are transitioned from forage-based to concentrate-

based diets as part of normal feedlot management. Nagaraja and Titgemeyer (2007) 

shown that an abrupt dietary change does not allow ruminal bacteria and ruminal papillae 

for the adequate time to adapt, thereby leading to a rapid production and accumulation of 

VFA. Another common cause of SARA is an inadequate balance of mixed rations, such 

as if the effective fiber content falls below recommended levels or when particle size is 

too small. This suppresses rumination and reduces stimulation of the production of saliva, 
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reducing the possibility of buffer changes in ruminal pH. In order to limit the development 

of acidosis in transition, the young ruminant must adapt their feeding behaviour to very 

high concentrate rations offered ad libitum (Mialon et al., 2008). According to Brugere-

Picoux (2004), changes in rumen bacterial populations when exposed to high concentrate 

rations require from 2 to 3 weeks, and it is recommended that concentrate levels be 

increased at 5 to 7 day intervals during this period to avoid SARA. To prevent SARA, 

Brugere-Picoux (2004) recommended that the starch dietary concentration must be less 

than 30%, and the rate of the concentrate must be below 60% of the total dry matter. 

Therefore, there is a direct relationship between diet, ruminal ecosystem and the 

appearance of acidosis (Sauvant and Peyraud, 2010). Fermentation acids production in 

the rumen needs to be balanced with fermentation acids removal and neutralisation in 

order to achieve optimal ruminal conditions and optimal production (Krause and Oetzel, 

2006). 

 

      

Figure 3. Continuous pH measurements allow for the measurement of duration of sub-

acute ruminal acidosis (SARA), where rumen pH < 5.8, as well as the area under pH 

5.8, which give an objective measure of SARA severity (data from Penner et al., 2009). 

 

 

 

Duration of Acidosis 

(pH < 5.8) 

Area under the curve (pH < 5.8) 
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2. Digestion of dietary carbohydrates 

Vegetal carbohydrates are classified into two categories: cytoplasmic and structural 

carbohydrates. The former form two types; the water-soluble carbohydrates such as mono 

and disaccharides that directly contribute to the metabolism of the plant cell, and the 

reserve carbohydrates that are stored in different parts of plants (grain, tubers, and roots). 

Starch, which is composed by amylose and amylopectin is considered as the principal 

reserve carbohydrate. A second category includes the structural carbohydrates, that are 

constitute the plants cell wall, includes cellulose, hemicelluloses, lignin and pectins. 

Although the cellulose is the main component of the plant cell wall, both cellulose and 

hemicelluloses are systematically related as constitutive of the basal structure of the plant 

cell wall. Lignin is not a carbohydrate, but a polyphenolic structure, however, due to its 

importance in the plant cell wall, it is often classified as a vegetable fiber component. 

Pectins are uronic acid polymers and sugars, and are considered as soluble fiber.  

 

2.1. Biotransformation of dietary carbohydrates in the rumen 

 

The carbohydrates are the major polymers components of ruminant diets. These 

polymers, except for lignins, are hydrolysed to monomers, which are then metabolised to 

various fermentation products, mainly acids and gases, depending on the microbial 

species (Nagaraja, 2016). The biotransformation of carbohydrates (degradation and 

fermentation, synthesis and conversion) mainly occurs in the rumen. The ruminal 

biotransformation results from three major driving forces that control ruminal activity: 

dynamics of microbial populations, thermodynamic, and laws of chemical kinetics 

(Serment, 2012; Figure 4). According to Hungate (1966) and Bergman (1990), 

carbohydrates are the main source of energy for the ruminants and for the ruminal 

microorganisms. In addition to provide energy, carbohydrates present in form of fiber 

have a physical role in maintaining the optimal functioning of the rumen. The non-fibrous 

carbohydrates are efficiently used as energy source, as they are rapidly fermented to a 

high extent, but increase the risk of ruminal acidosis, as previously stated. In contrast, the 

fibrous carbohydrates are more resistant to degradation, but modulate transit of digesta 

and stimulate rumination and saliva production that acts as a buffer of rumen contents. 

Pectins and soluble fiber are also rapidly used by rumen microorganisms. 
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Figure 4. Ruminal biotransformation of carbohydrates in rumen (data from Serment, 

2012). 

 

 

2.1.1. Degradation of dietary carbohydrates in the rumen 

 

The first step in the fermentation of dietary carbohydrates is the breakdown of 

polysaccharides to oligo, tri, di, and monosaccharides (Baldwin and Allison, 1983). 

Extracellular enzymes that are secreted by ruminal bacteria achieve the polysaccharides 

hydrolysis.   

Starch (amylose and amylopectin) is hydrolysed by microbial enzymes to 

maltotriose, maltose and glucose (Baldwin and Allison, 1983; Van Houtert, 1993). The 

major enzymes involved in this hydrolysis are alpha-amylase, debranching enzyme, and 

pullulanase (Nagaraja, 2016). The same author shown that the major amylolytic bacteria 

in the rumen are Ruminobacter amylophilus, Selenomonas ruminantium, Streptococcus 

bovis and species of Lactobacillus and Bifidobacterium. These bacteria are favoured by 

a ruminal pH between 5.0 and 6.0 (Belbis, 2007). The amylases produced by these 

bacteria randomly attack the α-glucosidic bonds, releasing glucose as the final product. 

The degradation of starch begins with the adhesion of the microorganism to the substrate, 
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and then continues with the action of several enzymes that degrade the structure of starch 

to monosaccharides, which can be absorbed and fermented by these and other 

microorganisms. The differences in starch structure from one plant species to another, or 

even among varieties, is what influences its fermentation rate and extent (Van Barneveld, 

1999), Rooney and Pflugfelder (1986). Colonna et al. (1995) reported that the enzymatic 

digestibility of starch is in general inversely related to its amylose content, or to their ratio 

amylose/amylopectin (Offner et al., 2003). This degradability is also influenced by the 

structure of the endosperm of the cereal grain. Michalet-Doreau and Doreau (1986), 

Huntington (1997) and Evers et al. (1999) reported that the endosperm is composed of 

two parts: 

 - The aleurone layer, peripheral, which mostly contains proteins 

- The starchy endosperm, which includes two parts: floury endosperm, and hard 

endosperm, nested into a protein matrix more or less dense depending on the species and 

variety. 

Since the endosperm of barley is floury, it is more fermentable than that of corn and 

sorghum, which are vitreous (Chevalier, 2001), results are in agreement with those found 

by other research groups (Opatpatanakit et al., 1994; Lanzas et al., 2007; Amanzougarene 

et al., 2018a). Waldo (1973) explained that the fermentation rate of starch depends on the 

type of starch being degraded and on its physical form. Besides, the presence of phenolic 

compounds in the grains, such in the case of sorghum which have starch and proteins 

highly related among them by the effect of tannins (Kristen et al., 2015) that influence 

their fermentation (Kim et al., 2006, Amanzougarene et al., 2018b). The amount of starch 

among cereal species is higher in sorghum and corn than in barley varieties. These results 

have been observed by several authors: 72%, 63%, and 59% respectively (Laurent, 1988); 

74% for corn and sorghum, and 59.5% for barley (Chevalier, 2001); 64%, 63%, and 53%, 

respectively (FEDNA, 2010); 70% for corn, 66% for sorghum, and 65% for barley; 

(Amanzougarene et al., 2018a). However, as it is shown in Table 1, the rate of starch 

fermentation is higher for barley (40% to 60%/h depending on the variety) than for corn 

and sorghum (15% to 30%/h) (Sauvant and Michalet-Doreau, 1988). The fermentation of 

soluble sugars occurs immediately after the food ingestion, carried out by a very large 

number of bacteria (Hungate, 1966). 
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Table 1. Starch degradability (%) of various cereals determined by in situ, in vitro, and 

in vivo methods (data from Nocek and Tamminga, 1991). 

cereal In situ, in vitro In vivo (cows) 

range range 

Oat 89-99 76-91 

Barley 83-97 82-93 

Corn 53-67 51-93 

Sorghum  51-57 42-91 

Wheat  96-99 85-91 

 

 

Chesson and Forsberg (1988) and Orskov and Ryle (1998) showed that the 

degradation of the fibrous carbohydrates by the rumen microorganisms occurs at a lower 

and variable extent. Their hydrolysis in the rumen occurs by the secretion of different 

extracellular enzymes, except for the fibrolytic activity of protozoa, which occurs 

intracellularly after intake of fibrous particles. Nagaraja (2016) explained that a lot of 

bacteria, ciliated protozoa, and fungi produce a variety of glycosyl hydrolases that 

breakdown the glycosidic bonds to produce oligosaccharides first and then the di- and 

monosaccharides. The action of these microorganisms that are implicated in the 

degradation of fiber is facilitated by a pH above 6.5 (Dusart, 2014). Cellulose and 

hemicellulose are the most abundant of plant carbohydrates. The degradation of these 

carbohydrates occurs as that of the non-structural carbohydrates but at a lower rate. In the 

case of cellulose, three types of cellulases act in synergy: endo β 1-4 glucanases, 

cellobiosidases, and β –glucosidases. The first type attacks to the cellulose to form cello-

oligosaccharides, the second attacks the non-reducing end of the cellulose to give the 

cello-biose units, and the third type hydrolyses the cellobiose and cello-oligosaccharides 

of low degree of polymerization to give glucose (Jouany, 1994). Concerning the 

hemicelluloses, Nagaraja (2016) reported that the major enzymes involved in 

hemicelluloses degradations are endoxylanase and several debranching enzymes, with 

arabinofuranosidase being the most important. A large number of bacterial species 

secretes endoxylanases. In addition, protozoa and fungi also produce cellulases and 

hemicellulases. The nonproteolytic bacterial species that are considered to be most 

abundant in the rumen are Fibrobacter succinogenes, Ruminococcus albus, and 
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Ruminococcus flavefaciens (Nagaraja, 2016). Baldwin and Allison (1983) reported that 

both Ruminococcus albus and Ruminococcus flavefaciens both have the ability of 

producing extracellular cellulases in response to the presence of cellulose. Nagaraja 

(2016) added that the major cellulolytic bacteria can also digest hemicelluloses and 

pectin. Those that can digest hemicelluloses include Prevotella sp. (P. albensis, P.  brevis, 

P. bryanti, and P. rumincola), Butyrivibrio fibrisolvens and Pseudobutyrivibrio 

xylanivorans. Although pectin is a structural polysaccharide, it is completely digested in 

the rumen. It is fermented much more rapidly than cellulose or hemicellulose. For the 

hydrolysis of the pectin, pectinolytic enzymes have been identified in bacteria and 

protozoa but not in fungi, microorganism that quickly hydrolyse this polysaccharide 

(Grenet and Besle, 1991). The predominant pectinolytic enzyme is pectinlyase. The major 

pectinolytic bacteria include Prevotella sp., Lachnospira multiparus, Streptococcus bovis, 

and Trepnema sp. (T. bryantii and T. saccharophilum) (Nagaraja, 2016). The same author 

added that although Streptococcus bovis is pectinolytic, it does not utilize the products of 

pectin degradation (d-galacturonic acid). Similarly, ciliate protozoa can breakdown pectin 

but cannot utilize the products. 

The fermentation of the fibrous carbohydrates depends on the lignin content in the 

feeds, being negatively related to its proportion and the magnitude of linkages with 

structural carbohydrates (Chesson and Forsberg, 1988). Despite having a considerable 

fibrous fraction, several agro-industrial by-products used in the nutrition of ruminants, 

such as sugar beet pulp, citrus pulp, and wheat bran, present the advantage of a low 

proportion of lignin (1.69%, 0.78%, and 3.4% respectively; FEDNA, 2010). Besides, 

these feeds have a considerable proportion of easily-fermentable hemicelluloses and 

pectin (in sugar beet pulp and mainly in citrus pulp), which renders high amount of energy 

when fermented in the rumen (Nocek and Tamminga, 1991). 

2.1.2. Metabolic pathways of carbohydrate fermentation by rumen bacteria 

 

The biochemical pathways involved in carbohydrate fermentation in the rumen 

have been extensively reviewed (Hungate 1966; Baldwin and Allison, 1983; Czerkawski, 

1986; van Houtert, 1993; Dehority, 2003; Nagaraja and Lechtenberg, 2007, Nagaraja, 

2016). These authors reported that many of the polymer-fermenting bacteria, ciliated 

protozoa, and fungi can ferment disaccharides and monosaccharides released from initial 

hydrolysis. These sugars will be absorbed and then fermented into pyruvate by the 
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Emden-Meyerhof and pentose phosphate pathways (Figure 5). The pyruvate is 

metabolised to VFAs like acetic acid (C2), propionic acid (C3), butyric acid (C4) and a 

minor proportion of valeric acid and branched-chain VFA, and in some cases to lactic 

acid. Gases (carbon dioxide, hydrogen gas and methane) and energy are released, in form 

of adenosine tri-phosphate (ATP). Acetate is converted from pyruvate through acetyl 

CoA, with the ATP yield being 1 ATP /mole. When producing acetate the formate that is 

a by-product of the conversion of pyruvate to acetyl-CoA is released, and it is converted 

to CO2 and H2 that are converted to methane. Pyruvate is converted to propionate through 

succinate pathway, and it is converted to butyrate through aceto-acetyl CoA, regenerating 

NAD+ from NADH, and therefore resulting in an electron sink product. Lactate is an 

intermediate product because lactate-utilizing bacteria further metabolize it to acetate, 

propionate and butyrate, mostly by Megasphaera elsdenii and Selenomonas ruminantium. 

The types of fermentation products produced from pyruvate depend on the 

substrates available in the rumen, the microorganism and the ruminal conditions like pH 

and dilution rates (Nagaraja, 2016). A high proportion of fiber fraction causes an increase 

in the proportion of C2, because the fibrolytic rumen bacteria generally use this metabolic 

pathway, whereas a high starch content will promote the production of C3. The presence 

of soluble carbohydrates (sucrose, lactose, inulin) contained in foods such as beets or 

whey will increase the proportion of C4 (Grenet and Besle, 1991). The total and 

individual rumen VFA concentration depend on diet type (Bergman, 1990; Jouany et al., 

1995; Dusart 2014). Table 2 shows the differences in proportion of VFA according to the 

nature of diets. 
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Figure 5. Carbohydrate fermentation in the rumen. 

 

Table 2. Influence of the nature of the diet on the molar proportions of VFA in the rumen 

(mean values in the 5 hours after the meal; Jouany et al., 1995). 

Diet  Total VFA 

(mmol/L) 

Molar proportions (%) 

C2 C3 C4 Other 

VFAs* 

Grass hay 90.0 72 17 7 4 

Hay (44%) +barley (56%) 115.6 61 30 8 1 

Hay (18%) + beet (82%) 127.5 56 26 17 1 

Hay (48%) + whey (52%) 99.9 59 16 21 4 

Other VFAs*: including valeric, isovaleric and isobutyric acids. 
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Variations in pH promote changes in the microbial population of the rumen: a low 

pH causes higher proportions of C3 whereas a high pH causes higher proportions of C2 

(Blain, 2002). The decrease in the percentage of C2 with starch-rich diets is directly 

related to the drop in rumen pH, and presumably to the increased concentration of 

amylolytic bacteria. In such situations, significant disruptions in the rumen fermentations 

and the onset of increasing amounts of lactic acid are common (Michalet-Doreau and 

Sauvant, 1989). Blain (2002) reported that the quantity of VFA in the rumen is also 

dependent on the rate of substrate degradation; the faster this substrate is degraded, the 

higher the quantity of VFA produced. Thus, high proportions of starch in the diet will 

cause high ruminal VFA production, promoting a rapid drop in ruminal pH that can cause 

ruminal acidosis. The fibrous fraction is digested at a lower rate than starch.  

The methane production represents losses of about 15% of energy during the 

ruminal fermentation. This greenhouse gas is produced in greater quantities by the C2 

pathway. In intensive feeding systems, the rations consist of higher proportions of starch 

that promote the pathway of C3, and in such case the amount of methane produced is 

lower (Jouany, 1994). 

 

3. Strategies of prevention of ruminal acidosis  

 

As cited above, the ruminal pH is the main indicator to evaluate the ruminal acidosis 

status. This parameter has been directly related to rumen VFA production. Thus, the diet 

is considered as a main factor that contributes to change these two parameters. For this 

reason, to minimize the risk of acidosis in ruminants, it is often recommended the 

knowledge of the buffering capacity of feedstuffs. Several authors (Jasaitis et al., 1987; 

Wohlt et al., 1987; Erdman, 1988; Le Ruyet et al., 1992; Giger-Reverdin et al., 2002) 

described that the buffering capacity of roughages is higher than those of cereals, and 

those of cereals by-products. In addition of its high buffering capacity, roughages 

stimulate the production of saliva extending the chewing time and buffering the rumen to 

maintain the pH within the physiological limits of 5.5 to 7.0.  So, in diets containing low 

concentrations of dietary fiber, supplementation of chemical buffers results in increased 

rumen pH. However, a buffer should reduce the decrease in rumen pH, but without 

causing a pH increase compared with neutralising agents that elevate pH (Staples and 

Lough, 1989). Thus, the most used chemical buffers are the sodium bicarbonate and 
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sodium sesquicarbonate; NaHCO3, Na2CO3 (Meschy et al., 2004). In addition to chemical 

buffers, zootechnical feed additives such as enzymes, yeasts and fungi are used to prevent 

the chronic acidosis (Chaucheyras-Durand and Durand, 2010; Desnoyers et al., 2009). In 

this thesis work, a major interest was focused to other zootechnical feed additives such as 

tannin extracts, essential oils and fatty acids, to evaluate whether its inclusion in diets for 

fattening of young ruminants can contribute to avoid the risk of acidosis.  

3.1. Zootechnical feed additives 

Zootechnical feed additives are substances used to favourably affect the 

performance of animals in good health or used to positively influence the environment. 

These additives can be classified into four main groups:  

1. Digestibility enhancers (for enzymes)  

2. Gut flora stabilisers (for microorganisms)  

3. Substances that affect the environment 

4.  Other zootechnical additives 

In diets for ruminants, the most zootechnical feed additives included are: plant 

extracts, fatty acids, probiotics, and organic acids. These categories of additives are used 

owing to their capacity to involve positive changes on ruminal fermentation and 

prevention of acidosis.  

 

3.1.1. Effects of zootechnical feed additives on rumen fermentation  

 

3.1.1.1. Plant extracts 

 

Many plants produce important organic compounds derived from their secondary 

metabolism (Balandrin and Klocke, 1985). These secondary metabolites are not involved 

in their primary biochemical processes, such as growth, development, or reproduction, 

but they are important for protection against insect predation and microbial infection 

(Balandrin and Klocke, 1985; Cobellis et al., 2016a). In addition, they are responsible for 

the odor and color of plants and spices. When extracted and concentrated often exert 

antimicrobial activities against a wide variety of microorganisms including bacteria, fungi 

and viruses (Gershenzon and Croteau, 1991; Chao et al., 2000; Greathead, 2003; Burt, 
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2004; Benchaar et al., 2008). Cobellis et al. (2016a) reported that, in the past, animal 

nutritionists considered plant secondary metabolites as antinutritional factors due to 

adverse effects on nutrient utilization. Nevertheless, the same authors added that many 

plant extracts have been recently studied for their antimicrobial activity and ability to 

modify gut function in both ruminant and non-ruminant animals. Previous researches 

have been conducted to study and to evaluate the effect of plant secondary metabolites 

including saponins, tannins, and essential oils on rumen fermentation (McAllister et al., 

1994; Wang et al., 1996; Hristov et al., 1999; McSweeney et al., 2001; Benchaar et al., 

2007; Calsamiglia et al., 2007; Rodríguez et al., 2014). These authors have been 

concluded that a large number of these compounds have been shown to modulate ruminal 

fermentation to improve nutrient utilization in ruminants. In this work, we are interested 

in the study of the effect of inclusion of essential oils (cinnamaldehyde, eugenol, and 

CRINA® Ruminants) and tannins (hydrolysable and condensed) in diets for fattening 

ruminant.   

The essential oils (EO) are volatile lipophilic secondary metabolites from plants 

that are obtained by steam and/or water distillation (Losa, 2001). They are characterized 

by its antimicrobial properties against different types of microorganisms including 

bacteria, protozoa, and fungi (Dean and Ritchie, 1987; Sivropoulou et al., 1996; Chao et 

al., 2000; Greathead, 2003). This antimicrobial effect is due to their ability to modify cell 

permeability in microbes (Helander et al., 1998). The use of EO in diets for ruminants 

was for their antimicrobial effects (Cardozo et al., 2005; Busquet et al., 2005a; 

Calsamiglia et al., 2007). McIntosh et al. (2000), Busquet et al. (2005b) and Castillejos et 

al. (2006) reported that the inclusion of EO in diets might modulate and improve the 

ruminal fermentation. Wallace (2004) explained that the EO at low dosages may modify 

of rumen fermentation due to their toxicity to some unfavourable strains of rumen 

bacteria, such as methanogens. Sivropoulou et al. (1995) indicated that some of these 

metabolites have antimicrobial activities against Gram-positive and Gram-negative 

bacteria. Supported these indications, Calsamiglia et al. (2007) explained that, because of 

their low molecular weight, some of EO have the capacity to inhibit the growth of some 

Gram-positive and Gram-negative bacteria in the rumen, however their effects on these 

microorganisms will depend upon essential oils compounds (e.g. phenolic, carbonyl, 

monoterpenes, etc.).   
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Cinnamaldehyde (CIN; 3-fenil-2-propenal phenol; C9H8O; Figure 6), a non-

phenolic phenylpropene with antimicrobial activity, is the main active component of 

cinnamon (C. cassia) oil, accounting for up to 75% of its composition (Davidson and 

Naidu, 2000).  

 

                                   

Figure 6. Chemical structures of cinnamaldehyde.  

 

Cinnamaldehyde is characterized by an antimicrobial activity against both Gram-

negative and Gram-positive bacteria (Ouattara et al., 1997; Helander et al., 1998; Burt, 

2004; Kim et al., 2004), although Smith-Palmer et al. (1998) reported that the Gram-

positive bacteria are more sensitive to the antimicrobial proprieties of CIN. Helander et 

al. (1998) explained that the antimicrobial activity of CIN was similar to that of the 

phenolics thymol and carvacrol. However, in contrast to them, CIN does not have a 

hydroxyl or acid group to act as a proton carrier to disrupt the outer membrane or deplete 

the intracellular ATP pool. As hypothesis, Helander et al. (1998) stated that CIN can 

access the periplasm and the interior of the cell through the protein absorption pathway 

(protein porin) and cause its inhibitory effect from inside the cell. Furthermore, Burt 

(2004) suggested that the antimicrobial properties of CIN might be due to arise through 

its carbonyl group binding and inactivating microbial enzymes.  

The first researches carried out to evaluate the effect of CIN on microbial 

fermentation were conducted in vitro. Cardozo et al. (2004), using a continuous culture 

system, observed that the inclusion of CIN caused an inhibition of peptidolysis. Using the 

same system, Ferme et al. (2004) reported that CIN reduced Prevotella spp, that is the 

main genus of proteolytic bacteria. However, contradictory effects were found on rumen 
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fermentation using CIN as additive. No effect neither in in vitro studies (Benchaar et al., 

2007, Tager and Krause 2010) nor in in vivo studies (Yang et al., 2010), positively 

improved the ruminal fermentation (Busquet et al., 2005b), or affected negatively 

(Mateos et al., 2013, Macheboeuf et al., 2008). For more information about the use of 

CIN further studies especially in vivo are necessary to determine the effectiveness of these 

extracts on rumen microbial fermentation and animal performance.  

Eugenol (EUG; 4-allyl-2-methoxyphenol; C10H12O2, Figure 7) is a phenolic 

monoterpene present in high quantities in clove bud (S. aromaticum) oil. It is one of the 

main active components in this oil, accounting for up to 85% of its composition (Davidson 

and Naidu, 2000). Eugenol has been shown to have a wide spectrum antimicrobial activity 

against Gram-positive and Gram-negative bacteria (Davidson and Naidu, 2000; Dorman 

and Deans, 2000; Walsh et al., 2003). 

 

                       

Figure 7. Chemical structures of Eugenol 

 

Some in vitro studies that evaluate the effects of EUG on ruminal fermentation have 

shown negative effects when EUG was added at high doses (Busquet et al., 2006; 

Castillejos et al., 2006). In terms of medium pH, Bayourthe and Ali-Haimoud-Lekhal 

(2014) reported that the inclusion of EO belong to phenols group such as eugenol leads 

to an increase in medium pH, results confirming those found by previous researches 

(Busquet et al., 2006; Benchaar et al., 2007; Castillejos et al., 2006; Tager and Krause, 

2010). Thus, when EUG was included at high doses medium pH increased, although at 

difference levels according the methods of study. This means that EUG supplementation 

in diets for ruminants in intensive fattening may lead to maintain ruminal pH within its 
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physiological limits. In addition, from their results obtained in in vitro studies, Busquet 

et al. (2006) and Castillejos et al. (2006) reported that the inclusion of EUG in diets for 

dairy cattle may improve energetic and protein metabolism depend on the dose level. In 

contrast, in in vivo studies, Yang et al. (2010) and Benchaar et al. (2012) concluded that 

the effect of the supplementation of EUG for beef and/ or dairy cattle did not show 

improvements in animal performances. These researchers suggest that the EUG may have 

a low potential for being used as feed additive in diets for ruminants (beef as well as dairy 

cattle).  

The number of experiments realized to evaluate and to determine the effectiveness 

of this essential oil as zootechnical additive is scarce, and more in vivo trials must be 

conducted to specify the real effect of this additive, mainly in diets for fattening of young 

ruminants. 

As additive, the combinations of EO are characterized by its antagonistic and 

synergistic effects that occur between different components of this mixture. Burt (2004) 

suggested that combinations of essential oils may enhance efficiency of rumen microbial 

fermentation although Cobellis et al. (2016a) stated that, because of the complex mixture 

with a highly variable composition from a combination to another, the mode of action of 

these combinations against microorganisms or specific cellular targets is often difficult to 

determine and thus still remains poorly understood. The effects of these mixtures on 

ruminal fermentation were studied widely in vitro, and the results found in different 

studies were variable. A typical commercial combination that has been widely used is 

known under the trade name of CRINA® ruminants.  

In previous in vitro studies (Castillejos et al., 2007; Spanghero et al., 2008; Ahmed 

et al., 2014) it was observed that the inclusion of essential oil blend in diet for ruminants 

did not influence the different parameters of rumen fermentation. In contrast, when 0.8 

mg/g of five different blends of EO were added, Cobellis et al. (2016b) observed a 

decrease on in vitro gas production and dry matter degradability. Similarly, the production 

of total VFA and the propionate proportion were significantly decreased. However, the 

inclusion of these five blends of EO did not affect the proportion of acetate, but an 

increase in butyrate proportion was recorded. An increase in butyrate proportion was also 

observed in the in vivo studies conducted by Tomkins et al. (2015) and Flores et al. (2013). 

When Meyer et al. (2007) tested the supplementation of diets for fattening of steers by 

CRINA® they found that the inclusion of CRINA® did not markedly affect digestibility, 
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productive performance and carcass characteristics. However, Benchaar et al. (2006a), 

Spanghero et al. (2008) and Cobellis et al. (2016b), reported that in vivo as well as in in 

vitro when the mixtures of essential oils were added at different doses an increase in 

medium pH was recorded compared with control. In contrast, in an in vitro study Ahmed 

et al. (2014) observed that the addition of EO blend had not significant effect on medium 

pH.  

Dorman and Deans (2000) stated that the effect of EO was related to the chemical 

structure of the components, the proportion of each of them, and the correlation between 

them. These conclusions agree with those reported by Busquet et al. (2006), which 

reported that the effects of blends of EO on ruminal fermentation vary with their main 

components. Moreover, Cobellis et al. (2016b) explained that the blend of EO containing 

a phenolic or carbonyl compound demonstrated a stronger antimicrobial activity than 

other EO that contain monoterpenes, and McIntosh et al. (2003) concluded that the blend 

of EO inhibit especially Gram-positive bacteria. Calsamiglia et al. (2007) reported that 

the inclusion of different mixtures of EO at high doses resulted in inhibiting of rumen 

microbial fermentation, confirming their antimicrobial activity. In their study, Spanghero 

et al. (2008) suggested that the supplementation of a blend of EO at high dosages caused 

in depression of ruminal fermentation and added that the use of these blends of EO is 

acceptable only at dosages that exert a positive effect on microbial population with no 

adverse effect on rumen fermentation. The interaction between EO blends and their dose 

is also highlighted by Cobellis et al. (2016b), who reported that supplementation at 

moderate doses had not adverse effects on rumen microbial fermentation. In addition, 

Benchaar et al. (2006b) suggested that the mixture of EO at low dose levels have the 

potential to improve feed efficiency in beef cattle, but at higher dosage this mixture appear 

to have no beneficial effect on feed efficiency. The effect of blend EO also depends on 

the type of substrate or diets composition, as well as on medium conditions. Spanghero 

et al. (2008) suggested that blend of EO might be more effective in an acidic medium (i.e. 

5.5), owing to the selective toxicity of these EO that is against gram-negative bacteria. 

Thus, effectiveness of blend EO may be increase its importance in intensive feeding 

conditions.  

Depending upon results, some authors reported positive effect of blend EO on 

rumen fermentation, but others suggested a deeper investigation in this topic before 

giving any recommendation, owing to the broad variability observed between studies. 
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Generally, the in vitro batch system is chosen to study the effect of essential oil 

because of its friability to detect the effect of these EO on rumen microbial fermentation, 

and also because this method is not expensive. However, the continuous culture have 

more advantages. From results recorded in in vitro continuous culture Benchaar et al. 

(2008) could conclude that rumen microbial population may adapt to EO, which explain 

the lack of effects of the EO on ruminal metabolism and performance in long-term in vivo 

studies. 

Tannins are a group of plant secondary compounds, present in a considerable 

number of vegetables (forage trees, shrubs, legumes, cereals, etc.). Bate-Smith and Swain 

(1962) defined tannins as water-soluble polyphenolic compounds ranging in molecular 

weight from 500 to 3000 Daltons that have the ability to precipitate proteins. The term 

‘tannin’ is difficult to define precisely (Mangan, 1988). Harborne (1999) stated that from 

a chemical point of view it is difficult to define tannins since the term encompasses some 

very diverse oligomers and polymers. According to McSweeney et al. (2001) and 

Schofield et al. (2001), these secondary compounds constitute a heterogeneous group of 

polyphenols with a diverse structure and molecular weight. These compounds have a 

capacity to bind to proteins, alkaloids, nucleic acids, minerals, and other polymers such 

as polysaccharides (cellulose, hemicellulose, pectin), to form stable complexes (Mangan, 

1988; Chiquette et al., 1988; Mueller-Harvey and McAllan, 1992; Van Soest, 1994; 

Giner-Chavez, 1996; Schofield et al., 2001).  

Tannins are generally divided into two major classes termed condensed and 

hydrolysable tannins (McMahon et al., 2000) although the classical classification of 

tannins into hydrolysable and condensed tannins has been criticized because of their 

variable magnitude of response, irrespective of their chemical composition (Mueller-

Harvey, 2006). Kraus et al. (2003) defined these two types as following: Condensed 

tannins, also referred to as proanthocyanidins, are polymers of three-ring flavanols joined 

with C-C bonds. The monomer units that make up condensed tannin are distinguished by 

the number of OH groups on the B-ring: procyanidins have a di-hydroxy B-ring while 

prodelphinidins have a tri-hydroxy B-ring. The monomer units may also have either cis 

or trans C2–C3 stereochemistry. Hydrolysable tannins are further grouped into 

gallotannins and ellagitannins that are composed of gallic acid or hexahydroxydiphenic 

acid esters, respectively, linked to a sugar moiety. More complex hydrolysable tannins 

can form by oxidative transformations, which can yield macrocylic ellagitannins. The 
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structures of the two types are shown in Figure 8. McLeod (1974) indicated that the 

condensed tannins have a higher molecular weight than the hydrolysable tannins (1000-

20000 Daltons vs. 500-3000 Daltons). These polyphenolic compounds are commonly 

consumed by ruminants (Van Soest 1994).  

Hagerman and Butler (1991) explained that tannins can be beneficial or detrimental 

to ruminants, depending on the quantity consumed, the compound structure and 

molecular weight, and on the physiology of the consuming species, although the tannins 

are considered as anti-nutritional compounds due to their adverse effects on intake and 

animal performance (Kumar and Vaithiyanathan, 1990). However, Patra and Saxena 

(2011) reported that in the past few years, tannins have been recognised as useful 

phytochemicals for modulating rumen microbial fermentation beneficially such as 

reducing protein degradation in the rumen, prevention of bloat, inhibition of 

methanogenesis and increasing conjugated linoleic acid concentrations in ruminant-

derived foods.  

The effects of tannins on ruminal fermentation have been studied both in vivo and 

in vitro. Tannins bind to proteins and polysaccharides limiting their availability for rumen 

microbes (McAllister et al., 1994). The nature of binding of tannins with carbohydrates 

is not entirely clear, Jones and Mangan (1977) indicated that when the condensed tannins 

bind with the protein in the diet, they form stable and insoluble complexes that dissociate 

in the abomasum at pH <3.5. Their impact on nutrient fermentation depend not only on 

substrate protection from microbial attachment, but also on effects on enzyme inhibition 

and directly on microbial diversity (Barry and Manley 1984; McAllister et al., 1994; 

McSweeney et al., 2001). Tannins decrease the rate of protein degradation, and the 

surplus production of ammonia in the rumen, and increase the flow of proteins to the 

intestine (Al-Dobaib, 2009). Barry and Manley (1984) indicated that high concentrations 

of tannins in diets may depress fibre digestion by complexing with lignocellulose, thus 

preventing microbial digestion, and Patra and Saxina (2009) and Bae et al. (1993) added 

that tannins may directly inhibit cellulolytic microorganisms, and activities of fibrolytic 

enzymes. Therefore, adverse effects on fiber degradation can be expected (McSweeney 

et al., 2001, McAllister et al., 2005).  

In in vitro as well as in in vivo studies (Bhatta et al., 2009; Grainger et al., 2009; 

respectively) diet digestibility is of the diet reduced with the inclusion of tannins. In 

addition, Beauchemin et al. (2007) and Grainger et al. (2009) observed that the inclusion 
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of tannins in diets for ruminants decreased the total rumen VFA concentration. However, 

in other studies, the tannins had not an effect on dray matter digestibility (Carulla et al., 

2005; Hariadi and Santoso, 2010). And similarly, Patra et al. (2006) and Animut et al. 

(2008) found no effect of the inclusion of tannins on VFA concentration. In vivo (Carulla 

et al., 2005), at high doses, tannins decrease the dry matter intake. But in contrast, the 

phenolic compounds at moderate doses had not effect on this parameter. These 

differences may be due to the effect of high doses on the palatability (Barry and Manley 

1984; Hervás et al., 2003a). Barry and Duncan, (1984) and Barry and Manley, (1984) 

shown that when the plant species contain more than 50 g/ kg DM of condensed tannins, 

the voluntary feed intake is significantly reduced, while when the quantity is less than 50 

g/kg, feed intake is unaffected. In previous studies, (Wang et al., 1996; Bhatta et al., 2000; 

Makkar, 2003; Ramírez-Restrepo et al., 2005) positive effects were observed on animal 

productivity and performance when diets were supplemented with tannins. In contrast, 

other authors (Priolo et al., 2000; Beauchemin et al., 2007; Grainger et al., 2009) reported 

that the effects of the inclusion of tannins in diets for ruminants were not beneficial. Thus, 

Hervás et al. (2003a), McAllister et al. (2005), Hart et al. (2008) and Patra and Saxena 

(2010) explained that the variation in tannin effects on ruminal fermentation depends on 

the plant from which they are extracted, the dose of their inclusion in the diet, the type of 

diet used, and the type of tannins (condensed or hydrolysable). Rodríguez et al. (2014) 

indicated that the extent of tannins effect depends not only on their concentration, but also 

on their reactivity, which is associated with their chemical nature. Therefore, the same 

concentration of tannins from diverse sources may produce effects of different magnitude 

(Bueno et al., 2008). Bhat et al. (1998) and McSweeney et al. (2001) reported that 

hydrolysable tannins can be degraded by rumen bacteria, but their impact should be rate-

dependent, and affect differently for each tannin source. Commonly, quebracho tannins 

have been largely used (Frutos et al., 2000; Hervás et al., 2003a) and are usually 

considered as a reference, but other commercially available tannin extracts have also been 

assayed, such as those from grape, chestnut and oak (Wischer et al., 2013; Carreño et al., 

2015). Whereas tannins from chestnut and oak are considered as hydrolysable tannins, 

those from grape and quebracho are condensed tannins; however, such generic 

classification based on their chemical structure is not helpful for predicting animal 

responses. Hervás et al. (2003a) and Mezzomo et al. (2011) have strategically added 

tannins to feeds to evaluate their potential protecting effect on certain nutrients, but were 

mostly used on either fibrous feeds or protein sources as components of forage or mixed 
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diets rather than on highly fermentable carbohydrates in high concentrate diets, under 

lower rumen pH. As their direct effect on rumen bacteria and their activity might also 

affect starch utilisation (Martínez et al., 2006), and depends on environmental pH 

(McSweeney et al., 2001; Mueller-Harvey, 2006), some tannins might be a suitable 

alternative to reduce fermentation rate of concentrate feeds, preventing for rumen 

disturbances associated with intensive feeding in ruminants, such as acidosis. It is worth 

mentioning that a possible reduction of the extent of rumen fermentation is not necessarily 

a drawback, as the non-degraded starch that reaches the intestines to be digested there 

may provide 42% more energy than that digested in the rumen (Owens et al., 1986). 

   

          

Figure 8. Structures of (a) condensed and (b) hydrolyzable tannins. (Data from Kraus et 

al., 2003). 
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3.1.1.2. Fatty acids  

 

Fatty acids that belong to the lipid family, are monocarboxylic acids with an 

aliphatic hydrophobic chain that are either saturated or unsaturated depending on the 

presence or the absence of double bonds (C=C), with an even number of carbon atoms 

from 4 to 36. In fact, different types of fatty acids can be distinguished on the basis of 

their carbonic chain length. 

- Short-chain fatty acids → fatty acids with aliphatic tails of five or fewer carbons. 

- Medium-chain fatty acids → fatty acids with aliphatic tails of 6 to 12 carbons.  

- Long-chain fatty acids → fatty acids with aliphatic tails of 13 to 21 carbons. 

- Very long chain fatty acids → are fatty acids with aliphatic tails of 22 or more 

carbons. 

In diets for ruminants, fatty acids are presented in form of either phospholipids and 

glycolipids, especially galactolipids, which are the main forage membrane lipids, or in 

form of triglycerols commonly called triglycerides (Harfoot and hazlewood, 1988). In 

their review, these authors have reported that these fatty acids are mainly unsaturated with 

18 carbons. Doreau and Ferlay (1994) and Chilliard and Ollier (1994) indicated that the 

percentage range of lipids in diets for ruminants is between 2 and 5%, of which about 

one-half are fatty acids. However, Palmquist and Jenkins (1980) explained that because 

of the important role of fats in meeting the animal energy requirements, levels of less than 

5% fats are not enough to respond to these requirements that depend on the animal 

physiological function. The same authors added that, in contrast to non-ruminants, 

ruminants depend more on non-glucose metabolites for energy metabolism, and for these 

reasons it is well known that the main objective of the supplementation of ruminant 

livestock diets with lipids (essentially fatty acids) is to increase the energy density in the 

ration. An increase in the rate of fatty acids in ruminant diets affects on animal 

metabolism (Bauman et al., 2011), but it can also manipulate the digestive processes and 

balance the nutrients absorption, leading to limit ruminal acidosis (Chilliard and Ollier, 

1994). However, Palmquist and Jenkins (1980) reported that the addition of fatty acids 

attenuates the rumen fermentative activity. In their reviews, Boeckaert et al. (2006) and 

Bayat et al. (2018) indicated that changes occurred in the rumen microbial population 

when fatty acids were included in ruminant diets, these changes concerning essentially 

ruminal microbial population responsible for cellulose digestion (Doreau and Ferlay, 



Literature review 

33 

 

1995; Getachew et al., 2001; Vazirigohar et al., 2018). In the same way, Machmüller 

(2006) demonstrated the decrease on rumen degradation of fibre and organic matter when 

fatty acids, especially medium chain fatty acids, were used as additive. Huws et al. (2010) 

also showed that the inclusion of oils in ruminant diets can manipulate the microbial 

community and fermentation processes in the rumen. However, the effect of the inclusion 

of fatty acids in ruminant diets depend essentially upon the type of fatty acids, their 

amount of inclusion, and the basal diet composition (Doreau et al., 2009, Beauchemin et 

al., 2009, Kubelková et al., 2018). Whereas, the effectiveness of fatty acids depends 

mainly on the level of its supplementation and the diet type fed to the ruminant 

(Klevenhusen et al., 2009, Vazirigohar et al., 2018). In fact, Henderson (1973) reported 

that the medium chain fatty acids have an effect of antimicrobial selectivity, results that 

were demonstrated in an in vitro study conducted by Kleverhusen et al. (2011), showing 

that monolaurin, which is formed from glycerol and lauric acid (medium chain fatty acid) 

affected a large number of ruminal microbes involved in carbohydrate degradation. In 

contrast, Jenkins (1994) explained that long chain fatty acids, especially the unsaturated 

fatty acids, depressed the microbial activity. To avoid the toxicity of the unsaturated fatty 

acids on the rumen microbial population, Chilliard and Ollier (1994) explained that from 

70 to 90% of the unsaturated fatty acids ingested are hydrogenated in the rumen by 

bacteria, mainly to stearic acid. From results found by several previous researches (Soliva 

et al., 2004; Sinclair et al., 2005; Machmüller, 2006; Klevenhusen et al., 2009) it can be 

concluded that, whatever the type of fatty acids included in the diet, the extent of rumen 

fermentation is reduced. In addition, Soder et al. (2013) and Costa et al. (2017) recently 

reported that the inclusion of lipids in diets for ruminants modified the volatile fatty acids 

profile. In fact, Chalupa et al. (1984) observed a decrease in VFA production caused by 

medium chain fatty acids (lauric acid), by long-chain fatty acids that contained less than 

18 carbons (palmitic acid), and by unsaturated long-chain fatty acids with 18 carbons 

(linoleic acid). Similarly, Klevenhusen et al. (2009) showed a decrease in total VFA 

concentration when medium chain fatty acids were added, and they also observed an 

increase in molar proportion of propionate at the cost of butyrate and acetate. However, 

in their study, Soliva et al. (2004) reported that no significant effects of medium chain 

fatty acids treatments were found on the concentration of total VFA and on the molar 

VFA proportions. In terms of rumen pH, Beauchemin et al. (2009) and Martínez et al. 

(2010) reported that the addition of oilseeds did not negatively affect the ruminal pH, 

although Kubelková et al. (2018) observed a reduction of medium pH, but despite 
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significant treatments variations, the mean pH values remained within the physiological 

range defined by Krause and Oetzel (2006), which means that these types of fatty acids 

did not negatively affect medium pH. Note that most of these investigations (in vivo or in 

vitro) conducted to study the effect of fatty acids have been focused on dairy cattle diets 

to reduce methane production, and there is a little information regarding the study of the 

use of fatty acids in diets for cattle fattening.  
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Chapter III. Hypothesis, objectives and experimental approach  

 

A major part of calves and lambs destined for intensive feeding systems in Southern 

Europe, especially in Spain, are lactating or newly weaned animals. Calves that have been 

raised with nursing cows at pasture for 5-6 months or milk-fed lambs for 6 weeks are 

directly switched from a milk-forage regime to a high concentrate feeding based on 

cereals. These abrupt changes introduce an important alteration on the rumen 

environmental conditions. This strategy consists on promoting a high intake of rapidly 

fermentable carbohydrate sources mostly based on starch which enhances activity of 

rumen microbiota, and consequently pH drops below levels considered in risk of acute or 

subacute acidosis, which is at present one of the most common problems during intensive 

fattening of ruminants in general, and young ruminants in particular. In fact, the transition 

from weaning to fattening with high concentrate feeds for young ruminants needs some 

time for the microbial population to be adapted in order to allow for minimizing the risk 

of this disorder digestive.  

In such situation, knowledge about the fermentative behaviour of potential sources 

of carbohydrates is needed, including the study of their rate and extent of environmental 

pH reduction, in order to choose the better alternative for an adequate transition to a high 

concentrate feeding. In addition, another strategy to avoid the onset of acidosis consists 

in the supplementation of these diets with different types of additives that modulate 

digestive environment and microbiota. For achieving this in practice, routine in vitro 

nutritive evaluation techniques must be adapted for the study of this type of feeds and 

additives, with emphasis on the incubation pH, which has a major impact on rumen 

microbial activity. This PhD thesis aims to investigate in vitro the impact of the transition 

from a forage diet to another high in concentrate for the early fattening of ruminant by 

assessing the effect of the source of carbohydrate and additives supplementation on pH 

and overall microbial fermentation, under in vitro conditions. We hypothesized that the 

supplementation of different sources of carbohydrate with additives that have the capacity 

to modulate the ruminal fermentation can be an alternative to mitigate the risk of acidosis 

in such fattening systems.   
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This main objective is divided into the following specific objectives:  

1. To evaluate the adequate carbohydrate source for modulating rumen environment 

in a transition from a ruminal environment based on forage to another rich on 

concentrate. 

2. To study how potential mixtures of dietary components could modulate the 

characteristics of ruminal fermentation during the transition from a forage to a 

concentrate diet.  

3. To study whether the inclusion of certain additives at various levels in fattening 

diets for intensive production could affect the rate of microbial fermentation of 

feeds included in high concentrate diets.  

4. To determine how inocula from different feeding conditions can modulate the 

fermentation response, in order to estimate the magnitude of the importance of 

adaptation of rumen microbial conditions to diet characteristics.  

To achieve these objectives, two experimental sections were carried out, entirely 

under in vitro conditions:  

Section I. In vitro study of the magnitude and rate of fermentation of different 

carbohydrate sources, and their ability to modify fermentation conditions.  

Both the chemical characteristics (type of carbohydrate) of the ingredients and the 

availability of nutrients (accessibility, interaction with other feed components) can 

modify their fermentation rate, and therefore modulate the microbial population and its 

fermentative activity (Fondevila et al., 2002). On the other hand, it has been hypothesized 

that the response to a high level of concentrates in the diet may depend not only on the 

pH of the ruminal environment caused by the rapid fermentation of highly available 

carbohydrates but also on substrate effects that are independent of pH (Calsamiglia et al., 

2012).  

The experiments carried out in this section were established based on previous 

results of our research group (Amanzougarene et al., 2017a; Amanzougarene et al., 

2018a). In these two works, it was studied the in vitro acidification potential and the 

fermentation pattern of different carbohydrate sources with inocula from different nature, 

in a poorly buffered medium (pH =5.5) using a conventional incubation system (a closed 

batch in vitro system). Thus, two Experiments were scheduled: in a first Experiment 

(Experiment I.1), six different carbohydrate sources, varying in nature and composition 
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(three cereals and three by-products) were chosen to evaluate their capacity to modify the 

microbial fermentation pattern under conditions adjusted to in vivo daily rumen 

fermentation process. Therefore, the experiment was carried out under intensive feeding 

conditions using a simple semicontinuous system (Fondevila and Pérez-Espés, 2008, 

modified by Prates et al., 2010) to mimic rumen pH pattern and liquid outflow rates, 

adapted to modulate incubation pH to daily rumen pH fluctuations following the 

procedure proposed by Amanzougarene and Fondevila (2018). The incubation substrates 

were incubated with inoculum of animals given either forage or concentrate-based diets, 

to compare the fermentative activity of microbiota from both environments. In the second 

Experiment (Experiment I.2) of this section, the objective was to study the synergistic 

and antagonistic effects of three mixtures of carbohydrate sources (maize and barley as 

starch sources, and sugarbeet pulp as high fermentable fibre source), chosen from the 

results of the first experiment, and was carried out under the same incubation conditions 

that in the former. 

 

Section II. In vitro fermentation of carbohydrate-based substrates added with 

additives to modulate the ruminal fermentation under intensive fattening 

conditions. 

 

For an appropriate adaptation of the rumen environment to concentrate-based diets, 

the use of additives that can reduce the rate and magnitude of fermentation of 

carbohydrates and provide with a gradual adaptation to the diet, reducing or avoiding the 

imbalance in rumen fermentation processes. This section aims to assess the effect of 

different types of additives on the magnitude and rate of fermentation of starch-rich 

substrates, choosing barley grain (Hordeum vulgare, var. Gustav) as a reference 

incubation substrate for ingredients commonly included in high concentrate diets.  

In this section, three Experiments were scheduled. In the two first Experiments 

(Experiment II.3 and Experiment II.4), different types of feed additives were checked at 

different levels to evaluate their capacity to modulate the in vitro fermentation of barley 

under intensive ruminant feeding conditions, using a closed batch system following the 

procedure of Theodorou et al. (1994). The additives were included at three doses (low, 

medium and high), the medium dose being selected according to the manufacturer 

recommendations. The additives tested were: 
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1) Four different commercial sources of tannins (Agrovin SA, Alcázar de San Juan, 

Spain; Experiment II.3): 

A. Quebracho (2S-profisetinidins from Schinopsis spp., 0.65 w/w of tannins) 

B. Grape condensed tannins (procyanidins from Vitis vinifera, 0.75 w/w tannins),  

C. Chestnut (esters of ellagic acid and sugars from Castanea sativa, 0.65 w/w of 

tannins).  

D. Oak (ellagitannins from Quercus robur and Q. petraea, 0.77 w/w of tannins). 

 

2) Different types of fatty acids and essential oils (Experiment II.4) 

A. Three types of fatty acids (Experiment II.4.1): 

A.a) Saturated fatty acids (palmitic acid, 0.85 g/mL; MERCK KGaA, Darmstadt, 

Germany). 

A.b) Polyunsaturated fatty acids (linoleic acid, 0.90 g/mL; Alfa Aesar, Thermo 

Fisher, Karlsruhe, Germany). 

A.c) A commercial mixture of medium-chain fatty acids (50% C12, 20% C10, 

20% C8, and 10% C6; NUTRIKA, Zulte, Belgium). 

 

B. Three types of essential oils (Experiment II.4.2): 

B.a) Cinnamaldehyde (98% purity, 1.05 g/mL; NOREL Animal Nutrition, 

Barcelona, Spain). 

B.b) Eugenol (EUG, 99% purity, 1.06 g/mL; NOREL Animal Nutrition, 

Barcelona, Spain). 

B.c) The commercial blend CRINA Ruminants (DSM Nutritional Products, Basel, 

Switzerland) 

 

In the third Experiment of this section (Experiment II.5), up to five additives of 

different nature sources were chosen as treatments, supplementing barley at doses 

previously established from Experiment II.3 and Experiment II.4. The objective of this 

experiment was to evaluate the effect of these additives on the adaptation of rumen 

microbial population to concentrate conditions, and so their capacity to modulate barley 

fermentation, using an in vitro semicontinuous system (Fondevila and Pérez-Espés, 2008, 

modified by Prates et al., 2010), fitted at such environmental conditions. These additives 

were:  
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A. Grape condensed tannins  

B. A commercial mixture of medium-chain fatty  

C. Polyunsaturated fatty acid (linoleic acid)  

D. Eugenol  

E. Cinnamaldehyde  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 





 

 

 

 

 

 

 

 

 

 

 

 

Chapter IV. Section I. Experiment 1  

Fermentation pattern of several carbohydrate sources incubated in an 

in vitro semicontinuous system with inocula from ruminants given either 

forage or concentrate-based diets (Animals 2020. 10: 261. doi: 

10.3390/ani10020261)   
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Chapter IV. Fermentation pattern of several carbohydrate sources incubated in an 

in vitro semicontinuous system with inocula from ruminants given either forage 

or concentrate-based diets. 

 

Simple Summary 

 A sudden change from a milk/forage diet to a high concentrate diet in young 

ruminants increases rate and extent of rumen microbial fermentation, leading to digestive 

problems such as acidosis. The magnitude of this effect depending on the nature of 

ingredients. Six carbohydrate sources were tested: three cereal grains (barley, maize and 

brown sorghum) as high starch sources of different availability and three byproducts 

(sugarbeet pulp, citrus pulp and wheat bran) as sources of either insoluble or soluble fibre. 

An in vitro semicontinuous incubation system was used to compare the fermentation 

pattern of substrates incubated with inocula simulating concentrate or forage diets, under 

pH and liquid outflow rate conditions of intensive feeding systems. The magnitude of 

microbial fermentation was higher with concentrate than forage inoculum, and the drop 

of pH in the first part of incubation was more profound. Among substrates, citrus pulp 

had a greater acidification potential and was fermented at a higher extent, followed by 

wheat bran and barley. In conclusion, the acidification capacity of substrates plays an 

important role in environmental conditions, depending on the type of diet given to the 

ruminant. This in vitro system used allows to compare substrates under conditions 

simulating high concentrate feeding. 

Abstract 

 

The fermentation pattern of several carbohydrate sources and their interaction with 

the nature of microbial inoculum was studied. Barley (B), maize (M), sorghum, (S), 

sugarbeet pulp (BP), citrus pulp (CP) and wheat bran (WB) were tested in an in vitro 

semicontinuous system maintaining poorly buffered conditions from 0 to 6h and being 

gradually buffered to 6.5 from 8 to 24h to simulate rumen pH pattern. Rumen fluid 

inoculum was obtained from lambs fed with either concentrate and barley straw (CI) or 

alfalfa hay (FI). Extent of fermentation was higher with CI than FI throughout the 

incubation (p < 0.05). Among substrates, S, BP and M maintained the highest pH (p < 

0.05), whereas CP recorded the lowest pH with both inocula. Similarly, CP recorded the 



Section I. Experiment 1 

44 

 

highest gas volume throughout the incubation, followed by WB and B, and S recorded 

the lowest volume (p < 0.05). On average, total VFA as well as lactic acid concentration 

were higher with CP than in the other substrates (p < 0.05). The microbial structure was 

more affected by the animal donor of inoculum than by the substrate. The in vitro 

semicontinuous system allows for the study of rumen environment acidification and 

substrate microbial fermentation under intensive feeding conditions. 

 

1. Introduction 

 

Reaching a high productive performance in the fattening of young ruminants 

requires high energy diets, that promote a high rate and extent of rumen microbial 

fermentation, with acidosis as a frequent consequence (Bevans et al., 2005). In practice, 

ruminants reared at pasture are often abruptly introduced to intensive feeding systems 

without being previously adapted to high concentrate diets, promoting variable responses 

in the rate and extent of fermentation (Fernando et al., 2010). Cereals are commonly 

considered as ingredients of concentrate diets for ruminants. Their energy value depends 

on starch availability, which differs according to its chemical structure, protein matrix or 

in some cases the presence of phenolic compounds (O´Brien, 1999; Offner et al., 2003). 

Fibrous byproducts with either insoluble (cellulose, hemicelluloses) or soluble (mostly 

pectin) polysaccharides and variable proportions of either starch or sugars (DePeeters et 

al., 1997; Maes and Delcour, 2001) are also included among the carbohydrate sources 

currently used. Fitting substrate characteristics to the fermentative ability of rumen 

microbiota while environmental conditions are maintained at an optimal range is a key 

factor for maximising efficiency of energy utilisation and the risk of physiological 

impairment is also reduced. The characteristics of the specific rumen microbial 

community promoted by a certain diet also affect substrate utilisation (Mould et al., 

2005b), as the activity of the bacterial species capable to ferment starch or fibrous 

polysaccharides depends on environmental characteristics (McAllister et al., 1990; Klieve 

et al., 2003).  

The comparison of these energy sources and their effects in the rumen under in vivo 

conditions is laborious and expensive, and often biased by the feeding pattern and hardly 

controlled fermentation conditions (Dijkstra et al., 2005). On the other hand, in vitro 

studies are cheaper and faster and allow for a good insight into rumen fermentation 

processes (Raab et al., 1983). However, most of these in vitro methods are designed for 
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mimicking environment promoted by high forage diets, including the use of inoculum 

from forage-fed animals (Sari et al., 2015), and it is not easy to adapt main physiological 

conditions such as pH and rate of passage to conditions promoted by high concentrate 

diets (Bertipaglia et al., 2010). Amanzougarene and Fondevila (2018) succeed in 

maintaining a low incubation pH in an in vitro closed-batch system by reducing the 

bicarbonate concentration in the incubation solution, allowing for comparing 

fermentation of different carbohydrate sources under conditions simulating high 

concentrate feeding (Amanzougarene et al., 2018a; Amanzougarene et al., 2018b). 

However, this is not the real physiological situation in vivo, where pH changes at a wide 

range along the day (Krause and Combs, 2003), and besides rumen outflow rate cannot 

be assessed in this system. In this regard, the semicontinuous incubation system 

(Fondevila and Pérez-Espés, 2008) modified by Prates et al. (2010), applying the 

procedure proposed by Amanzougarene and Fondevila (2018) for controlling incubation 

pH appears as a useful tool to mimic rumen pH pattern and liquid outflow rates under in 

vitro conditions. 

Therefore, in a semicontinuous in vitro incubation system we compared the 

acidification potential and the rumen microbial fermentation pattern of several 

carbohydrate sources of variable composition when a different rumen environment is 

promoted by either high forage or high concentrate diets, aiming to minimise at possible 

the risk of acidosis during feeding transition from a fibrous to a high-concentrate diet.  

2. Materials and Methods  

 

2.1. Substrates and inocula 

Six carbohydrate sources were chosen as substrates: three cereal grains (barley var. 

Gustav (B), maize var. Dekalb 6667Y (M), and a brown sorghum of unknown variety 

(S)) and three by-product feeds (sugarbeet pulp (BP), citrus pulp (CP) and wheat bran 

(WB)). All substrates were ground in a hammer mill (Retsch Gmbh/SK1/417449, Haan, 

Germany) through a 1 mm sieve. The chemical compositions of the substrates are given 

in Table 3. 
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Table 3. Chemical composition (g/kg DM) of feeds used as incubation substrates. 

Code B M S BP CP WB 

OM 978 986 979 953 940 944 

CPr 105 75 113 107 59 161 

EE 24 34 11 5 14 31 

Starch 672 706 647 - - 245 

aNDFom 173 91 97 437 207 499 

ADF 56 25 60 272 192 145 

ADL 18 2 5 75 21 37 

NDSF 4 77 110 457 423 155 

Sugars 1.6 13 1.3 9 243 31 

TP - - 2.6 - -  - 

TT - - 1.3 - -  - 

Barley (B); maize (M); sorghum (S); sugar beet pulp (BP); citrus pulp (CP); wheat bran (WB). Dry 

matter (DM); organic matter (OM); crude protein (CPr); ether extract (EE); neutral detergent fibre 

(aNDFom); acid detergent fibre (ADF); acid detergent lignin (ADL); neutral detergent soluble fibre 

(NDSF). Total phenolics (TP); total tannins (TT). 

 

Rumen fluid was obtained from six lambs housed in the facilities of the Servicio de 

Apoyo a la Experimentación Animal of the Universidad de Zaragoza. Animal care and 

procedures for extraction of rumen inoculum were approved by the Ethics Committee for 

Animal Experimentation. Care and management of animals agreed with the Spanish 

Policy for Animal Protection RD 53/2013, which complies with EU Directive 2010/63 

on the protection of animals used for experimental and other scientific purposes. Lambs 

were weaned at 49 ± 8 days (average weight 13.6 ± 0.78 kg), and thereafter three lambs 

(1, 2 and 3) were fed ad libitum with a concentrate mixture (composed by barley, maize, 

wheat, and soybean meal) and barley straw (88:12 concentrate to straw ratio) for 35 days, 

and then slaughtered (average weight 20.6 ± 1.85 kg) for obtaining concentrated inoculum 

(CI). The other three lambs (4, 5 and 6) were fed ad libitum with alfalfa hay and 

slaughtered after 45 days (average weight 16.5 ± 0.33 kg) for forage inoculum (FI). The 

rumen contents of each animal were individually filtered through a cheesecloth and 

dispensed in 16 mL aliquots into 110 x 16 mm tubes, that were immediately frozen in 

liquid nitrogen and preserved at -80 ºC until use (Prates et al., 2010). Immediately before 

incubation, rumen inoculum was thawed in a water bath at 39ºC (about 2 minutes). 
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2.2. Experimental conditions 

The in vitro semicontinuous system of Fondevila and Pérez-Espés (2008), modified 

by Prates et al. (2010), was used. Substrate samples (800 mg) were dispensed into 4 x 4 

cm nylon bags (45 µm pore size) that were sealed and introduced into duplicated bottles 

(123 mL total volume). Bottles were filled under CO2 flux with 80 ml of incubation 

solution including 16 mL (0.20 of total volume) thawed rumen inoculum, without 

resazurin and microminerals (Mould et al., 2005a), and were incubated in a water bath at 

39ºC for 24 h in three incubation series, each corresponding to a different donor animal, 

for each type of inoculum. Buffer solution was modified to include 0.006 M bicarbonate 

ion in order to get a poorly buffered medium (Amanzougarene and Fondevila 2018). 

Pressure produced on each bottle was measured every 2 (from 0 to 12 h incubation) 

or 4 h (from 12 to 24 h) with a HD8804 manometer provided with a TP804 pressure gauge 

(DELTA OHM, Caselle di Selvazzano, Italy). Readings corrected for the atmospheric 

pressure were converted to volume (ml) using a pre-established linear regression recorded 

in this type of bottles (n=48, R2 =0.993), and expressed per unit of incubated organic 

matter (OM). Along the incubation, an aliquot volume of medium was extracted 

immediately after each gas measurement and replaced anaerobically by the same volume 

of incubation solution (without microbial inoculum) to simulate an approximate liquid 

turnover rate of 0.08/h. In order to simulate daily rumen pH fluctuations, from 0 to 6 h 

the incubation solution was poorly buffered, as explained above, to allow incubation pH 

to drop as fermentation proceeds, whereas from 8 h onwards the replacing incubation 

solution was made up with 0.058 M bicarbonate ion for allowing pH to increase to around 

6.5. 

Incubation pH was recorded on every extraction. Besides, medium was sampled at 

6 and 10 h for determination of volatile fatty acids concentration (VFA; 2 mL on a 0.5 

mL solution of 0.5M phosphoric acid with 1 mg 4-methyl-valeric acid as internal 

standard) and at 6 h for determination of lactic acid concentration (2 mL). Samples were 

stored at -20ºC until analysis. Besides, another samples (6 mL) was also taken at 8 h and 

immediately frozen (-80ºC) for determination of microbial biodiversity by terminal 

restriction fragment length polymorphism (tRFLP). At the end of incubation, substrate 

bags were removed from the bottles, rinsed and dried at 60ºC for 48 h for determination 

of dry matter disappearance (DMd). 
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2.3. Chemical and microbiological analyses 

The dry matter (DM) and OM content in the substrates and the incubation residues 

were analysed following the AOAC (2005) procedures (methods ref. 934.01 and 942.05). 

The substrates were also analysed for crude protein (CPr) and ether extract (EE) (ref. 

976.05 and 2003.05) (AOAC, 2005), and their concentration of neutral detergent fibre 

(aNDFom) was analysed as described by Mertens (2002) in an Ankom 200 Fibre Analyser 

(Ankom Technology, New York, NY, USA), using α–amylase and sodium sulphite, with 

results being expressed exclusive of residual ashes. The acid detergent fibre (ADF) (ref. 

973.18) and acid detergent lignin (ADL) were determined as described by AOAC (2005) 

and Robertson and Van Soest (1981), respectively. Neutral detergent soluble fibre 

(NDSF) was estimated following Hall et al. (1997), discounting the aNDFom and the 

ethanol insoluble EE, CPr and starch fractions from the insoluble OM. The total starch 

content in B, M, S and WB substrates was determined enzymatically from samples ground 

to 0.5 mm using a commercial kit (Total Starch Assay Kit K-TSTA 07/11, Megazyme, 

Bray, Ireland). The total phenolic (TP) content in S was analysed following the 

colourimetric method of Makkar et al. (1993) using the Folin–Ciocalteau reagent and with 

tannic acid (MERCK Chemicals, Madrid, Spain) as the reference standard. The total 

tannins (TT) were estimated as the difference between TP before and after treatment with 

polyvinyl polypyrrolidone.   

The frozen samples of incubation medium were thawed and centrifuged at 13,000 

g for 15 minutes at 4 ºC for their analysis of lactic acid and VFA. The VFA were 

determined by gas chromatography on an Agilent 6890 apparatus equipped with a flame 

detector and a capillary column (HP-FFAP Polyethylene glycol TPA, 30 m x 530 µm id). 

The lactic acid concentration was determined by the colorimetric method proposed by 

Barker and Summerson (1941). For the microbial diversity analysis, frozen microbial 

samples were freeze-dried, thoroughly mixed and disrupted (Mini-Bead Beater, Biospec 

Products, Bartlesville, OK, USA). The deoxyribonucleic acid (DNA) was extracted using 

the Qiagen QIAmp DNA Stool Mini Kit (Qiagen Ltd., West Sussex, UK) following the 

manufacturer recommendations, except that samples were initially heated at 95ºC for 5 

min to maximise the lysis of bacterial cells. Concentration of extracted DNA was tested 

in Nanodrop ND-1000 (Nano-Drop Technologies, Inc., Wilmington, DE, USA). PCR was 

performed using a 16S rRNA bacteria specific primer (cyanine-labelled forward 27F, 5´-

AGA GTT TGA TCC TGG CTCAG-3´ and unlabelled reverse 1389R, 5´-AGG GGG 
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GGT GTG TAG AAG-3´; Hongoh et al., 2003) using a DNAEngine® Gradient Cycler 

(Bio-Rad, Spain). The polymerase chain reaction (PCR) product was purified using a 

Purelink PCR purification kit (ref. K3100-01; Invitrogen) and diluted to 10 µL. The DNA 

concentration of each amplified and purified sample was obtained by spectrophotometry 

(Nanodrop® ND-1000 spectrophotometer) to enable a standardised quantity of 50 ng 

DNA to be used per restriction enzyme digest reaction. Digestion of samples was carried 

out using HhaI, HaeIII and MspI (Promega, Spain), following the manufacturer 

recommendations except for HhaI, where the recommended addition of bovine serum 

albumin was omitted. Restriction digests were purified by ethanol precipitation (de la 

Fuente et al., 2014) in 35 μL sample loading solution buffer including a 600 bp size 

standard (Beckman Coulter Inc., Fullerton) before being applied to a 3500xL Genetic 

Analyzer (Applied Biosystems). Once getting the size and height of every peak, 1% of 

the second highest peak was used as criteria for the lower threshold for peaks, to detect 

and eliminate smaller, broader peaks that would not be indicative of single true Operational 

Taxonomic Units (OTUs).  

2.4. Calculations and statistical analyses 

The TRFLP results were analysed from a matrix generated for each data list 

obtained, and results were presented in the form of relative abundance. The three matrices 

resulting from each series and enzyme were concatenated and analysed with R statistical 

software (https://cran.r-project.org/bin/windows/base/, version 3.5.0). FactoMineR, 

Factoextra, MixOmics, Vegan, MASS, and Ggplot2 packages were used to carry out the 

analysis of hierarchical classification on principal components for obtaining the cluster 

dendrogram.  

The results were analysed statistically by ANOVA using the Statistix 10 package 

(2010). On each sampling time, the effect of the incubation series (equivalent to the donor 

animal; interaction inoculum x incubation series, random effect), the type of inoculum, 

the type of substrate, and the interaction of both factors on pH, gas production, total VFA 

and lactic acid concentration, and VFA profile were studied as factors. The treatment 

differences among the means with p < 0.05 and 0.05 < p < 0.10 were accepted as 

representing statistically significant differences and a trend to the differences, 

respectively. When significant, the differences were contrasted by the Tukey t-test. 

https://cran.r-project.org/bin/windows/base/
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Simple and multiple linear regressions were established to study the relationships among 

the different parameters studied. 

3. Results  

 

3.1. Pattern of incubation pH 

The mean inoculum pH at the start of the incubation series was 6.45 ± 0.15 and 6.87 

± 0.02 for CI and FI, respectively (n = 3). The average minimum pH was recorded at 6 h 

incubation (5.96) for CI, and at 8 h (6.22) for FI. Thereafter, the pH increased to reach its 

maximum (6.64 for both inocula) at 24 and 20 h for CI and FI. The pH differences in the 

incubation medium among inocula (p < 0.05) were ± 0.3 units from 2 to 6 h, decreasing 

gradually to ± 0.1 at 12 h. A significant interaction inoculum × substrate (p < 0.05) 

observed on pH at 4, 8, 10, 12, 16 and 20 h and a tendency (p = 0.052) at 2 h incubation 

indicates the different behaviour of the substrates depending on the inoculum. Therefore, 

a comparison of the pH pattern among the incubated substrates is presented in Figure 9 

separately for each inoculum. With CI (Fig. 9a), the lowest incubation pH from 2 to 12 h 

was recorded with CP (p < 0.05), reaching its minimum at 6 h (5.60), although recovered 

thereafter to 6.63 at 24 h incubation. In ascending order, WB and B reached their 

minimum pH at 8 h (5.89 and 5.97, respectively), whereas BP, M, and S maintained a 

higher medium pH from 4 to 8 h (p < 0.05). The differences among M, S, BP, and B 

disappeared from 10 to 16 h (p > 0.05), and no differences were detected among the 

substrates (p > 0.05) at the end of incubation. When the substrates were incubated using 

FI (Fig. 9b), CP recorded the lowest pH from 4 to 10 h incubation (P < 0.05), and its 

minimum value was 5.90, whereas S, M and BP maintained the highest medium pH 

during this period (6.30 to 6.46), and B and WB were grouped at intermediate values (p 

< 0.05). At 16 and 20 h incubation only, B recorded a lower value (6.44 and 6.57; p < 

0.05) and, again, no differences were detected among the substrates at the end of 

incubation (p > 0.05).   
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Fig. 9a) 

 

 

Fig. 9b) 

 

Figure 9. Pattern of medium pH of carbohydrate substrates (barley, B ◼, maize, M , 

sorghum, S ⚫; solid lines, citrus pulp, CP , sugar beet pulp, BP , wheat bran, WB 

; dashed lines) incubated with inoculum from concentrate (CI, Fig. 1a) or forage (FI, 

Fig. 1b) diets. Initial pH was 6.45 (Fig 1a) and 6.87 (Fig. 1b). The upper bars show the 

standard error of the means (n=3). 
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3.2. Pattern of in vitro gas production 

The volume of gas produced with the CI inoculum was higher than that obtained 

with FI at all incubation times (p < 0.05). Because of the interaction inoculum x substrate 

at 4 h and from 8 to 24 h (p < 0.05), for an easier understanding, the gas production is 

presented separately for CI and FI (Figure 10). The major difference among substrate 

fermentative behaviour between the inocula is manifested in the magnitude of differences 

among them. Thus, with CI (Fig. 10a), CP recorded the highest gas volume from 4 h 

onwards, at 12 h being on average 0.42 times higher than the other substrates, while also 

recorded differences at 2 h with BP and S (p < 0.05). The gas volume with WB was higher 

than BP and S from 4 h onwards, and higher than M from 6 h and B from 8 to 20 h (p < 

0.05). Differences were also recorded between B and S from 8 to 16 h and at 24 h (p < 

0.05). A similar pattern was observed with FI (Fig. 10b), but the magnitude of differences 

was lower. Thus, CP was higher than B, M, BP and S from 6 to 24 h (p < 0.05), with 

differences at 12 h reaching 0.59 of their average, but did not differ from WB, which was 

higher than BP and S in that period and also higher than M from 6 to 10 h (p < 0.05). 

Differences between B and M respect to S were also detected from 16 and 20 h onwards, 

respectively (p < 0.05). 
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Fig. 10b) 

       

Figure 10. Pattern of gas production from the carbohydrate substrates (barley, B ◼, 

maize, M , sorghum, S ⚫; solid lines, citrus pulp, CP , sugar beet pulp, BP , 

wheat bran, WB ; dashed lines) incubated with inoculum from concentrate (Fig. 2a) 

or forage (Fig. 2b) diets. The upper bars show the standard error of the means (n=3). 

 

3. 3. Dry matter disappearance (DMd) 

Inoculum differences in DMd after 24 h of incubation were not detected, although 

CI was numerically higher than FI (proportions of 0.382 vs. 0.339 from the substrate 

weight; P>0.05). Substrates ranked according to the proportion of DMd as follows: CP, 

0.502 > B, 0.449 > WB, 0.360, M, 0.343 > BP, 0.265, S, 0.243 (P<0.001; SEM=0.0120).  

The interaction inoculum x substrate was not significant (P=0.21), indicating that 

substrates behaved similarly with both inocula. 

3.4. Volatile fatty acids and lactic acid production 

Tables 4 and 5 show that CI promoted a higher (p < 0.05) concentration of total 

VFA than FI at both 6 (23.2 vs. 9.8 mM) and 10 (22.2 vs. 9.3 mM) h. Molar proportions 

of acetate, propionate, and butyrate did not manifest differences between inocula (p > 

0.05), whereas with CI valerate was higher and branc hed-chain volatile fatty acids 

(BCVFA, sum of isobutyrate and isovalerate) lower than with FI at both incubation times 

(p < 0.05).  
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Among substrates, at 6 h (Table 4) CP recorded a higher total VFA concentration 

than BP, M and S (average values of 19.3, 15.6, 14.5 and 15.0 mM, respectively), whereas 

WB (15.9 mM) was also higher than M and S (p < 0.05). Differences in the molar VFA 

profile were only recorded for BCVFA, with the highest proportions in S and M and the 

lowest with CP (p < 0.05); however, the interaction inoculum x substrate (p < 0.001) 

indicates that differences in BCVFA proportion were only observed with FI. Regarding 

the concentration of lactic acid at 6 h among substrates, CP recorded the highest 

concentration and BP and S the lowest (8.7 vs. 1.3 and 1.4 mM; p < 0.05). Similar trends 

were observed at 10 h on total VFA concentration (Table 5), with CP rendering a higher 

concentration than BP, M and S, but tending to be significant only with CI interaction 

inoculum x substrate, (p = 0.058). The interaction inoculum x substrate in the proportion 

of propionate (p = 0.017) indicates that values recorded with WB and CP were higher to 

those with BP and S, but differences were only manifested with FI, whereas no 

differences (p > 0.05) among substrates were recorded on acetate, butyrate and valerate 

proportions. The highest proportion of BCVFA was promoted by S and the lowest by CP 

(p < 0.05).  

3.5. Bacterial biodiversity 

Bacterial biodiversity after 8 h of incubation was markedly affected by the source 

of rumen inoculum. Thus, the substrates incubated with rumen inoculum from lambs fed 

high concentrate diet clustered together, except for WB in the first incubation run, as well 

as substrates incubated with FI (Figure 11). Bacterial biodiversity was also markedly 

affected by the incubation series, that is, the donor animal, for both inocula.    
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Table 4. Average of total volatile fatty acids concentration (VFA, mM) and molar VFA 

proportions (mmol/mmol), together with lactate concentration (mM) recorded at 6 h 

of the different carbohydrate sources incubated as substrates with concentrate (CI) or 

forage (FI) inoculum. 

Substrates   VFA  Acetate Propionate Butyrate Valerate  BCVFA Lactic acid  

with CI 
       

B 22.34ab 0.570 0.240 0.153 0.022 0.014 3.83b 

M 20.18bc 0.578 0.235 0.149 0.023 0.016 2.35c 

S 21.72abc 0.588 0.245 0.131  0.022 0.015 1.93c 

BP 21.66abc   0.593 0.235 0.135 0.021 0.016 0.90c 

CP 26.55a 0.595 0.238 0.135 0.020 0.012 8.70a 

WB 26.94a 0.590 0.245 0.132 0.020 0.013 2.95c 

with FI        

B 10.31xyz 0.633 0.226 0.102 0.009 0.030y 3.05y 

M 8.83yz 0.632 0.229 0.095 0.010 0.034xy 2.69y 

S 8.31z 0.642 0.216 0.094 0.009 0.039x 0.84y 

BP 9.52yz 0.665 0.207 0.088 0.008 0.032y 1.64y 

CP 12.12x 0.686 0.209 0.075 0.008 0.023z 8.67x 

WB 9.83yz 0.653 0.225 0.083 0.009 0.030y 2.97y 

SEM 1.065 0.0156 0.0076 0.0085 0.0010 0.0009 0.588 

P-value 
       

Inoculum 0.002 0.077 NS NS 0.005 <0.001 NS 

Substrate <0.001 NS NS NS NS <0.001 <0.001 

Inoc. x Subs. NS NS NS NS NS <0.001 NS 

Means within a column with different superscripts for CI (a,b,c) or FI (x,y,z) differ (p < 0.05). Standard error 

of the means (SEM). Branched-chain volatile fatty acids (BCVFA) (sum of isobutyrate + isovalerate). NS: 

p >0.10.  
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Table 5. Average of total volatile fatty acids concentration (VFA, mM) and molar VFA 

proportions (mmol/mmol), recorded at 10 h of the different carbohydrate sources 

incubated as substrates with concentrate (CI) or forage (FI) inoculum. 

Substrates  VFA  Acetate Propionate Butyrate Valerate  BCVFA 

with CI 
      

B 21.16b 0.561 0.225 0.172 0.028 0.014 

M 19.42b 0.548 0.227 0.178 0.031 0.017 

S 19.87b 0.557 0.249 0.152 0.026 0.017 

BP 20.25b 0.604 0.229 0.130 0.022 0.016 

CP 27.32a 0.553 0.240 0.164 0.031 0.012 

WB 25.10ab 0.537 0.261 0.158 0.029 0.015 

with FI       

B 10.46 0.597 0.256xy 0.117 0.009 0.022 

M 8.51 0.620 0.236xy 0.109 0.009 0.026 

S 8.48 0.620 0.222y 0.120 0.009 0.029 

BP 8.34 0.611 0.227y 0.126 0.009 0.027 

CP 10.47 0.579 0.267x 0.124 0.010 0.019 

WB 9.76 0.575 0.274x 0.117 0.010 0.025 

SEM 1.137 0.0233 0.0078 0.0169 0.0019 0.0024 

P-value  
      

Inoculum 0.011 NS NS NS 0.008 0.008 

Substrate 0.001 NS <0.001 NS NS 0.046 

Inoc. x Subs. 0.058 NS 0.017 NS NS NS 

Means within a column with different superscripts for CI (a,b,c) or FI (x,y,z) differ (p < 0.05). SEM: standard 

error of the means. Branched-chain volatile fatty acids (BCVFA) (sum of isobutyrate + isovalerate). 
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Figure 11. Dendrogram of bacteria diversity from terminal restriction fragment length 

polymorphism (tRFLP) data generated by enzyme digestion (HhaI, MspI, and HaeIII) 

for the carbohydrate substrates (B, M, S, BP, CP, and WB) incubated for 8 h with 

inoculum from concentrate (CI) or forage (FI) diets. Scale bar shows Euclidean 

distances, “ward method”. 

 

 

4. Discussion 

 

Conventional in vitro closed batch systems are adapted for the study of microbial 

fermentation under conditions mimicking high forage diets, which is not applicable to 

evaluate diets given in intensive ruminants fattening systems. An in vitro semicontinuous 

incubation system (Fondevila and Pérez-Espés, 2008; Prates et al., 2010), adapted to 

control of pH by modifying bicarbonate ion concentration (Amanzougarene and 

Fondevila, 2018) allows for approaching the ruminal fermentation pattern of the different 
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carbohydrate sources to the rumen physiological conditions that occur in intensive 

feeding systems, either during a transition process to high concentrate diets (i.e., when 

ruminants are still on rumen conditions promoted by a forage diet) or when animals are 

adapted to such feeding conditions (as promoted by a concentrate diet). The pH pattern 

obtained along the in vitro incubation with CI and FI, reaching a minimum value at 6-8 h 

after substrate availability and then progressively increasing to final pH values of around 

6.4-6.5, fitted well with the circadian evolution of rumen pH observed with practical 

forage or concentrate feeding of ruminants (Nagaraja and Titgemeyer, 2007). Thus, we 

can assume it allows to the different substrates to express their acidification potential, at 

the time their fermentation is compared under more realistic conditions.    

4.1. Effect of the inoculum source on the in vitro fermentation pattern 

The source of rumen fluid has an important role on the pattern of in vitro 

fermentation (Broudiscou et al., 20014; Amanzougarene et al., 2018a; Kim et al., 2018), 

an inoculum promoted by a concentrate diet having a higher fermentative potential than 

another from a forage diet. In our experiment, the lower buffering of the incubation 

medium during the first 6-8 hours allowed for a clear expression of the acidification 

potential of incubated substrates, which was expressed at a higher extent with CI than FI 

(average pH along the 24 h incubation from 6.45 to 5.96 vs. 6.87 to 6.22) as pH dropped 

to values close to those considered as a threshold for microbial activity (Hiltner and 

Dehority, 1983), whereas pH was maintained higher with FI. Despite of this, substrates 

incubated with CI rendered almost two-fold gas volume than with FI, irrespective the 

chemical nature (starch- or fibre-rich) of those substrates. Despite the more pronounced 

drop of pH with CI, the incubation environment promoted by a concentrate diet given to 

the donor animals was more favourable for fermentation of non-fibrous carbohydrates 

than that induced by a fibrous diet (Menke and Steingass, 1988; Mould et al., 2005a), 

probably because the lack of adaptation of microbiota to ferment starch and sugar 

substrates with a forage inoculum (Nagadi et al., 2000; Amanzougarene et al., 2018a) and 

the inherent buffering capacity of forage legumes such as alfalfa. However, assuming that 

a part of gas produced comes from the activity of bicarbonate ion in buffering of 

fermentation acids produced, such differences in gas production could be partly 

associated with the lower pH promoted by CI inoculum, although the contribution of this 

indirect gas is hard to quantify (Amanzougarene and Fondevila, 2018). In the case of the 

byproducts, characterised by their richness in rapidly fermentable fibre, microbiota might 
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easily counterbalance the lack of adaptation for their degradation (Hatfield and Weimer, 

1995; Barrios-Urdaneta et al., 2003). In contrast, the low pH occurring during the initial 

part of incubation may affect at a higher extent the activity of bacterial species adapted to 

fibre degradation, causing a lower magnitude of fermentation of structural 

polysaccharides like cellulose and hemicelluloses (Mould and Ørskov, 1983; Grant and 

Mertens, 1992; Sari et al., 2015).  

Contrary to what could be expected, the results of gas production were not 

supported by those of DMd. This parameter was especially low compared to the extent of 

rumen degradation of starch-rich sources (around 0.70-0.80, Cerneau and Michalet-

Doreau, 1991) or fibrous sources (ranging from 0.40 to 0.70, Demarquilly and Andrieu, 

1988). This is difficult to explain, but we have also observed this low response in previous 

in vitro experiments (Amanzougarene et al., 2017a), partly associated to a low pH 

(Bertipaglia et al., 2010). Calsamiglia et al. (2008) justified similar results by the 

differences between rumen and in vitro microbial ecosystems, partly because the dilution 

of inoculum in the latter reduces extent of degradation. In contrast to DMd, the 

concentration of total VFA followed a similar trend than that of gas production, being 

higher for CI at both sampling times as it has been observed by others (Calsamiglia et al., 

2008; Amanzougarene et al., 2018a; Kim et al., 2018). As in our study, Calsamiglia et al. 

(2008) did not observe any inoculum effect on acetate and butyrate proportions, and 

propionate proportion was higher with concentrate inoculum as here at 10 h incubation. 

However, differences in the proportion of BCVFA, which results from fermentation of 

protein and branched-chain amino acids (Saro et al., 2014) were higher with FI at 6 at 10 

h, probably because of the fermentation of protein from the alfalfa hay fed to the donor 

lambs. The effect of inoculum source was also observed on microbial diversity, reassuring 

so the recent findings reported by Tapio et al. (2017) and Nagata et al. (2018) who showed 

the difference in rumen microbial population when bulls were fed with forage or 

concentrate diets. 

4.2. Effect of different substrates on the in vitro fermentation kinetics  

Despite the marked differences on the magnitude of fermentation between CI and 

FI, the fermentation pattern among substrates was almost the same between both inocula. 

The results of the measured parameters showed a strong correlation between gas 

production and the other parameters (pH, VFA and lactic acid concentrations) at 6 h (n = 
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36; adjusted R2 = 0.90; p < 0.001). Similarly, at 10 h incubation the volume of gas 

produced strongly correlated with pH and VFA (n = 36; adjusted R2= 0.84; p < 0.001) 

incubation. These results confirm that the gas production and so the concentration of total 

VFA and lactic acid are the main factors indicating the acidification potential of the 

incubated substrates (Russell and Hino, 1985; Sauvant et al., 2006; Broudiscou et al., 

2014). Citrus pulp had a higher acidification capacity than the other substrates, associated 

with a higher magnitude of fermentation that is manifested in high gas production as well 

as VFA and lactic acid concentration. Despite the high concentration of lactic acid with 

CP at 6 h (Table 4), it did not achieve the range considered as a risk of acidosis in vivo 

(Nagaraja and Titgemeyer, 2007) and in fact did not promoted values of incubation pH 

below 5.5, that is considered as a threshold for the onset of subacute acidosis (Krause and 

Oetzel, 2006). These results were in agreement with those found by Amanzougarene et 

al. (2017a) in a batch culture with a minimum buffer concentration, and could be 

associated to its richness in soluble sugars (Hall et al., 1998; Ariza et al., 2001), estimated 

as 0.24 g/kg DM (Table 3), that are fermented at a very fast rate. Although CP has also a 

high proportion of soluble fibre (0.42, Table 3), this response cannot be directly 

associated to the fast fermentation of pectin (Barrios-Urdaneta et al., 2003; Bampidis and 

Robinson, 2006) since BP includes a similar NDSF proportion (0.46) and it was 

fermented at a slower rate and magnitude. In fact, Strobel and Russel (1986) reported that 

at a pH of 6.00 the extent of pectin fermentation was reduced respect to higher pH. The 

lower fermentation rate of BP and thus its lower acidification potential can be also related 

to its high NDF content, which does not ensure its maximum fermentation in the 24 h 

incubation period (Sauvant et al., 1986). Considering the mentioned characteristics of BP 

composition, mainly its high NDF and NDSF proportions as well as its low sugar content, 

its lower concentration of lactic acid produced respect to the other incubated substrates 

could be expected. Others (Strobel and Russel, 1986; Bampidis and Robinson, 2006) have 

also stated that the yield of lactic acid production from pectins fermentation is very low. 

The extent of fermentation of WB and B was lower than that of CP, but higher than 

those of the remaining substrates, probably linked to the high proportion of rapidly 

fermentable starch in these substrates, compared with those of M and S. Nocek and 

Tamminga (1991) indicated that 0.80 to 0.90 of barley or wheat starch is digested in the 

rumen, compared to only 0.55 to 0.70 of that of corn and sorghum. In addition, WB have 

a considerable amount of NDSF and highly fermentable NDF (Table 3). The structure of 
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the starch endosperm of maize and sorghum together with their different proportions of 

amylose (Offner et al., 2003), as well as the protein matrix in the endosperm in these 

cereal species (McAllister et al., 1993) and the presence of phenolic compounds in the 

brown sorghum (Amanzougarene et al., 2018b) explain why the fermentation of starch of 

barley and wheat bran by ruminal bacteria was higher (Overton et al., 1995; Firkins et al., 

2001; Offner et al., 2003). Consequently, the differences in starch characteristics and 

fermentation rate promote the response in medium pH (Amanzougarene et al., 2018a). 

Incubating several grains in a well buffered medium, Lanzas et al. (2007) observed a 

higher fractional rate of 48h gas production with barley than maize and sorghum varieties 

(on average, 0.24, 0.15 and 0.06/h). Opatpatanakit et al. (1994), modified incubation pH 

similarly to the present work, and also observed a highest gas production with barley, 

intermediate with maize and lowest with sorghum (on average, 222, 138 and 104 mL/g 

DM, respectively), under pH values at 7 h incubation ranging from 5.7 to 6.1 for barley, 

6.5 to 6.9 for maize and 6.5 to 6.8 for sorghum. 

From our findings, it can be indicated that citrus pulp and, to a lower extent wheat 

bran, had an acidic capacity of even higher magnitude than cereal sources, including 

barley. Despite of the differences on the magnitude and extent of fermentation between 

the different incubated substrates, results of microbial diversity with both inocula showed 

a major effect of the donor animal on this parameter, partly because of aspects related to 

in vitro methodology, such as the short period of incubation. These results were in 

accordance with those reported by Taxis et al. (2015) and Söllinger et al. (2018) 

explaining the differences in microbial diversity from one animal to another. However, 

within each series (donor animal), our results did not demonstrate differences between 

substrates.  

 

5. Conclusions 

 

Under fermentation conditions of high-concentrate feeding, some sources of highly 

fermentable fibre, such as citrus pulp and at a lower extent wheat bran may create a more 

acidic environment than cereals. Among these, barley promotes a lower pH than maize 

or sorghum, associated to a higher rate and extent of fermentation. Rumen environment 

promoted by high forage/fibre diets are not adapted for non-fibrous carbohydrates, and 

fermentation of soluble fibre is not differentially enhanced, producing a lower extent of 
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substrate fermentation than concentrate diets. Therefore, choosing of ingredients is 

important when ruminants are changed from a forage to a high-concentrate diet, although 

this cannot be inferred from this study. In any case, in this experiment acidification levels 

did not reach those that may change fermentation pattern., Care must be taken on substrate 

comparison in terms of gas production, since buffering of medium under low pH 

conditions may overestimate fermentation differences by increasing indirect gas 

production. The in vitro semicontinuous system adapted to a variable medium pH has 

proven to be useful for the study of rumen microbial fermentation under intensive feeding 

conditions. 
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Rumen microbial fermentation pattern of cereal grains and sugar beet 

pulp mixtures in an in vitro semicontinuous system with inocula from 

concentrate or forage-based diets. (Under review; Animal Feed Science 

and Technology). 
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Chapter V. Rumen microbial fermentation pattern of cereal grains and sugar beet 

pulp mixtures in an in vitro semicontinuous system with inocula from concentrate 

or forage-based diets. 

  

Abstract. 

 

Microbial fermentation of three feed mixtures (1:1 maize:barley, MB, and 

maize:sugarbeet pulp at either 1:1, MP, or 3:1, 3MP) were studied in an in vitro 

semicontinuous culture system, using inoculum from lambs receiving either a concentrate 

(CI) or a forage (FI) diet. Medium pH was poorly buffered from 0 to 6 h and allowed to 

rise to around 6.5 from 8 h onwards. Medium pH was lower with CI (P<0.05) for 0 to 8 

h, whereas the volume of gas recorded with CI was always superior to that with FI 

(P<0.05), as well as 24 h dry matter disappearance (DMd, 0.38 vs. 0.34; P=0.077) and 

total volatile fatty acids concentration (VFA). At 6 and 24 h (P<0.05). At 24 h, the highest 

proportion of acetate was recorded by MP, that also recorded the lowest proportions of 

butyrate and valerate (P<0.05). Highest and lowest lactic acid concentration at 6 h were 

observed in 3MP and MP (P<0.05). Bacterial diversity was markedly affected by the 

inoculum type, as it was also observed on Shannon (P<0.01), and Richness (P= 0.074) 

indexes. With CI, incubation pH was higher (P<0.05) with MP than MB and 3MP from 

6 to 20h. Gas production (GP) was highest for MB at 2 h and from 6 to 16 h, and lowest 

with 3MP from 2 to 8 h, and with MP from 20 h onwards (P<0.05). Higher DMd was 

recorded by MB and 3MP than MP (0.440 and 0.396 vs. 0.305; P<0.05). Regarding 

microbial diversity, MP and MB clustered together when CI from lambs 1 and 2 was used, 

but MP and 3MP were similar with inoculum from lamb 3. With FI, pH was lower with 

MB than with 3MP at 6 h (P<0.05), and it was the lowest onwards (P<0.05). Gas 

production from 3MP was lowest (P<0.05) up to 4 h, and it was also lower than with MB 

from 6 h onwards (P<0.05). Similarly to CI, the highest DMd was recorded by MB 

(0.423, 0.316 and 0.283 for MB, 3MP and MP, respectively; P<0.05). Mixtures ranked 

as follows on the Richness index: 3MP (107.2), MP (102.3) and then MB (96.7; P<0.05, 

SEM= 2.38). In both concentrate and forage environments, MP maintained a more stable 

pH pattern while microbial fermentation was not noticeably depressed compared to 

higher starch proportions mixtures (MB and 3MP). 
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1. Introduction  

 

Intensive fattening diets fed to young ruminants are characterised by a high rate of 

cereal grains as the main carbohydrate source. However, an excessive rate and extent of 

starch fermentation, which depends on the nature of dietary starch source (Van 

Barneveld., 1999), promotes the risk of ruminal acidosis (Svihus et al., 2005; Zebeli et 

al., 2008), especially in young ruminants abruptly changed from milk or forage to a high 

concentrate diet. Despite the amount of starch is higher in corn than barley (FEDNA, 

2010), its availability is restricted by a protein matrix (McAllister et al., 1993) and the 

rate of starch fermentation is higher with the latter (Sauvant and Michalet-Doreau, 1988; 

Amanzougarene et al., 2018a). On the other hand, Calsamiglia et al. (2012) proposed that 

acidosis may be caused by the combined effects of pH and changes in the microbial 

profile related to the type of diet.   

The risk of acidosis can be minimized giving adequate amounts of structural 

carbohydrates, which may avoid a ruminal overload of volatile fatty acids and lactic acid, 

at the time increasing chewing activity and the flow of salivary buffers. Sauvant et al. 

(1999) conclude that to avoid the risk of acidosis, ruminant diets should contain no more 

than 0.25 starch and 0.30 to 0.40 neutral detergent fibre (NDF), on dry matter (DM) basis. 

However, this practice may dilute the energy concentration of diet and thus negatively 

affect energy intake of animal. In this regard, several agro-industrial byproducts, such as 

sugarbeet pulp, which have a considerable proportion of easily fermentable 

hemicelluloses and pectin are used in ruminants nutrition, rendering a high amount of 

energy when fermented in the rumen (Nocek and Tamminga, 1991). Marounek et al. 

(1985) and Münnich et al. (2017) highlighted the beneficial effect of sugarbeet pulp in 

maintaining rumen pH, especially when high proportions of this byproduct are included 

in diet. However, the objective of intensively rearing feedlots is to achieve maximum 

energy intake and efficiency at the time a healthy rumen environment is preserved, and 

high levels of sugarbeet pulp may reduce energy intake. In any case, there is not much 

information about the effect of combining different levels of sugarbeet pulp with cereal 

grains on rumen fermentation environment. 

This experiment aims to assess the synergistic and antagonistic effects of different 

combinations of carbohydrate sources consisting of a mixture of cereal grains (maize and 

barley) as sources of starch, and maize and two levels of sugarbeet pulp as a source of 
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highly fermentable fibre, on rumen fermentation parameters. This will be approached in 

vitro using a semicontinuous system fitted to intensive feeding conditions. 

2. Material and methods  

 

2.1. Substrates  

Three carbohydrate-rich feeds were studied as substrates of incubation, two cereal 

grains (barley, var. Gustav, and maize, Dekalb 6667YG), and an agro-industrial 

byproduct (sugarbeet pulp). Substrates were milled through a sieve of 1 mm and used as 

components of three mixtures, 1:1 maize:barley (MB) and 1:1 and 3:1 maize:sugarbeet 

pulp (MP and 3MP). Chemical composition of substrates is given in Table 6.  

Table 6. Chemical composition (g/kg DM) of feeds used as incubation substrates. 

 OM CPr EE Starch aNDFom ADF ADL NDSF Sugars  

M 986 75 34 706 91 25 2.0 77 13 

B 978 105 24 672 173 56 17.5 4 1.6 

P 953 107 5 --- 437 272 75 457 9 

DM: dry matter; OM: organic matter; CPr: crude protein; EE: ether extract; aNDFom: neutral detergent 

fibre; ADF: acid detergent fibre; ADL: acid detergent lignin; NDSF: neutral detergent soluble fibre.  

 

2.2. Microbial inoculum sources  

Rumen fluid used as inoculum was obtained from six donor lambs housed in the 

facilities of the Servicio de Apoyo a la Experimentación Animal of the Universidad de 

Zaragoza. Animal care and procedures for extraction of rumen inoculum were approved 

by the Ethics Committee for Animal Experimentation. Care and management of animals 

agreed with the Spanish Policy for Animal Protection RD 53/2013, which complies with 

EU Directive 2010/63 on the protection of animals used for experimental and other 

scientific purposes. Lambs were abruptly weaned at 49 ± 8 days (average weight 13.6 ± 

0.78 kg), and then were fed ad libitum in groups of three with a commercial concentrate 

composed essentially by barley, maize and soybean meal, plus barley straw (CI; lambs 1, 

2, 3; average final weight 20.63 ± 1.85 kg) for 35 days or with alfalfa hay (FI; lambs 4, 

5, 6; average final weight 16.52 ± 0.33 kg) for 45 days. Then, lambs were slaughtered, 

rumen contents were sampled and individually filtered through a cheesecloth and 
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dispensed in 18 mL aliquots into 110 x 16 mm polypropylene tubes that were immediately 

frozen in nitrogen liquid and stored thereafter at -80 ºC (Prates et al., 2010). Before 

incubation, frozen inocula were thawed in a 39◦C water bath for 1-2 min.  

 

2.3. Incubation procedures  

The fermentation kinetics of experimental feeds were determined by the in vitro 

incubation system of Fondevila and Pérez-Espés (2008), modified by Prates et al. (2010). 

For each inoculum, three in vitro incubation series of 24 h were carried out, each one 

corresponding to a different donor lamb, with two flasks per treatment in each series. The 

incubation solution was prepared under a CO2 atmosphere, and flasks were maintained at 

39 ºC in a water bath throughout the incubation.  

 Sealed nylon bags (45 µm pore size) containing 800 mg of substrate mixtures were 

incubated in each of 123 mL Erlenmeyer flasks. Each flask was filled with 80 mL of 

incubation solution (Theodorou et al., 1994) including 0.20 of rumen inoculum. Buffer 

composition was modified to include 0.006 M bicarbonate ion to get a poorly buffered 

medium (Amanzougarene and Fondevila, 2018) during the first 6 h of incubation. Every 

2 h from 0 to 12 h and every 4 h from 12 to 24 h, fixed volumes of incubation media were 

extracted by suction through the filter port, and the exact volume was replaced with 

incubation solution (without rumen inoculum) to adjust liquid phase turnover to 

approximately 0.08/h. From 8 h onwards, concentration of bicarbonate ion in the buffer 

of incubation solution was corrected to 0.058 M for allowing pH to increase to around 

6.7. Replacement incubation solution was maintained anaerobically at 39 ºC until used. 

The pressure of gas produced in each flask was recorded before liquid replacement at 2, 

4, 6, 8, 10, 12, 16, 20, and 24 h, with a HD8804 manometer provided with a TP804 

pressure gauge (DELTA OHM, Caselle di Selvazzano, Italy). Pressure readings were 

converted to volume (mL) using a pre-established linear regression between pressures 

recorded in this type of flasks and known inoculated air volumes at the same incubation 

temperature (n=48, R2 =0.993). Gas volume was expressed per unit of incubated organic 

matter (OM).  

Immediately after gas recording, one part of the extracted media was used for pH 

measurement. At 6 and 24 h, the extracted incubation media was sampled for 

determination of total volatile fatty acids concentration (VFA; 2 mL over a 0.5 mL 

solution of 0.5M phosphoric acid with 1 mg 4-methyl-valeric acid as internal standard). 
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Samples were also taken at 6 h for lactic acid (2 mL) concentration, and at 8 h for 

microbial biodiversity (6 mL). Samples were stored frozen (-80ºC) until their analysis. At 

the end of the 24 h incubation, substrate bags were removed, rinsed and dried at 60ºC for 

48 h for determination of dry matter disappearance (DMd).  

 

2.4. Chemical and microbiological analyses 

DM and OM content in substrates and incubation residues were analysed following 

the AOAC (2005) procedures (methods ref. 934.01 and 942.05). Substrates were also 

analysed following the procedures of AOAC (2005) for CPr (ref. 976.05) and EE (ref. 

2003.05) analysis. Concentration of aNDFom was analysed as described by Mertens 

(2002) in an Ankom 200 Fibre Analyser (Ankom Technology, New York), using α–

amylase and sodium sulphite, results being expressed exclusive of residual ashes. The 

acid detergent fibre (ADF) and acid detergent lignin (ADL) were determined by the 

973.18 procedure of AOAC (2005) and as described by Robertson and Van Soest (1981), 

respectively. Neutral detergent soluble fibre (NDSF) was estimated following Hall et al. 

(1997), discounting the aNDFom and the ethanol insoluble EE, CPr and starch fractions 

from the insoluble OM. The solubilized OM fraction was considered as representative of 

soluble sugars content once corrected for soluble CPr and starch. Total starch content was 

determined enzymatically from samples ground to 0.5 mm using a commercial kit (Total 

Starch Assay Kit K-TSTA 07/11, Megazyme, Bray, Ireland).  

After thawing, frozen samples of incubation medium were centrifuged at 13,000 g 

for 15 minutes at 4 ºC for their analysis of VFA and lactic acid. The VFA were determined 

by gas chromatography on an Agilent 6890, apparatus equipped with a capillary column 

(HP-FFAP Polyethylene glycol TPA, 30 m x 530 µm id), and the lactic acid concentration 

was determined by the colorimetric method proposed by Barker and Summerson (1941).  

For the microbial diversity analysis, frozen microbial samples were freeze-dried, 

thoroughly mixed and disrupted (Mini-Bead Beater, Biospec Products, Bartlesville, OK, 

USA). The DNA was extracted using the Qiagen QIAmp DNA Stool Mini Kit (Qiagen 

Ltd., West Sussex, UK) following the manufacturer recommendations, except that 

samples were initially heated at 95ºC for 5 min to maximise the lysis of bacterial cells. 

Concentration of extracted DNA was tested in Nanodrop ND-1000 (Nano-Drop 

Technologies, Inc., Wilmington, DE, USA). PCR was performed using a 16S rRNA 

bacteria specific primer (cyanine-labelled forward 27F, 5´-AGA GTT TGA TCC TGG 

CTCAG-3´ and unlabelled reverse 1389R, 5´-AGG GGG GGT GTG TAG AAG-3´; 
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Hongoh et al., 2003) using a DNAEngine® Gradient Cycler (Bio-Rad, Spain). The PCR 

product was purified using a Purelink PCR purification kit (ref. K3100-01; Invitrogen) 

and diluted to 10 µL. The DNA concentration of each amplified and purified sample was 

obtained by spectrophotometry (Nanodrop® ND-1000 spectrophotometer) to enable a 

standardised quantity of 50 ng DNA to be used per restriction enzyme digest reaction. 

Digestion of samples was carried out using HhaI, HaeIII and MspI (Promega, Spain) 

following the manufacturers recommendations exception for HhaI, where the 

recommended addition of bovine serum albumin was omitted. Restriction digests were 

purified by ethanol precipitation (de la Fuente et al., 2014) in 35 μL sample loading 

solution buffer including a 600 bp size standard (Beckman Coulter Inc., Fullerton) before 

being applied to a 3500xL Genetic Analyzer (Applied Biosystems). Once getting the size 

and height of every peak, 1% of the second highest peak was used as criteria for the lower 

threshold for peaks, to detect and eliminate smaller, broader peaks that would not be 

indicative of single true OTUs.   

 

2.5. Calculations and statistical analyses 

The TRFLP results were analysed from a matrix generated for each data list 

obtained, and results were presented in the form of relative abundance. The three matrices 

resulting from each series and enzyme were concatenated and analysed with R statistical 

software (https://cran.r-project.org/bin/windows/base/, version 3.5.0). FactoMineR, 

Factoextra, MixOmics, Vegan, MASS, and Ggplot2 packages were used to carry out the 

analysis of hierarchical classification on principal components for obtaining the cluster 

dendrogram. Diversity was estimated by the calculation of Shannon and Richness 

diversity indexes for terminal restriction fragment (TRFs; Dunbar et al., 2000) as well as 

total number of TRFs obtained from amalgamation of three restriction enzymes. 

Results were subjected to ANOVA using the Statistix 10 package (Analytical 

Software, 2010), considering the interaction (inoculum x incubation series) as a block. 

Each flask was considered as the experimental unit, because of the individual processing 

of each of them. The effect of the type of inoculum, the type of mixture, and the 

interaction of both factors on the pH, gas production, total VFA concentration, VFA 

profile and lactic acid were studied as factors for each time of sampling. Treatment 

differences among means with P<0.05 and 0.05<P<0.10 were accepted as representing 

https://cran.r-project.org/bin/windows/base/
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statistically significant differences and trends to differences, respectively. When 

significant, differences were contrasted by the Tukey t-test.  

3. Results 

 

At the start of incubation series, the mean inoculum pH for CI and FI was 6.44 ± 

0.12 and 7.01 ± 0.20, respectively (n=3). From this value, pH dropped in about 0.5 and 

0.7 units to reach its minimum during the first 6 and 8 h of incubation for CI and FI, 

respectively, and then increased to reach its maximum at 20 h. During the first 8 h of 

incubation pH with FI was higher than that of CI (P<0.05), but from 10 h onwards 

inoculum differences gradually disappeared (P>0.05). Since an interaction inoculum x 

mixture was detected at 6, 8, 10, 12, 20 and 24 h (P<0.05) as well as at 16 h incubation 

(P=0.057), to facilitate the interpretation of results in Figure 12 the comparison of the pH 

pattern among the incubated mixture is presented separately for each inoculum. With CI 

(Fig. 12a), the pH at 6 h was lower with MB and 3MP than MP (5.97 and 5.94 vs. 6.06; 

P<0.05). As planned, medium pH increased thereafter (P<0.01) until 6.78 for MP and 

6.67 for both MB and 3MP at 20 h. A similar pattern was observed when mixtures were 

incubated with FI (Fig. 12b), being lower at 6 h with MB than 3MP (6.33 vs. 6.39; 

P<0.05), and from 8 h onwards higher with MP and 3MP than MB (P<0.05), not existing 

differences between the treatments including sugarbeet pulp.  

 

Fig. 12a) 
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Fig. 12b) 

 

Figure 12. Pattern of incubation pH from MB (◼), MP () and 3MP () when incubated 

in vitro with inoculum from a concentrate diet (CI, Fig. a) or from a forage diet (FI, 

Fig. b). Initial pH were 6.44  0.12 and 7.01  0.20 for CI and FI. Upper bars show 

standard error of means (n=3). 

 

The comparison of gas production between inocula along the incubation period 

shows higher volumes with CI than FI (P<0.05), with differences increasing from 8 to 66 

ml/g OM from 2 to 24 h, and resulting 0.56 higher with CI at the end of incubation. At 2, 

4, 16, 20, and 24 h incubation a significant interaction (inoculum x mixture) was recorded 

(P<0.05), and this interaction tended to be significant at 6 h (P=0.076) indicating that 

mixtures behaved differently between inocula. Therefore, the evolution of gas production 

of the different mixtures is also reported separately for each inoculum (Figure 13). With 

CI (Fig. 13a), the volume of gas recorded was highest with MB at 2 h and from 6 to 16 h 

(P<0.05), whereas it was lowest with 3MP from 2 to 8 h and with MP from 20 and 24 h 

(P<0.05). No differences (P>0.05) were recorded between MP and 3MP from 10 to 16 h, 

nor between MB and 3MP at 20 and 24 h. With FI (Fig. 13b), the volume of gas recorded 

by 3MP was lowest (P<0.05) up to 4 h and from 6 h onwards it was lower with 3MP than 

with MB (P<0.05), whereas differences between MB and MP were only recorded after 

24 h.  
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Fig. 13a) 

 

Fig. 13b) 

 

 

Figure 13. Pattern of gas production from MB (◼), MP () and 3MP () when 

incubated in vitro with inoculum from a concentrate diet (CI, Fig. 4a) or from a forage 

diet (FI, Fig. 4b). Upper bars show standard error of means (n=3). 
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After 24 h of incubation, the proportion of DMd with CI tended to be higher than 

with FI (0.38 vs. 0.34; P= 0.077). The recorded interaction between inocula and mixtures 

(P<0.05) indicates that MB and 3MP promoted a higher DMd than MP with CI (0.440 

and 0.396 vs. 0.305; P<0.05), whereas MB recorded the highest DMd and no differences 

were recorded between 3MP and MP when FI was used (0.423, 0.316 and 0.283, 

respectively; P<0.05). 

At 6 and 24 h, higher total VFA concentration was recorded by CI (P<0.05, Tables 

7 and 8). At 6 h of incubation, the molar proportion of valerate was higher (P<0.05) and 

that of branched chain fatty acids (sum of isobutyrate and isovalerate, BCVFA) lower for 

CI than FI; however, at 24 h CI promoted higher proportions for both. The molar 

proportions of acetate, propionate and butyrate did not differ among inocula at any 

sampling time (P>0.05). On average, neither the VFA concentration nor molar VFA 

proportions were affected by the type of mixture at 6 h (P>0.05), but at 24 h MP promoted 

the highest proportion of acetate at the expense of butyrate and valerate (P<0.05). The 

interaction inoculum x mixture observed on butyrate proportion at 6 (P<0.05) and 24 

(P=0.093) h indicates that, despite the effects of inoculum and mixture did not reach 

significance, differences between 3MP and MP were only manifested with FI. An 

interaction was also observed at 24 h in acetate and propionate proportions (P=0.051 and 

P<0.05, respectively), which highlights the different fermentation pattern of MP and 3MP 

in FI and CI, respectively.  

The concentration of lactic acid at 6 h was not affected by the type of inoculum 

(P>0.05, Table 7). Among mixtures, 3MP promoted a higher concentration of lactic acid 

than MP (P<0.05, Table 7), but the interaction inoculum x mixture at this time (P<0.05) 

indicates that, although no differences were resulted among the three mixtures with FI 

(MB; 4.22 mM, 3MP; 3.00 mM and MP; 2.77mM), when CI was used 3MP recorded the 

highest lactic acid concentration (7.08 mM) and MP recorded the lowest concentration 

(2.3 mM, P<0.05), MB recording an intermediate value (3.69 mM).  
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Table 7. Average total volatile fatty acids concentration (VFA, mM) and molar VFA 

proportions (mmol/mmol), together with lactic acid concentration (mM) recorded at 6 

h of incubation of a 1:1 mixture of maize and barley (MB) and 1:1 (MP) and 3:1 (3MP) 

mixtures of maize and sugarbeet pulp, with inocula from concentrate (CI) or forage 

(FI) diets. 

  VFA  C2 C3 C4 Valerate  BCVFA* Lactic acid  

Inoculum  

       
CI 20.23a 0.584 0.239 0.140 0.022a 0.016b 4.36 

FI 9.27b 0.662 0.199 0.098 0.009b 0.032a 3.33 

SEM 1.690 0.0248 0.0242 0.0201 0.0015 0.0020 0.749 

Mixtures 

       
MB 13.74 0.614 0.224 0.123 0.016 0.024 3.96ab 

MP 14.53 0.633 0.209 0.119 0.015 0.023 2.55b 

3MP 15.98 0.622 0.224 0.115 0.015 0.025 5.04a 

SEM 1.3568 0.0107 0.0060 0.0041 0.0005 0.0012 0.560 

P-value  

       
Inoculum  <0.05 0.090 NS NS <0,01 <0,01 NS 

Mixture NS NS NS NS NS NS <0.05 

Inoc. x Mixt. NS NS NS <0.05 NS NS <0.05 

a,b Means within a column with different superscripts differ (P<0.05). SEM: standard error of the means. 

C2; Acetate, C3; propionate, C4; Butyrate. * BCVFA: branched-chain fatty acids (sum of isobutyrate + 

isovalerate).  
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Table 8. Average total volatile fatty acids concentration (VFA, mM) and molar VFA 

proportions (mmol/mmol), together with lactic acid concentration (mM) recorded at 

24 h of incubation of a 1:1 mixture of maize and barley (MB) and 1:1 (MP) and 3:1 

(3MP) mixtures of maize and sugarbeet pulp, with inocula from concentrate (CI) or 

forage (FI) diets. 

  VFA  C2 C3 C4 Valerate  BCVFA* 

Inoculum  

      
CI 17.85a 0.507 0.264 0.152 0.052a 0.026a 

FI 8.51b 0.445 0.259 0.269 0.018b 0.009b 

SEM 1.532 0.043 0.0351 0.0561 0.0049 0.0037 

Mixtures 

      
MB 13.16 0.458b 0.268 0.217a 0.039a 0.018 

MP 13.06 0.527a 0.261 0.172b 0.026b 0.014 

3MP 13.33 0.442b 0.256 0.242a 0.040a 0.020 

SEM 0.960 0.0120 0.0061 0.0080 0.0033 0.0020 

P-value  

      
Inoculum  <0.05 NS NS NS <0,05 <0,05 

Mixture NS <0.05 NS <0.001 <0.05 NS 

Inoc. x Mixt. NS 0.051 <0.05 0.093 NS NS 

a,b Means within a column with different superscripts differ (P<0.05). SEM: standard error of the means. 

C2; Acetate, C3; propionate, C4; Butyrate. * BCVFA: branched-chain fatty acids (sum of isobutyrate + 

isovalerate) 

 

 

The results from tRFLP after 8 h of incubation (Figure 14) showed that the bacterial 

diversity was markedly affected by the type of inoculum. Further, within inoculum, the 

results indicated that the donor animal influenced the bacterial diversity. This effect was 

more noticeable for CI, and thus bacterial population in MP and MB clustered together 

in lambs 1 and 2, whereas in lamb 3 the two mixtures including sugarbeet pulp (MP and 

3MP) grouped together. When substrates were incubated with FI, lambs 4 and 5 clustered 

together with minor differences between incubated mixtures, but in lamb 6 MP and 3MP 
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clustered apart. In both cases (lamb 3 for CI and lamb 6 for FI) differences between MB 

and the sugarbeet pulp mixtures were of minor magnitude than those observed in lambs 

1 and 2 (CI) with 3MP. Inoculum effects were detected on the Shannon index (P=0.004) 

and tended to be significant on Richness index (P= 0.074), recording with CI higher 

values for both indexes (3.91 vs. 3.35; SEM= 0.064, and 109.3 vs. 94.8; SEM= 4.28, 

respectively). No differences among substrate mixtures were found on Shannon index 

(P= 0.75), but Richness index (P= 0.041; SEM= 2.38) ranked mixtures as follows: 3MP 

(107.2), MP (102.3) and MB (96.7).  

  

 

Figure 14. Dendrogram of bacteria diversity from terminal restriction fragment length 

polymorphism (tRFLP) data generated by enzyme digestion (HhaI, MspI, and HaeIII) 

at 8 h in vitro incubation of a 1:1 mixture of maize and barley (MB) and 1:1 (MP) and 

3:1 (3MP) mixtures of maize and sugarbeet pulp, with inocula from concentrate (CI) 

or forage (FI) diets. Scale bar shows Euclidean distances, “ward method”. 
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4. Discussion  

In young, non-adapted ruminants subjected to an intensive fattening system the use 

of a high proportion of rapidly fermentable carbohydrates often causes digestive 

disorders. However, the introduction of fibrous sources such as sugarbeet pulp in these 

diets helps to maintain the rumen functions within physiological values (Faleiro et al., 

2011). Nevertheless, some studies reported that diet is not the only factor that affect 

rumen microbial fermentation, but also the actual pH pattern at which the process occurs 

(Calsamiglia et al., 2008; Sari et al., 2015). Thus, in the current in vitro experiment we 

aimed to study the interaction of both factors on microbial fermentation to determine the 

adequate ingredient mixture that allows to provide the required level of energy to the 

animals at the same time the negative effects on their health are avoided. 

 

4.1. Effect of the inoculum source on the in vitro fermentation kinetics 

Buffer concentration in the incubation medium was adjusted to mimic the actual 

pH pattern occurring in ruminant animals in practical feeding situations. Such conditions 

were manifested in a minimum pH reached at 6 and 8 h for CI and FI, respectively, and a 

maximum pH reached at 20 h incubation, with differences between extremes ranging 

between 0.8 and 0.5 pH units. The comparison between both inocula shows that the 

medium pH with CI reached lower minimum values than those achieved with FI (5.99 at 

6 h vs. 6.36 at 8 h, respectively), indicating that the extent of fermentation was higher 

with CI, as expected (Broudiscou et al., 2014; Amanzougarene et al., 2018a; Kim et al., 

2018). These results were supported by those from gas production and total VFA 

concentration, which showed a greater magnitude of gas production with CI, that is 

explained by the fact that the microbiota promoted by such diet should be better adapted 

than that from a forage diet for the fermentation of this kind of mixtures (Amanzougarene 

et al., 2018a). Thus, at 6 h incubation, despite the higher fermentation extent with CI, the 

microbiota adaptation was reflected in a medium pH maintained within the rumen 

physiological limits (Hiltner and Dehority, 1983) and by a lactic acid concentration (Table 

7) also within the rumen normal range (0 to 5 mmol/L; Nagaraja and Titgemeyer, 2007). 

In the case of FI, a negative effect of a low pH on fermentative microbiota during the first 

6 h cannot be inferred, even for fibrolytic species, since values were over the threshold 

for fermentative activity (Hiltner and Dehority, 1983). Our results from microbial 

diversity were in agreement with those found by Nagata et al. (2018) who showed 
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differences in rumen microbial population when bulls fed with forage or concentrate diets. 

Further, Richness and Shannon indexes showed higher values with CI than FI, indicating 

that microbiota was more diverse with the former. However, differences in bacterial 

diversity were not manifested in changes in the fermentation pattern, since proportions of 

acetate, propionate, and butyrate were not affected by inocula. Similarly, Calsamiglia et 

al. (2008) did not record any inoculum effect on acetate or butyrate proportions.  

In contrast to inoculum differences in gas production and VFA, DMd with CI only 

tended to be higher than FI (0.38 vs. 0.34; P= 0.077). This may be partly due to the low 

DMd values observed, considering that barley and/or maize are starch rich ingredients 

which expected rumen degradation in a range from 0.70 to 0.80 (Cerneau and Michalet-

Doreau, 1991). In vitro degradation values in a similar range have also been observed by 

Devant et al. (2001) and Calsamiglia et al. (2008), and these attributed such low values 

to the differences in microbial ecosystems between in vivo and in vitro, where a high 

dilution rate reduces the magnitude of fermentation respect to the rumen.       

 

4.2. Effect of different mixtures on the in vitro fermentation kinetics 

It is assumed that the inclusion of high levels of cereal based concentrates decreases 

rumen pH (Fondevila et al., 1994; Carro et al., 2000). Treatment MB, including a mixture 

of cereal grains (maize and barley) showed lower incubation pH than those including 

maize and sugarbeet pulp (MP and 3MP), mainly with CI, because of the higher 

acidification capacity of barley than maize (Khorasani et al., 2001), which depends on the 

structure of the starch endosperm and the proportion of amylose (O´Brien, 1999). 

Besides, the high starch proportion in 3MP rendered a more acidic environment compared 

with MP when incubated with CI, despite the buffering capacity of maize and sugarbeet 

pulp does not greatly differ (Amanzougarene et al., 2017a) This was not the case with FI, 

probably because of the above mentioned adaptation of microbiota induced by CI to 

starch fermentation. The major positive effect of sugarbeet pulp on fermentation can be 

driven through maintaining rumen pH (Münnich et al., 2017). Thus, previous studies 

(Marounek et al., 1985; Hall and Herejk, 2001) indicated that, despite the rapid 

degradation of the soluble fibre of sugarbeet pulp, fermentation of this byproduct renders 

a low lactic acid concentration and a high acetate proportion at the expense of propionate, 

thus preventing the pH drop. Moreover, Maktabi et al. (2016) stated that when grain 
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sources such as barley and maize are substituted by sugarbeet pulp, the ruminal pH 

increased.  

Among cereal grains, the starch in barley grain is fermented faster than the starch 

in maize (Firkins et al., 2001; Offner et al., 2003; Amanzougarene et al., 2018a), and 

Khorasani et al. (2001) concluded that when the animals fed a 50:50 mixture of barley 

and maize their performance is improved respect to that of animals fed either barley or 

maize. In this work, MB recorded a higher gas production than MP and 3MP with both 

inocula. Hence, differences between MB and 3MP with CI are determined by the faster 

rate of fermentation of barley respect to maize, effect that is balanced at later stages of 

fermentation (from 20 h onwards). In addition, the lower medium pH with CI up to 8 h 

incubation may negatively affect fibre fermentation of sugarbeet pulp from MP and 3MP 

(Sari et al., 2015). However, the gas production in 3MP when FI was used can be 

attributed to the low capacity of microbiota induced by a forage diet for fermenting the 

vitreous starch of maize (Amanzougarene et al., 2017a). In any case, differences in gas 

production among MP, MB and 3MP were of minor magnitude, and even disappear at 

later stages of incubation mainly with FI, probably due to scarce differences between 

utilisation of slowly fermentable maize starch and rapidly fermentable fibre of sugarbeet 

pulp.  

Among mixtures, the gas production results were supported by those observed on 

DMd. However, no differences among mixtures were detected on total VFA 

concentration, and an effect was only observed on proportions of acetate, butyrate and 

valerate at 24 h incubation. At the initial stages of fermentation (first 6 h), the lack of 

differences may be due to the low fermentation rate of both maize and sugarbeet pulp, 

that did not allow for manifesting clear effects. After 24 h incubation, the higher 

proportion of sugarbeet pulp in the MP mixture promoted an increased proportion of 

acetate, since soluble and insoluble fibre fermentation yields more acetate at the expense 

of propionate and butyrate (Marounek et al., 1985; Khan et al., 2016; Nagata et al., 2018). 

However, the starch fermentation has a propensity for propionate and butyrate (Marounek 

et al., 1985; Maktabi et al., 2016; Kim et al., 2018), as it is shown by the higher butyrate 

proportion in MB and 3MP compared to MP. In a similar way, lactic acid concentration 

was lower with MP than MB and 3MP, which can also be attributed to the fermentation 

of soluble fibre from sugarbeet pulp (Strobel and Russel, 1986; Marounek et al., 1985; 

Bampidis and Robinson, 2006), as commented above. In any case, in the present work, 

except for 3MP that recorded 7.08 mM with CI, observed lactic acid concentrations were 
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within the normal range observed in the rumen (0 to 5 mmol/L; Nagaraja and Titgemeyer, 

2007). Differences in VFA molar pattern among incubated mixtures, although being of 

minor magnitude, are not supported by changes in bacterial biodiversity (Figure 14), that 

showed a close relationship between substrates within inocula. In addition, the volume of 

gas produced at 6 h incubation was significantly correlated with the decrease in pH 

(adjusted R2 = 0.75; P< 0.01), as expected, highlighting the major relationship between 

pH and gas production (Amanzougarene and Fondevila, 2018). Similarly, a strong 

correlation was also observed at 24 h incubation between the volume of gas produced and 

total VFA concentration (adjusted R2 = 0.93; P< 0.001). These relationships confirm the 

important combination between the incubation environment conditions and diet type on 

microbial fermentation.  

 

5. Conclusions   

The type of diet defines rumen environment characteristics that determine the rate 

and extent of fermentation. Despite a potential risk of acidosis can occur during transition 

from a forage to a concentrate rich feeding, the fermentation pattern is not necessarily 

harmful if animals are adapted to a high-concentrate diet. In both concentrate and forage 

environments, inclusion of a fibrous source such as sugarbeet pulp at a level of 0.50 (MP) 

maintained a more stable pH pattern, whereas microbial fermentation was not noticeably 

affected compared to higher starch proportion mixtures like 3MP (0.25 sugarbeet pulp), 

or the high starch maize-barley substrate (MB). From the results obtained, it can be 

concluded that combining maize as a cereal grain with fibrous byproducts such as 

sugarbeet pulp can promote positive effects on rumen environment without negatively 

affecting the magnitude of fermentation. 

 

 

 

 

 

 





 

 

 

 

 

 

 

 

 

 

 

Chapter VI. Section II. Experiment 3  

Addition of several tannin extracts to modulate fermentation of barley 

meal under intensive ruminant feeding conditions simulated in vitro by 

incubating at pH 6.0–6.2 (Animal Production Science. 2019. 59: 1081-

1089. Doi: 10.1071/AN17741) 
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Chapter VI. Addition of several tannin extracts to modulate fermentation of barley 

meal under intensive ruminant feeding conditions simulated in vitro by 

incubating at pH 6.0–6.2. 

 

Abstract. 

 

The potential use of tannin extracts from quebracho (QCT), grape (GCT), chestnut 

(CHT) and oak (OHT) included at 10, 20 or 30 mg/g to modulate rumen fermentation of 

concentrates was studied in three 24-h in vitro incubation runs, with barley grain as 

reference substrate and simulating high concentrate feeding conditions by adjusting pH at 

6.2. Incubation pH at 8 and 24 h ranged from 6.14 to 6.18 and from 5.94 to 6.00, 

respectively. Gas production from barley alone (CTL) was linearly reduced with CHT (P 

< 0.05 up to 6 h; P < 0.10 from 8 to 18 h), OHT (P < 0.05 up to 12 h; P < 0.10 from 18 h), 

GCT (P < 0.05 from 2 to 24 h) and QCT (P < 0.10 up to 6 h), but a quadratic trend (P < 

0.10) was also detected on GCT. The effect of GCT was highest and that of CHT lowest. 

Similarly, dry matter disappearance after 24 h showed a linear decrease with all tannin 

sources (P < 0.05), being lower with GCT than with QCT and CHT (P < 0.05). All tannin 

sources linearly increased (P < 0.05) molar butyrate proportion from CTL, at the expense 

of propionate proportion in GCT (P < 0.01) and CHT (P < 0.10). Except for the linear 

effect of chestnut on barley fermentation, all sources already reached their maximum level 

of response at their first level of inclusion (10 mg/g), especially with GCT. Qualitatively, 

tannins did not largely affect pH or other environmental parameters, except for an 

increase in butyrate proportion. 

1. Introduction 

Rumen acidosis is a common problem in intensive feeding systems from Southern 

Europe, especially when weaned beef calves that have been raised with nursing cows at 

pasture for 5-6 months are switched from a milk-forage regime to a high concentrate 

feeding based on cereals. The change of feeding regime implies a high intake of rapidly 

fermentable carbohydrate sources, mostly based on starch, which promotes an enhanced 

activity of rumen microbiota, and pH drops below levels considered in risk of acute 

(below pH 5.0) or subacute (pH 5.0-5.6) acidosis (Owens et al., 1998; Krause and Oetzel, 

2006). In such a scenario, a viable strategy may be the reduction of the rate of 

fermentation, that would potentially maintain rumen pH above the mentioned threshold. 
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This may shorten fermentable energy from the rumen, but it can be balanced by an 

increased arrival of non-fermented starch to lower sites of the gastrointestinal tract 

(Owens et al., 1986). 

Tannins interact with rumen microbiota, reducing the rate and extent of nutrient 

fermentation. Tannins are polyphenols with a diverse structure and molecular weight 

(McSweeney et al., 2001; Schofield et al., 2001) that bind to proteins and polysaccharides 

limiting their availability for rumen microbes (McAllister et al., 1994). Impact of tannins 

on nutrient fermentation depend not only on substrate protection from microbial 

attachment, but also on effects on enzyme inhibition and directly on microbial diversity 

(Barry and Manley, 1984; McAllister et al., 1994; McSweeney et al., 2001). The extent 

of their effect depends not only on their concentration, but also on their reactivity, which 

is associated with their chemical nature (Rodríguez et al., 2014). Therefore, the same 

concentration of tannins from diverse sources may produce effects of different magnitude 

(Bueno et al., 2008). Commonly, quebracho tannins have been largely used (Frutos et al., 

2000; Hervás et al., 2003b) and are usually considered as  a reference, but other 

commercially available tannin extracts have also been assayed, such as those from grape, 

chestnut and oak (Wischer et al., 2013; Carreño et al., 2015). Whereas tannins from 

chestnut and oak are considered as hydrolysable tannins, those from grape and quebracho 

are condensed tannins; however, despite different responses have been attributed to the 

chemical nature of tannin sources, as reviewed by Mueller-Harvey (2006) such generic 

classification based on their chemical structure is not helpful for predicting animal 

responses. 

Tannins have been strategically added to feeds to evaluate their potential protecting 

effect on certain nutrients (Hervás et al., 2003b; Mezzomo et al., 2011), but mostly used 

on either fibrous feeds or protein sources as components of forage or mixed diets, rather 

than on highly fermentable carbohydrates in high concentrate diets, under lower rumen 

pH. As their direct effect on rumen bacteria and their activity might also affect starch 

utilisation (Martínez et al., 2006) and depends on environmental pH (Mueller-Harvey, 

2006), the objective of this work was to assess the potential effect of different sources of 

condensed and hydrolysable tannin extracts, included  at  various  levels,  on in vitro 

microbial fermentation of a cereal substrate, under conditions simulating those occurring 

in intensive beef cattle feeding systems. This was achieved by using inoculum from high-

concentrate fed calves and also by reducing incubation pH to 6.20. As a reference 

incubation substrate, barley grain was chosen as a major dietary component in this feeding 
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system, where its highly fermentable starch content is related with a high acidifying 

capacity (Opatpatanakit et al., 1994; Lanzas et al., 2007). 

2. Material and methods 

 

Experimental treatments consisted of four different commercial sources of tannins 

(Agrovin SA, Alcázar de San Juan, Spain), from quebracho (2S-profisetinidins from 

Schinopsis spp., 0.65 w/w of tannins; QCT), grape (procyanidins from Vitis vinifera, 0.75 

w/w tannins; GCT), chestnut (esters of ellagic acid and sugars from Castanea sativa, 0.65 

w/w of tannins; CHT) and oak (ellagitannins from Quercus robur and Q. petraea, 0.77 w/w 

of tannins; OHT). Despite the differences in concentration of tannins, for a clearer 

comparison among treatments these tannin sources were added at three doses of 10, 20 

and 30 mg/ g substrate and contrasted to the non-supplemented substrate, used as Control 

(CTL).  

 

2.1. Incubation procedures 

A closed batch in vitro system was used for the experiment, following the 

procedures of Theodorou et al. (1994) but without adding microminerals and resazurin 

(Mould et al., 2005a). Besides, concentration of bicarbonate ion in the buffer solution was 

reduced to 0.029 M to adjust incubation pH to 6.20 (Kohn and Dunlap, 1998). Three 

consecutive incubation series were arranged in different days, each one with triplicated 

glass bottles (116-mL total volume) containing 80 mL of incubation solution with 0.10 

proportion of rumen inoculum. Barley meal (Hordeum vulgare, var. Gustav, 500 mg 

approximate air-dry matter per bottle) ground to 1-mm particle size was used as substrate. 

To facilitate its recovery for subsequent determinations, barley was introduced into 4 × 4 

cm nylon bags (45-mm pore size, Sefar Maissa, Barcelona, Spain), proven to ensure a 

free flow of medium through the bag pores. Three additional bottles with rumen inoculum 

but without substrate were also incubated on each series as blanks, resulting in a total of 

42 bottles on each incubation series. Rumen contents from three Limousine crossbred beef 

male calves (8 months of age, around 300 kg live weight) provided with a 2-cm i.d. 

cannula fitted in the dorsal sac of the rumen were used as inoculum, where a different 

donor animal was sampled on each incubation series. 

Calves were housed in the facilities of the Servicio de Apoyo a la Experimentación 

Animal of the Universidad de Zaragoza, and were daily fed ad libitum with a concentrate 
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(0.59 barley, 0.15 maize, 0.17 soybean meal, 0.06 maize gluten and 0.03 minerals and 

vitamins) and straw, at an actual 0.91:0.09 proportion in total ration. Management and 

extraction procedures of rumen inoculum from donor animals were approved by the Ethics 

Committee for Animal Experimentation. Care and management of animals agreed with 

the Spanish Policy for Animal Protection RD 53/2013, which complies with EU Directive 

2010/63 on the protection of animals used for experimental and other scientific purposes. 

Rumen contents were sampled and filtered through cheesecloth, then dispensed in 16-mL 

aliquots and immediately frozen in liquid nitrogen following the Prates et al. (2010) 

procedures and maintained at 80○C until utilisation. Bottles were filled with the 

incubation solution under a CO2 stream, sealed and incubated for 24 h in a water bath 

at 39○C. During the experiment, pressure from two out of three incubated bottles was 

recorded at 2, 4, 6, 8, 10, 12, 18 and 24 h by means of a HD 2124.02 manometer fitted with 

a TP804 pressure gauge (Delta Ohm, Caselle di Selvazzano, Italy). Readings were 

converted into volume (mL) by a pre-established linear regression equation between the 

pressure (mbar) recorded in the same bottles under the same conditions and known air 

volumes (volume = (pressure – 10.348)/24.030; n = 103; R2 = 0.996), and expressed per 

unit of incubated organic matter (OM). The average of the two bottles for each treatment 

on each incubation series was considered as the experimental unit. After 8 h of incubation, 

the remaining bottle from each treatment was opened, the pH recorded (CRISON 

micropH 2001, Barcelona, Spain) and samples of the incubation medium were taken for 

volatile fatty acids (VFA) analysis (2 mL, collected over 0.5 mL of a deproteinising 

mixture of 0.5M PO4H3 with 2 mg/mL 4-methyl valeric acid) and immediately frozen and 

stored at 20○C until subsequent analysis. At the end of the incubation, pH was recorded 

and the incubation medium sampled for estimation of microbial mass (10-mL sample) in 

the two bottles per treatment maintained for 24 h. Then, bags of substrate were removed 

from each bottle, squeezed and dried (60○C, 48 h) to estimate by difference dry matter 

and starch disappearance after 24 h of incubation (DMd and STd, respectively). 

 

2.2. Calculations and chemical analyses 

The biological effect of tannins (BE; Makkar et al., 1995) was calculated as the ratio 

of gas production results recorded at 24 h with barley alone and with added tannins, 

assuming that barley grain is free of tannins. Dry matter in the barley substrate and 

incubation residues and OM content in the substrate were analysed following the AOAC 
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(2005) procedures (methods ref. 934.01 and 942.05). Total starch content was determined 

enzymatically from samples and incubation residues after grinding to 0.5 mm, by using a 

commercial kit (Total Starch Assay Kit K-TSTA 07/11, Megazyme, Bray, Ireland). 

Frozen samples from the incubation medium were thawed and centrifuged at 20 000g for 

15 min at room temperature for their analysis of VFA. The VFA were determined by gas 

chromatography on an Agilent 6890 apparatus (Agilent Technologies, Wilmington, DE, 

USA) equipped with a capillary column (HP-FFAP Polyethylene glycol TPA, 30-m × 

530-mm id). Microbial mass in the liquid medium was approached by centrifuging 

samples at 10 000g for 20 min at 4○C and weighing the washed lyophilized residue, based 

on Hsu and Fahey (1990). 

 

2.3. Statistical analyses 

Results were analysed by ANOVA using the Statistix 10 software package 

(Analytical Software, 2010), considering the incubation series as a block and the 

experimental treatments (CTL and the four tannin sources included at three levels, n = 13) 

as a factorial effect. Polynomial (lineal and quadratic) contrasts were planned to estimate 

the trend in the response of each single additive (CTL and the three levels of inclusion, n 

= 4), and orthogonal contrasts were established to compare the four tannin sources among 

them. For the comparison of results of biological effect, the effects of the tannin source and 

level were considered as factors, and the incubation series as a block. In all cases, 

differences were considered significant when P < 0.05, and a trend for significance was 

considered when 0.05 ≤ P < 0.10. 

 

3. Results 

 

Inoculum pH averaged 6.29 ± 0.20. No effects of experimental treatments were 

detected on incubation pH at either 8 or 24 h, except for a linear decrease with OHT at 8 h 

(from 6.18 with CTL to 6.14 with the highest level of OHT; P = 0.048). However, this 

response may be attributed to the low magnitude of the error term, considering the minimal 

differences between extreme pH values at 8 and 24 h, which ranged from 6.14 to 6.18 and 

from 5.94 to 6.00, respectively. 
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3.1. Pattern of response at diverse levels of tannin sources 

For an easier understanding, results of gas production for the three addition levels 

of each additive compared with non-supplemented barley (CTL) are presented separately 

in Figures 15-18. In the first stages of fermentation, addition of increasing levels of QCT 

tended to reduce linearly gas production from barley alone (P < 0.10 from 2 to 6 h 

incubation; Figure 15), but this effect was not significant afterwards. In GCT (Figure 16), 

the reduction of the volume of gas compared with CTL followed a linear pattern 

throughout all the incubation period (P < 0.05), whereas a trend (P < 0.10) for a quadratic 

drop was also observed at 4 and 6 h, and from 10 to 24 h. This quadratic trend in the gas 

production pattern with GCT (Figure 16) could be explained by a similar magnitude of 

reduction with all inclusion levels of GCT. Addition of CHT also promoted a linear decline 

in the volume of gas generated from CTL (P < 0.05 from 2 to 6 h, and P < 0.10 from 8 to 

18 h; Figure 17). Similarly, gas production was linearly reduced when increasing levels 

of OHT were added (P < 0.05 from 2 to 12 h, and P < 0.10 from 18 to 24 h; Figure 18). 

 

 

Figure 15. Gas production pattern from barley, as the only substrate () or supplemented 

with 10 (), 20 () or 30 () mg/g of the tannin extract from quebracho (QCT). 

Upper bars show standard error of means. 
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Figure 16. Gas production pattern from barley, as the only substrate () or supplemented 

with 10 (), 20 () or 30 () mg/g of the tannin extract from grape (GCT). Upper 

bars show standard error of means.  

 

 

Figure 17. Gas production pattern from barley, as the only substrate () or supplemented 

with 10 (), 20 () or 30 () mg/g of the tannin extract from chestnut (CHT). Upper 

bars show standard error of means. 
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Figure 18. Gas production pattern from barley, as the only substrate () or supplemented 

with 10 (), 20 () or 30 () mg/g of the tannin extract from oak (OHT). Upper bars 

show standard error of means. 

 

 

The pattern of DMd and STd at 24 h when increasing levels of tannins were added 

is shown in Table 9. A linear decrease on DMd was observed with all sources of tannins 

(P < 0.05), whereas the quadratic trend with OHT (P = 0.066) shows the lack of response 

from the first level of inclusion. In contrast, no polynomial responses to the inclusion of 

increasing levels of the different tannins were detected on STd (P > 0.10), despite this 

parameter numerically decreased, on average, in 0.016, 0.028, 0.033 and 0.057 units with 

CHT, QCT, OHT and GCT, respectively, in a similar way to DMd. A linear drop (P < 

0.05) in microbial mass in the liquid fraction was observed with all tannin sources, but a 

subsequent peak in concentration with the higher level of tannins from QCT and OHT 

promoted a quadratic response (P < 0.05). 
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Table 9. Average values and pattern of response (P-value of linear, L, or quadratic, Q, trend) of dry matter (DMd) and starch (STd) 

disappearance, and microbial mass (mg/mL) after 24 h of in vitro incubation of barley as the only substrate (Control) or supplemented 

with 10, 20 or 30 mg/g of the tannin extract from quebracho (QCT), grape (GCT), chestnut (CHT) and oak (OHT). 

 CTL Level QCT GCT CHT OHT s.e.m. 

 DMd, 24 h 0.345 10 

20 

30 

0.314 

0.315 

0.274 

0.289 

0.282 

0.260 

0.325 

0.306 

0.279 

0.295 

0.289 

0.290 

 

 

 

  Pattern L(**) L(***) L(**) L(**),Q(T) 0.0132 

 STd, 24 h 0.481 10 

20 

30 

0.464 

0.467 

0.428 

0.415 

0.440 

0.416 

0.486 

0.461 

0.447 

0.458 

0.444 

0.442 

 

  Pattern     0.0282 

 Microb. mass 2.460 10 

20 

30 

2.314 

2.303 

2.340 

2.242 

2.311 

2.285 

2.217 

2.233 

2.330 

2.311 

2.265 

2.306 

 

 

 

  Pattern L(T),Q(*) L(*),Q(*) L(T),Q(**) L(*),Q(*) 0.0434 

*, P < 0.05; **, P < 0.01; ***, P < 0.001; T, P < 0.10. s.e.m., standard error of the means
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Total VFA concentration after 8 h of incubation linearly decreased with the 

inclusion of QCT (P < 0.001), but the rest of tannin sources did not promote differences 

compared with CTL (Table 10). In terms of molar VFA proportions, all tannin sources 

linearly increased (P < 0.05) butyrate proportion from barley alone, but QCT reached its 

maximum with the intermediate level of inclusion (20 mg/g). The increase in butyrate was 

at the expense of propionate, which proportion was linearly reduced in GCT (P < 0.01) 

and CHT (P < 0.10). No effects on the other VFA were detected. 

 

3.2. Comparison among tannin sources 

No differences among tannin sources were detected on gas production (Table 11), 

except for a lower volume with GCT compared with CHT (P < 0.05 from 2 to 12 h, and 

P < 0.10 at 18 and 24 h). The BE of tannins estimated at 24 h of incubation was 

independent of their level of inclusion (P > 0.10), but tended to differ among tannin 

sources, showing higher values with GCT than CHT (P = 0.069). When comparing among 

tannin sources, DMd after 24 h was lower with GCT than with QCT and CHT (P < 0.05), 

whereas no differences were detected on STd, except for a trend (P = 0.085) to a lower 

value in GCT compared with OHT. There were no differences in microbial mass among 

tannin sources, although with QCT it was numerically higher than with CHT (P = 0.11). 

Among tannin sources, on average CHT recorded lower total VFA concentration (Table 

12) than QCT (P < 0.01), GCT (P < 0.10) and OCT (P < 0.05). No major differences were 

recorded on the molar VFA proportions, except for a higher BCVFA proportion with GCT 

than with OHT (P < 0.05) and CHT (P < 0.10). 
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Table 10. Total volatile fatty acid (VFA) concentration (mM) and molar proportions of 

the main VFA after 8 h of in vitro incubation of barley as the only substrate (CTL) or 

supplemented with 10, 20 or 30 mg/g of the tannin extract from quebracho (QCT), 

grape (GCT), chestnut (CHT) and oak (OHT).  

 CTL Level QCT GCT CHT OHT s.e.m. 

VFA 30.3 10 

20 

30 

34.2 

32.7 

29.8 

31.6 

31.4 

30.1 

30.0 

28.9 

30.1 

31.1 

32.0 

31.0 

0.96 

 

 

  Pattern L(***)     

Acetate 0.433 10 

20 

30 

0.436 

0.426 

0.435 

0.431 

0.433 

0.439 

0.433 

0.432 

0.433 

0.438 

0.429 

0.432 

0.0047 

 

 

  Pattern      

Propionate 0.215 10 

20 

30 

0.207 

0.209 

0.206 

0.213 

0.208 

0.200 

0.213 

0.208 

0.208 

0.207 

0.213 

0.209 

0.0037 

 

 

  Pattern  L(**) L(T)   

Butyrate 0.118 10 

20 

30 

0.124 

0.131 

0.125 

0.122 

0.125 

0.126 

0.121 

0.127 

0.126 

0.122 

0.125 

0.127 

0.0023 

 

 

  Pattern L(*),Q(*) L(*) L(**) L(**)  

Valerate 0.012 10 

20 

30 

0.011 

0.012 

0.012 

0.012 

0.012 

0.012 

0.012 

0.012 

0.011 

0.012 

0.012 

0.011 

0.0003 

 

 

  Pattern      

BCVFA 0.022 10 

20 

30 

0.021 

0.023 

0.022 

0.022 

0.023 

0.023 

0.022 

0.022 

0.022 

0.022 

0.021 

0.021 

0.0006 

 

 

  Pattern      

*, P < 0.05; **, P < 0.01; ***, P < 0.001; T, P < 0.10. s.e.m., standard error of the means 
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Table 11. Average means of gas production (mL/g OM) at different incubation times, 

together with estimated biological effect (BE), dry matter and starch disappearance 

(DMd and STd) and microbial mass in the liquid fraction (mg/mL) after 24 h of in 

vitro incubation, from barley supplemented with different levels of tannins from 

quebracho (QCT), grape (GCT), chestnut (CHT) and oak (OHT). s.e.m., standard error 

of the means. 

 QCT GCT CHT OHT s.e.m. 

Gas production 

4 h 

 

22.2 

 

18.0 

 

24.6 

 

21.9 

 

1.61A 

8 h 46.1 38.9 48.0 42.2 2.71A 

12 h 64.4 55.4 68.3 63.1 3.65A 

24 h 89.8 76.7 93.6 87.2         4.99 

BE                  1.25      1.43     1.17     1.26  0.069 

DMd                0.301        0.277       0.304       0.291        0.0076A,B 

STd                 0.453        0.424       0.465        0.448      0.0163C 

Microbial mass        2.319       2.294        2.279         2.260    0.0250 

AGCT versus CHT (P < 0.05). 
BQCT versus GCT (P < 0.05). 
CGCT versus CHT (P < 0.10). 

 

Table 12. Average means of total volatile fatty acid (VFA) concentration (mM) and molar 

proportions of the main VFA after 8 h of in vitro incubation, from barley supplemented 

with different levels of tannins from quebracho (QCT), grape (GCT), chestnut (CHT) 

and oak (OHT). s.e.m., standard error of the means. 

 QCT GCT CHT OHT s.e.m. 

VFA  32.2 31.0 29.6 31.4  0.55 A,B,C 

Acetate                

Propionate 

      0.432 

      0.207 

      0.434 

       0.207 

      0.433 

      0.209 

       0.433 

       0.210 

0.0027 

0.0021 

Butyrate       0.127        0.125        0.125        0.124 0.0004 

Valerate        0.012        0.012        0.011        0.012 0.0002 

BCVFA         0.022        0.023        0.022        0.021      0.0004 D,E 

AQCT versus CHT (P < 0.01). 
BOHT versus CHT (P < 0.05). 
CGCT versus CHT (P < 0.10). 
DGCT versus OHT (P < 0.05). 
EGCT versus CHT (P < 0.10). 
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4. Discussion 

 

Conventional in vitro batch systems maintain pH ~ 6.7-6.9 (Mould et al., 2005a), 

being far from mimicking rumen environmental conditions induced by intensive feeding. 

A previous study (Amanzougarene and Fondevila, 2018) succeeded in maintaining in 

vitro pH at 6.25 by reducing the bicarbonate concentration included as buffer in the 

incubation solution. However, microbial fermentation at lower pH could only be 

maintained for 10 h, because of the fast exhaustion of buffering capacity thereafter. 

Thus, in this experiment the bicarbonate concentration in the buffering solution was 

reduced for adjusting pH to 6.2. The fermentation pattern of barley could thus be 

monitored at mid-term by gas production, and concomitantly it allowed to study the 

acidification properties of treatments once bicarbonate has been consumed in the first part 

of incubation (after 10-12 h). Moreover, using rumen inoculum from beef calves fed on a 

high concentrate diet contributes to maintain the desired incubation conditions, with both 

an expected pH value (Amanzougarene et al., 2018a) and a microbiota adapted to ferment 

concentrate diets. In any case, minor effects of tannin sources on pH were detected in this 

experiment, either at first stages (up to 8 h) or complete (24 h) incubation. Observed pH 

values throughout the experiment were within the range considered favorable for starch 

fermentation, and well above the pH 5.6 assumed as threshold for subacute acidosis 

(Owens et al., 1998; Krause and Oetzel, 2006); therefore, no limitation in fermentation 

related with this parameter could be attributed to the experimental treatments. 

It has been widely shown that tannins as secondary plant compounds can be 

selectively toxic to ruminal bacteria (Krause et al., 2005), reducing both growth and 

activity of bacterial species implicated in carbohydrate fermentation, such as Butyrivibrio 

fibrisolvens, Streptococcus bovis and Ruminobacter amylophilus (Jones et al., 1994). 

Besides, tannins affect microbial attachment to substrate (McAllister et al., 1994; 

Guimarães-Beelen et al., 2006) and enzymatic activity (Kumar and Vaithiyanathan, 1990; 

Scalbert, 1991), thus reducing nutrient digestion by rumen microbes. This feature has 

been mainly documented for proteins (Hagerman et al., 1992; Frutos et al., 2000) and for 

the fibrous fraction of feeds (Chiquette et al., 1988; Rodríguez et al., 2011, 2014). 

Although less studied, this aspect might also be suggested for microbial activity over 

starch, although the effect of tannins over amylase activity is unclear, and depends on 

their chemical structure and dose (Mueller-Harvey, 2006). Therefore, some tannins might 

be a suitable alternative to reduce fermentation rate of concentrate feeds, preventing for 
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rumen disturbances associated with intensive feeding in ruminants, such as acidosis. It is 

worth mentioning that a possible reduction of the extent of rumen fermentation is not 

necessarily a drawback, as the non-degraded starch that reaches the intestines to be 

digested there provides 42% more energy than that digested in the rumen (Owens et al., 

1986). Taking into account that tannin binding to substrate is pH-dependent (McSweeney 

et al., 2001; Mueller-Harvey, 2006), some association may be re-established at the lower 

gut, although that is out of the scope of this study. 

Several attempts have aimed to reduce rumen fermentation of substrates by adding 

tannins. Martínez et al. (2006) reported a reduction on fermentation of wheat and corn 

grains in terms of in vitro gas production, VFA concentration and DM disappearance, by 

adding either tannic acid or quebracho tannins, but hypothesized that such effect was 

exerted mostly on the protein matrix of starch granules. Therefore, a reduced magnitude 

of their effect on barley grain should be expected. In a similar study, Hervás et al. (2000) 

observed a reduction on in situ rapid degradable fraction of soybean meal with increasing 

levels of tannic acid. Furthermore, Barros et al. (2012) reported interactions between 

condensed tannins and starch molecules, these being higher with amylose than 

amylopectin. The response seems to be less clear under in vivo conditions, where a lack 

of effect on rumen carbohydrate fermentation was observed with concentrate diets by 

Krueger et al. (2010) and Mezzomo et al. (2011). Anyway, a reduction in gas production 

was observed in our experiment, especially with GCT and OHT, although with minor 

qualitative effects on fermentation (pH, VFA), despite a higher response would have been 

be expected with maize as substrate. It is worth mentioning that recorded disappearance 

values were lower than expected, considering the type of substrate (barley grain). 

However, previous in vitro incubation results of concentrate mixtures from our group 

showed a reduction in DMd from 0.74 to 0.39, as well as in gas production volume (a 

0.26 lower volume) when medium pH was reduced to 5.80 (Bertipaglia et al., 2010). 

The classical classification of tannins into hydrolysable and condensed tannins has 

been criticised because of their variable magnitude of response, irrespective of their 

chemical composition (Mueller-Harvey, 2006). Rather, differences in the procyanidin to 

prodelphinidin ratio, the molecular weight or the degree of esterification with gallic acid 

of tannin sources may explain the variable responses, and therefore different tannins 

sources were chosen for this study. It has been shown that hydrolysable tannins can be 

degraded by rumen bacteria (Bhat et al., 1998; McSweeney et al., 2001), but their impact 

should be rate-dependent, and affect differently to each tannin source. This should explain 
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the observed differences between both hydrolysable sources (OHT and CHT) throughout 

the incubation period. Among the four tannin extracts studied here, the reduction in gas 

production was higher with GCT, already manifested in the first stages of fermentation, 

followed by OHT and QCT, with CHT showing the lowest (33, 26, 19 and 16 mL/g OM 

lower than the CTL after 24 h incubation, respectively). Consequently, the biological 

effect of tannins at 24 h as an index of reduction of substrate fermentation tended to be (P 

= 0.069) higher for GCT than for CHT, being intermediate for the other two sources 

(Table 11). Just for comparative purposes, previous studies in our laboratory (Rodríguez 

et al., 2014) gave a BE value at 24 h of 1.44 for the tropical tanniferous legume Leucaena 

leucocephala (61 g/kg total tannins, expressed as tannic acid equivalents), within the range 

of GCT obtained here. All tannin sources linearly increased butyrate molar proportion, in 

agreement with in vivo results from Krueger et al. (2010) after 42 days of adding tannins 

to a concentrate feed, but in contrasts with the lack of effect at 12 h reported by Rodríguez 

et al. (2011) with forages. This different effect can be related to variations in pH, as well 

as the nature of substrates, as molar butyrate proportion estimated at 8 h of incubation 

increased with the addition of tannins with wheat but not maize as substrate (Martínez et 

al., 2006). 

In any case, it has to be considered that declared chemical analyses from the 

manufacturers showed that concentration of tannins expressed per weight unit of extract 

differ to some extent, being OHT and GCT higher than QCT and CHT. Although this 

might affect the response as extracts were dosed on a weight basis, the response to extracts 

does not directly correspond to their tannins concentration. Moreover, the constraints in 

accuracy of chemical analysis of tannins (Álvarez del Pino et al., 2005) and the mismatch 

between chemical analysis of tannins and their biological effect (Schofield et al., 2001; 

Rodríguez et al., 2014) precluded a bias in the response in this sense. 

It is generally assumed that less than 50 mg condensed tannins/g feed is beneficial 

for ruminants, but this largely depends on the chemical nature of the tannin source 

(Mueller-Harvey, 2006). Experiments supplementing concentrate diets with added 

tannins have applied several levels for the study of rumen fermentation processes, like 

single doses of 15 (Krueger et al., 2010), 20 (Carreño et al., 2015) or 50 mg/g substrate 

(Martínez et al., 2006) or concentration ranges from 1 to 25 (Hervás et al., 2000). Krueger 

et al. (2010) did not observe any rumen effect by adding mimosa (condensed tannins) or 

chestnut (hydrolysable tannins) extracts in vivo, nor Carreño et al. (2015) with oak extract 

on a 50:50 forage:concentrate substrate in vitro. In contrast, Martínez et al. (2006) showed 
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a reduced in vitro gas production from cereal grains with supplementation of both 

quebracho and tannic acid, and Hervás et al. (2000) reported a reduction on in situ DM 

degradation of soybean meal with 10 mg tannic acid/g substrate. With grass silage, 

Wischer et al. (2013) reported significant reductions in gas production when adding oak 

or chestnut tannins from 3 to 10 or 8 to 10 mg/g, respectively, but inconsistent results 

were observed with quebracho or grape seed tannins dosed up to 13 to 17 mg/g. These 

results support the importance of considering both source and dose of tannins in this type 

of studies. In our case, the response in gas production was only dose-dependent for CHT, 

whereas the first level of inclusion of the other tannin extracts already promoted a 

maximum reduction in comparison with the non-supplemented substrate. A similar 

pattern was also observed for all tannin sources in DMd, and the linear decrease (P < 

0.001) of total VFA concentration, only showed by QCT, was in fact caused by the 

increase in relation to CTL observed with the lowest level of inclusion (Table 10). Also, 

a general linear increase in butyrate proportion was detected with the inclusion of tannins, 

which in the case of GCT and CHT was at the expense of propionate. 

Despite the relative low specificity of the method used to determine microbial mass, 

a reduction compared with the CTL was already observed with the lower level of all studied 

extracts, without recording differences among them. In any case, according to literature 

the effect of the presence of tannins on this parameter is unclear. Makkar et al. (1995) and 

Getachew et al. (2008) suggest that partition of nutrients utilisation in tannin-rich 

substrates is preferably focused on fermentation (i.e. VFA and gas production) than 

microbial mass production, and McSweeney et al. (2001) support that secondary 

compounds inhibit microbial growth and enzyme activity. In contrast, in a meta-analysis, 

Jayanegara et al. (2012) observed a positive relationship between bacterial counts and 

tannin level in vitro (r = 0.513, n = 48), and Salem et al. (2007) and Guerrero et al. (2012), 

using purine bases as microbial marker, observed a reduction in microbial protein yield 

when tannins were inactivated by adding PEG. 

 

5. Conclusions 

 

Results show that the four tested tannin sources (from quebracho, grape, chestnut 

and oak) reduced rumen microbial fermentation of barley grain, with maximum and 

minimum responses being recorded with grape and chestnut tannins, respectively. Except 
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for chestnut, which showed a linear negative response in fermentation with inclusion 

levels from 10 to 30 mg/g, all the other sources reached their maximum level of response at 

their first level of inclusion (10 mg/g substrate). In fact, the magnitude of the response in 

gas production to   the lowest level of both QCT and OHT was only reached with a 3-fold 

dose of CHT inclusion. The reduction in substrate fermentation in the rumen should 

imply a higher proportion of feed that may reach lower sites of the gastrointestinal tract, 

with a subsequent improvement in the potential feed digestive utilisation. Qualitatively, 

addition of tannins did not largely affect medium pH or other environmental parameters, 

except for an increase in butyrate proportion. 
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Chapter VII. Fermentation of barley added with increasing levels of fatty acids or 

essential oils by the in vitro gas production technique under conditions simulating 

intensive beef production.  

 

Abstract.  

 

Intensive beef production based on high-energy diets increases the risk of rumen 

acidosis. In vivo studies increase costs and reducing comparisons. To check if additives 

can modulate rate of microbial fermentation in beef cattle fed concentrates. Level of fatty 

acids or essential oils on barley fermentation were studied in vitro, using rumen inoculum 

from intensively fed beef calves, adjusting medium pH around 6.2. In Experiment 4.1 

treatments were: barley alone (CTL), medium-chain fatty acids (MFA; 2, 4 and 6 mg/g) 

and palmitic (PAL) and linoleic (LIN) acids, included at 15, 30 and 45 mg/g. In 

Experiment 4.2, cinnamaldehyde (CIN; 30, 60 and 90 mg/g), eugenol (EUG; 60, 120 and 

180 mg/g) and a commercial blend of essential oils (CBC; 30, 60 and 90 mg/g) were 

compared with CTL. Respect to CTL, gas production with LIN was quadratically reduced 

(P<0.05 up to 24 h), and such reduction tended to be linear (P<0.10 at 12 and 24 h) with 

PAL, and quadratic (P<0.10 at 24 h) with MFA. Dry matter disappearance (DMd) and 

estimated microbial mass in the liquid medium were quadratically reduced (P<0.05) with 

MFA and LIN. Total volatile fatty acids (VFA) concentration and acetate proportion 

tended (P<0.10) to increase linearly with LIN, whereas propionate proportion tended to 

decrease (P=0.051). Gas production from CTL decreased linearly with CIN (P<0.001 up 

to 24 h) and quadratically with EUG (P=0.047 at 24 h), whereas it increased linearly with 

CBC (P<0.05 at 12 h, and P<0.10 at 8 and 24 h). A similar pattern of response was 

observed with the three additives on DMd. Microbial mass decreased quadratically with 

EUG (P<0.001). Total VFA concentration from CTL decreased linearly (P<0.05) and 

quadratically (P<0.001) with CIN and EUG. Acetate proportion increased quadratically 

with the inclusion of EUG (P<0.05) at the expense of propionate (P<0.001), and a linear 

reduction in propionate proportion was observed with CIN (P<0.05). Although 

depending on their dose and composition, both fatty acids and essential oils may reduce 

barley acidification potential. The rumen microbial fermentation of barley may also be 

improved with the essential oil CBC. 
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1. Introduction 

 

Beef production is often intensified for improving livestock performance potentials 

and reducing production time. However, feeding high-energy diets that are rich in rapidly 

fermentable carbohydrates implies the risk of appearance of rumen acidosis (Nagaraja 

and Titgemeyer, 2007), especially during the abrupt change from forage to concentrate 

diets. The increasing intake of highly fermentable organic matter leads to a rapid 

production and absorption of acids in the rumen (Pan et al., 2016), that consequently 

causes a reduction in the ruminal pH and microbial activity (Mao et al., 2016). A way to 

minimize such effect in ruminants is using feed additives, such as fatty acids (Doreau et 

al., 2009; Beauchemin et al., 2009), and essential oils (Castillejos et al., 2006; Benchaar 

et al., 2007, Calsamiglia et al., 2007).  

Supplementation of ruminant diets with lipids is largely practised for increasing the 

energy density in the ration (Vargas et al., 2017), but also because of their effect 

attenuating the rumen fermentative activity (Palmquist and Jenkins, 1980) and modifying 

the volatile fatty acids profile (Costa et al., 2017). Their effect depends upon their nature 

(saturated or unsaturated fatty acids), with long chain unsaturated fatty acids tending to 

depress microbial activity (Jenkins, 1993), and their dose (Doreau et al., 2009; 

Beauchemin et al., 2009). The medium chain fatty acids have a selective antimicrobial 

effect (Henderson, 1973) that remains through time (Sheu and Freese, 1972; Desbois and 

Smith, 2010), which gives them a prevalent role as additives in animal nutrition.   

The essential oils are volatile lipophilic secondary metabolites from plants, 

characterized by their antimicrobial properties against different types of microorganisms 

including bacteria, protozoa and fungi (Greathead, 2003). Their capacity for inhibit 

growth of different types of bacteria (Calsamiglia et al., 2007) depends upon their 

composition (presence of phenolics, carbonyl groups, monoterpenes, etc.), and some may 

improve the ruminal fermentation (Busquet et al., 2005b; Castillejos et al., 2006). Among 

them, cinnamaldehyde and eugenol are widely used to modify the pattern of microbial 

fermentation, especially the volatile fatty acids profile (Cardozo et al., 2006). In practice, 

blends of essential oils with specific antibacterial selectivity are commonly used for a 

broad spectrum of effects (Wallace, 2004).  

Most studies conducted with these zootechnical feed additives have been focused on 

dairy cattle given mixed diets to reduce methane production and to improve milk 

production and quality, but there is limited information about their role in intensive beef 
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fattening systems. Most previous studies have been carried out in vivo (Firkins et al., 

1990; Castillejos et al., 2007) or with continuous/semicontinuous in vitro systems 

(Castillejos et al., 2006; Cardozo et al., 2006), both being laborious, cost expensive and 

limited to a reduced number of tested treatments. Limitation of closed batch in vitro 

systems to the use of a well-buffered medium limits the extrapolation of results to 

production conditions, further considering the pH-dependent effect of essential oils 

(Juven et al., 1994; Cardozo et al., 2005). The adaptation of the gas production procedure 

proposed by Amanzougarene and Fondevila (2018) allows for incubation at a range of 

pH closer to intensive feeding conditions. This in vitro work aimed to study whether the 

inclusion of fatty acids or essential oils at various levels under intensive beef production 

conditions could affect the rate of microbial fermentation of concentrate feeds, estimated 

by the gas production technique.  

2. Material and methods 

 

Two experiments were carried out testing fatty acids and essential oils in 

Experiments 1 and 2, respectively. Additives were included at three doses, considered as 

low, medium and high (d1, d2 and d3). In Experiment 1, the additives were chosen as 

representatives of saturated (palmitic acid, PAL, 0.85 g/mL; MERCK KGaA, Darmstadt, 

Germany) and polyunsaturated (linoleic acid, LIN, 0.90 g/mL; Alfa Aesar, Thermo 

Fisher, Karlsruhe, Germany) fatty acids, and a commercial mixture of medium chain fatty 

acids (MFA; 50% C12, 20% C10, 20% C8, and 10% C6; NUTRIKA, Zulte, Belgium). 

Inclusion levels of PAL and LIN were 15, 30 and 45 mg/g substrate, whereas the dose of 

MFA was 2, 4 and 6 mg/g substrate, considering the dose recommended by the 

manufacturer as d2. In Experiment 2, the sources of essential oils were cinnamaldehyde 

(CIN, 98% purity, 1.05 g/mL) included at 30, 60 and 90 mg/g substrate and eugenol 

(EUG, 99% purity, 1.06 g/mL) included at 60, 120 and 180 mg/g substrate, both provided 

by NOREL Animal Nutrition (Barcelona, Spain), and the commercial blend CRINA 

Ruminants (CBC; DSM Nutritional Products, Basel, Switzerland), that was included at 

30, 60 and 90 mg/g substrate. The doses of essential oils were chosen considering the 

manufacturer recommendation as d2. In both experiments, treatments were contrasted 

with the unsupplemented barley substrate, that was used as control (CTL).   

 

 



Section II. Experiment 4 

104 

 

2.1. Inoculum source and incubation procedures 

Three Limousine crossbred beef male calves (8 months of age, around 300 kg live 

weight) provided with a 2 cm i.d. cannula fitted in the dorsal sac of the rumen and housed 

in the facilities of the Servicio de Apoyo a la Experimentación Animal of the University 

of Zaragoza, were used as donors of inoculum. Calves were daily fed ad libitum with a 

concentrate mixture (in proportions of 0.59 barley, 0.15 maize, 0.17 soybean meal, 0.06 

maize gluten and 0.03 mineral-vitamin mixture) and straw, at a concentrate:forage ratio 

of 0.91:0.09 of total feed intake. Management and extraction procedures of rumen 

inoculum from donor animals were approved by the Ethics Committee for Animal 

Experimentation. Care and management of animals agreed with the Spanish Policy for 

Animal Protection RD 53/2013, which complies with EU Directive 2010/63 on the 

protection of animals used for experimental and other scientific purposes. Rumen 

contents were sampled, filtered through cheesecloth, dispensed in 16 mL aliquots and 

immediately frozen in liquid nitrogen and maintained at -80ºC until utilisation (Prates et 

al., 2010).   

The in vitro fermentation process was carried out in a closed batch system following 

the procedure of Theodorou et al. (1994). Triplicate bottles (116 mL total volume) were 

filled with 80 mL of incubation solution made up with 0.10 rumen inoculum and without 

micro-minerals and resazurin (Mould et al. 2005a).  Buffer composition was modified to 

adjust the incubation pH around of 6.2 (Amanzougarene and Fondevila 2018). An amount 

of 500 mg air-dry barley meal (Hordeum vulgare, var. Gustav; 105 g/kg DM crude 

protein, 24 g/kg DM ether extract, 171 g/kg neutral detergent fiber, 672 g/kg DM starch), 

ground to 1 mm particle size, was included on each bottle as basal substrate.  

Three in vitro incubation series were carried out, with rumen contents from a 

different calf as donor for each series, thus considering animal as a block. On every series, 

triplicate glass bottles for each treatment were incubated. Three additional bottles without 

substrate were also incubated on each series as blanks of inoculum. To facilitate substrate 

recovery for subsequent determinations, barley was introduced into 4 x 4 cm nylon bags 

(45 µm pore size, Sefar Maissa, Barcelona, Spain), proven to ensure a free flow of 

medium through the bag pores. Bottles were filled with the incubation solution under a 

CO2 stream, sealed and incubated for 24 h in a water bath at 39 ºC. During the experiment, 

internal pressure of two out of the three incubated bottles was recorded at 2, 4, 6, 8, 10, 

12, 18 and 24 h by means of a HD 2124.02 manometer fitted with a TP804 pressure gauge 
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(Delta Ohm, Caselle di Selvazzano, Italy). Readings were converted into volume by a 

pre-established linear regression equation between the pressure recorded in the same 

bottles under the same conditions and known air volumes, and expressed as either 

accumulated volume (total mL) or as rate of gas produced (mL produced per hour at each 

incubation interval) per unit of incubated organic matter (OM). The average of the two 

bottles for each treatment on each incubation series was considered as the experimental 

unit. After 8 h of incubation, the third bottle of each treatment was opened, its pH recorded 

(CRISON micropH 2001, Barcelona, Spain) and samples of the incubation medium were 

taken and immediately frozen and stored at -20 ºC until volatile fatty acids (VFA) analysis 

(2 mL, collected over 0.5 mL of 0.5M PO4H3 with 2 mg/mL 4-methyl valeric acid). At 

the end of the 24 h incubation, pH was also measured, and the incubation medium 

sampled for estimation of microbial mass (10 mL sample). Bags of substrate were 

removed from each bottle, squeezed and dried (60 ºC, 48 h) to estimate dry matter 

disappearance (DMd). 

 

2.2. Chemical analysis 

The barley substrate was analysed following the procedures of AOAC (2005) for dry 

matter (DM; ref. 934.01), organic matter (OM; ref. 942.05), crude protein (CPr; ref. 

976.05) and ether extract (EE; ref. 2003.05). Concentration of neutral detergent fibre 

(aNDFom) was analysed as described by Mertens (2002) in an Ankom 200 Fibre Analyser 

(Ankom Technology, New York), using α–amylase and sodium sulphite, and results are 

expressed exclusive of residual ashes. The acid detergent fibre (ADF) and acid detergent 

lignin (ADL) were determined as described by AOAC (2005) and by Robertson and Van 

Soest (1981), respectively. Total starch content was determined enzymatically from 

samples ground to 0.5 mm using a commercial kit (Total Starch Assay Kit K-TSTA 

07/11, Megazyme, Bray, Ireland). VFA and the concentration of individual MCFA in the 

additive were determined by gas chromatography on an Agilent 6890, apparatus equipped 

with a capillary column (HP-FFAP Polyethylene glycol TPA, 30 m x 530 µm id). 

Microbial mass in the liquid fraction was approached according to Hsu and Fahey (1990), 

by centrifuging samples at 13000 x g for 20 min and weighing the washed lyophilised 

residue. 
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2.3. Statistical analysis 

 

Results were analysed by ANOVA using the Statistix 10 software package 

(Analytical Software, 2010), considering the incubation series as a block and the 

experimental treatments in each experiment (CTL and the three additives included at three 

doses; n=10) as a factorial effect. Each given value is mean of the three incubation series. 

In each experiment, Polynomial (lineal and quadratic) contrasts were planned to estimate 

the trend in the response of each single additive (control and the three levels of inclusion, 

n=4), and orthogonal contrasts were established to compare the three additives among 

them. In all cases, differences were considered significant when P<0.05, and a trend for 

significance was considered when 0.05P <0.10. 

 

3. Results 

 

The pH of rumen fluid inoculum before starting the three incubation series of 

Experiments 1 and 2 was 6.29 ± 0.20 and 6.16 ± 0.04, respectively. Incubation pH at 8 

and 24 h averaged 6.11 and 5.90 in Experiment 1, and 6.17 and 5.98 in Experiment 2. 

Treatment differences in each time of measurement were non- significant and in all cases 

below 0.13 pH units.  

  

Experiment 1: fatty acids 

Table 13 summarises the accumulated gas production from the different levels of 

each at certain incubation times (4, 8, 12 and 24 h), chosen to be representative of the 

whole fermentation pattern. The inclusion of MFA and PAL did not affect the volume of 

gas produced from barley alone, except for a trend for a quadratic decrease (P=0.071) in 

gas production at 24 h with increasing doses of MFA and for a linear decrease at 12 

(P=0.088) and 24 h (P=0.052) with PAL. In contrast, the inclusion of LIN promoted a 

quadratic decrease (P<0.05) in the volume of gas produced throughout all the incubation 

period, with differences detected between d2 and d3 respect to CTL from 12 h onwards 

(P<0.05).  

When comparing among the different fatty acids, the volume of gas produced after 

24 h tended (P=0.074) to be higher with MFA than LIN, but no other differences were 

recorded at any incubation time (P>0.05). In order to better compare the effect of the 
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different additives on microbial fermentation of barley, the average rate (mL/g OM per 

h) of gas production was estimated and contrasted in Figure 19. Although it was not 

considered in the statistical comparison, the rate of gas production from barley alone 

(CTL) is also shown in the figure for comparative purposes. At 10 h LIN showed the 

lowest rate (P<0.01), and LIN was also lower than MFA at 18 h (P=0.010) and tended 

to be lower than PAL at 24 h (P=0.051). The numerically higher rate with MFA at 2 h 

respect to LIN and PAL was not significant (P=0.13 and P=0.15, respectively) because 

of the high magnitude of the error term (variation coefficient 0.46).  

The DMd and the estimated microbial mass in the liquid fraction at the end of the 24 

h incubation period is also shown in Table 13. A quadratic decrease in DMd was detected 

with the inclusion of increasing levels of MFA and LIN (P<0.01), but the inclusion of 

PAL did not affect this parameter. Similarly, a quadratic reduction of the microbial mass 

in the liquid fraction was observed with the inclusion of MFA (P=0.008) and LIN 

(P=0.020), and a trend for the same effect was observed with PAL (P=0.090). When 

comparing among additives, the lowest (P<0.05) DMd and microbial mass were recorded 

with MFA, but no differences were manifested among PAL and LIN (P>0.10). 
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Table 13. Accumulated volume of gas produced (mL/g OM) at different incubation times, 

dry matter disappearance (DMd) and microbial mass in the liquid fraction (mg/mL) 

from barley as the only substrate (CTL) or supplemented with increasing doses (d1, 

d2 and d3; n=3) of medium-chain fatty acids (MFA), palmitic acid (PAL) or linoleic 

acid (LIN). Mean values for each additive (n=9) and probability of the response pattern 

(linear, L or quadratic, Q) and additives comparison are also shown.  

  Gas volume  Microbial 

 Dose 4 h 8 h 12 h 24 h DMd  mass 

CTL 0 56.0 100.9 132.5 175.6 0.434 2.64 

 
d1 49.6 86.6 116.2 157.0 0.387 2.45 

MFA d2 47.1 83.2 111.2 149.9 0.372 2.40 

 
d3 

mean 

44.4 

47.1 

79.9 

83.2 

107.2 

111.5 

141.9 

149.6 

0.339 

0.366 

2.26 

2.37 

Pattern     Q(T)    Q(**)    Q(**) 

PAL 

d1 39.7 77.1 104.2 142.7 0.403 2.64 

d2 38.6 75.0 105.4 140.4 0.395 2.53 

d3 

mean 

37.2 

38.5 

73.0 

75.0 

99.8 

103.1 

140.0 

141.0 

0.396 

0.398 

2.49 

2.55 

Pattern    L(T) L(T)      Q(T) 

 
d1 48.2 84.5 109.9 144.5 0.420 2.62 

LIN d2 35.1 71.3 96.6 132.4 0.385 2.50 

 
d3 

mean 

33.8 

39.0 

67.8 

74.5 

90.0 

98.9 

122.7 

133.2 

0.378 

0.394 

2.40 

2.51 

Pattern  Q(*)  Q(*)  Q(*) Q(**) Q(**)     Q(*) 

MFA vs. PAL           *    ** 

MFA vs. LIN      T    *    * 

PAL vs. LIN       

SD 13.07 15.83 17.00  18.38 0.0251 0.124 

*: P<0.05; **: P<0.01; T: P<0.10; SD: standard deviation 
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Figure 19. Rate of gas production (mL/g OM per h) at the different time intervals from 

barley supplemented with MFA (), PAL (), and LIN (). Each value from each 

fatty acid is the average of three doses (n=9). Upper bars show standard error of means. 

For comparative purposes, unsupplemented barley (CTL,) is also included in the 

graph.  

 

 

Total VFA concentration after 8 h of incubation (Table 14) tended (P=0.066) to 

increase linearly with the inclusion of LIN. Regarding the molar proportions of the 

different VFA, the inclusion of LIN tended to promote a linear increase of acetate 

proportion (P=0.060), also tending to decrease that of propionate (P=0.051). No effect 

on total VFA concentration or on molar VFA proportions was detected with the inclusion 

of MFA or PAL. No differences (P>0.10) among fatty acid sources were recorded on 

total VFA concentration, but a higher molar proportion of acetate and lower of butyrate 

were observed with LIN with respect to both MFA and PAL (P<0.05), whereas the molar 

proportion of propionate and branched-chain fatty acids (sum of isobutyrate and 

isovalerate, BCVFA) tended to be lower with LIN than with MFA (P=0.083) and PAL 

(P=0.084), respectively. 
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Table 14. Total volatile fatty acid (VFA) concentration (mM) and molar VFA proportions 

after 8 h incubation of barley as the only substrate (CTL) or supplemented with 

increasing doses (d1, d2 and d3; n=3) of medium-chain fatty acids (MFA), palmitic 

acid (PAL) or linoleic acid (LIN). Mean values for each additive (n=9) and probability 

of the response pattern (linear, L or quadratic, Q) and additives comparison are also 

shown. 

  Dose 
Total 

VFA 
Acetate Propionate Butyrate Valerate BCVFA 

CTR 0 30.9 0.541 0.265 0.153 0.021 0.021 

  d1 33.3 0.544 0.266 0.151 0.020 0.020 

MFA d2 33.7 0.536 0.268 0.156 0.021 0.019 

  
d3 32.8 0.525 0.272 0.160 0.022 0.021 

mean 33.3 0.535 0.269 0.156 0.021 0.020 

Pattern               

PAL 

d1 35.7 0.536 0.268 0.155 0.021 0.020 

d2 32.6 0.530 0.269 0.159 0.021 0.022 

d3 33.3 0.533 0.266 0.158 0.023 0.021 

mean 33.9 0.533 0.267 0.157 0.022 0.021 

Pattern               

  d1 35.2 0.548 0.267 0.144 0.022 0.019 

LIN d2 35 0.561 0.251 0.145 0.023 0.020 

  
d3 35.5 0.593 0.231 0.137 0.020 0.019 

mean 35.2 0.567 0.250 0.142 0.021 0.019 

Pattern    L(T) L(T)  L(T)       

MFA vs. PAL               

MFA vs. LIN  * T *       

PAL vs. LIN   *   *   T 

SD 2.7 0.0263 0.0177 0.0082 0.0016 0.0016 

*: P<0.05; T: P<0.10; SD: standard deviation 

 

Experiment 2: essential oils 

 Table 15 shows the volume of gas produced at different time intervals from barley 

as the only substrate or added with the different levels of essential oils. A linear decrease 

in gas production was observed with CIN (P<0.001) throughout all the incubation period, 

whereas the inclusion of CBC promoted a linear increase in gas at 12 h of incubation 

(P<0.05) and an increasing trend for this at 8 (P=0.091) and 24 h (P=0.064). In contrast, 

the addition of different levels of EUG did not affect gas production from barley, except 

for a quadratic decrease at 24 h (P=0.047). When the average rate of gas production was 

monitored (Figure 20), it was lower with CIN than EUG from 2 to 8 h (P<0.05) and CBC 

from 2 to 12 h (P<0.001), whereas with CBC it was higher than EUG at 2 (P<0.05) and 
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at 8, 10 and 12 h (P<0.01). Although not considered in the statistical comparison, the rate 

of gas production in CTL, also included in the figure, was similar to the mean rate with 

EUG from 4 to 8 h, and numerically lower than CBC along the mid part of fermentation 

period.   

 The DMd from barley (Table 15) decreased linearly with the addition of CIN 

(P<0.001), and quadratically with the addition of EUG (P< 0.001), whereas the inclusion 

of CBC linearly increased DMd (P<0.001), thus resulting the highest DMd of the three 

additives. EUG decreased quadratically (P<0.01) the microbial mass from the liquid 

fraction, but no effect of CIN or CBC was detected on this parameter.   

Total VFA concentration after 8 h incubation linearly decreased (P=0.036) with the 

level of inclusion of CIN (Table 16), whereas such effect followed a quadratic trend with 

EUG (P<0.001). Molar propionate proportion decreased linearly with CIN (P=0.010), 

whereas with EUG acetate quadratically increased at the expense of propionate 

(P<0.001). Inclusion of CBC did not affect total VFA concentration, and resulted higher 

than both CIN and EUG (P<0.05). Similarly, molar propionate proportion was highest, 

and that of acetate lowest, with CBC (P<0.05) compared with the other additives, 

whereas butyrate proportion was highest with EUG (P<0.05). 
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Table 15. Accumulated volume of gas produced (mL/g OM) at different incubation times, 

dry matter disappearance (DMd) and microbial mass in the liquid fraction (mg/mL) 

from barley as the only substrate (CTL) or supplemented with increasing doses (d1, 

d2 and d3; n=3) of cinnamaldehyde (CIN), eugenol (EUG) or a commercial blend 

(CBC). Mean values for each additive (n=9) and probability of the response pattern 

(linear, L or quadratic, Q) and additives comparison are also shown. 

  Gas volume  Microbial 

 Dose 4 h 8 h 12 h 24 h DMd  mass 

CTL 0 30.8 58.2 82.9 117.9 0.424 1.99 

 
d1 21.6 46.2 70.4 100.2 0.398 2.05 

CIN d2 12.7 25.4 43.3 72.7 0.374 2.10 

 
d3 

mean 

8.8 

14.4 

21.1 

30.9 

34.8 

49.5 

63.5 

78.8 

0.347 

0.373 

2.19 

2.12 

Pattern  L(***) L(***) L(***) L(***)    L(***)    L(T) 

EUG 

d1 29.5 57.8 80.3 111.6 0.404 1.65 

d2 27.6 53.4 75.6 103.4 0.369 1.52 

d3 

mean 

24.9 

27.3 

51.6 

54.3 

71.0 

75.6 

100.2 

105.0 

0.355 

0.376 

1.51 

1.56 

Pattern     Q(*)   Q(***)         Q(***) 

 
d1 31.2 58.9 83.0 116.8 0.433 1.99 

CBC d2 32.4 62.7 90.6 128.1 0.489 1.99 

 
d3 

mean 

34.6 

32.7 

68.7 

63.4 

99.6 

91.1 

132.1 

125.7 

0.487 

0.470 

2.03 

2.02 

Pattern   L(T) L(*) L(T) L(***)     

CIN vs. EUG  *** *** ***   ***     *** 

CIN vs. CBC  *** *** *** ***  ***  

EUG vs. CBC  * * ** *** ***    *** 

SD 1.93 0.0134 0.0096 0.0076 0.0015 0.0010 

*: P<0.05; **: P<0.01; ***: P<0.001; T: P<0.10; SD: standard deviation.  
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Figure 20. Rate of gas production (mL/g OM per h) at the different time intervals from 

barley supplemented with CIN (), EUG () and CBC (). Each value from each 

fatty acid is the average of three doses (n=9). Upper bars show standard error of means. 

For comparative purposes, unsupplemented barley (CTL,) is also included in the 

graph.  
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Table 16. Total volatile fatty acid (VFA) concentration (mM) and molar VFA proportions 

after 8 h incubation of barley as the only substrate (CTL) or supplemented with 

increasing doses (d1, d2 and d3; n=3) of cinnamaldehyde (CIN), eugenol (EUG) or a 

commercial blend (CBC). Mean values for each additive (n=9) and probability of the 

response pattern (linear, L or quadratic, Q) and additives comparison are also shown. 

 
Dose 

Total 

VFA 
Acetate Propionate Butyrate Valerate BCVFA 

CTR 0 31.2 0.512 0.278 0.166 0.023 0.021 

  d1 27.0 0.558 0.241 0.153 0.025 0.023 

CIN d2 27.0 0.562 0.230 0.164 0.023 0.022 

  
d3 24.7 0.550 0.230 0.172 0.025 0.023 

mean 26.2 0.557 0.234 0.163 0.024 0.023 

Pattern   L(*)   L(*)       

EUG 

d1 29.8 0.535 0.240 0.177 0.027 0.022 

d2 22.9 0.549 0.217 0.188 0.025 0.022 

d3 22.1 0.624 0.161 0.175 0.023 0.018 

mean 25.0 0.569 0.206 0.180 0.025 0.020 

Pattern   Q(***) Q(**) Q(***)       

  d1 30.7 0.505 0.280 0.169 0.025 0.021 

CBC d2 31.1 0.513 0.269 0.174 0.024 0.021 

  
d3 30.2 0.507 0.269 0.178 0.024 0.022 

mean 30.7 0.508 0.273 0.174 0.024 0.021 

Pattern               

CIN vs. EUG   * *  * 

CIN vs. CBC * ** ***    
EUG vs. CBC ** *** ***    
SD 3.34 0.0289 0.0208 0.0164 0.0032 0.0022 

 *: P<0.05; **: P<0.01; ***: P<0.001; T: P<0.10; SD: standard deviation.   
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4. Discussion 

 

Incubation pH was maintained between 5.9 and 6.2 throughout the whole incubation 

period, as it was previously approached for simulating high concentrate feeding 

conditions (Amanzougarene and Fondevila, 2018). In any case, pH values were recorded 

only for purposes of validation of incubation conditions, since the inclusion of certain 

level of buffer prevents for any treatment comparison.  

 

4.1. Effect of fatty acids 

Inclusion of lipids in ruminant diets has been commonly assayed for reducing 

microbial fermentative activity (Palmquist and Jenkins, 1980), thus preventing the risk of 

acidosis in dairy cows fed on mixed diets (Soliva et al., 2004; Beauchemin et al., 2009) 

but can also be extended to intensive feeding beef cattle. The noticeable variability of 

obtained results depends on factors such as the amount and fatty acid profile of dietary 

fats, as well as presentation form and composition of basal diets. It is generally assumed 

that levels of dietary inclusion of fat over 50 mg/g affect rumen fermentation in high 

concentrate diets (Jenkins, 1993; Doreau and Chilliard, 1997), but a higher effect can be 

expected from free fatty acids. In our case, the level of inclusion of LIN and PAL was 

chosen according to these statements and, from a common level of 30 mg free fatty acid/g, 

doubling or dividing this proportion. Instead, in the case of medium-chain fatty acids, the 

level recommended for practical use is fixed according to their selective antimicrobial 

effect (Henderson, 1973), and therefore their dosage was considerably lower (4 mg/g), 

according to manufacturer recommendations. 

The effect of lipids on rumen environment is related with a decrease in bacterial 

growth (Maczulak et al., 1981). In terms of fermentation products, addition of fats is also 

associated with an increase in rumen propionate proportion through a decrease in that of 

acetate (Doreau et al., 1991), although this has not always been detected (Pantoja et al., 

1995). It is also assumed that long-chain polyunsaturated fatty acids, such as C18:2 

linoleic acid, exert a greater inhibitory effect on microbial fermentative activity than 

saturated fatty acids (Palmquist and Jenkins, 1980; Jenkins, 1993), such as C16:0 palmitic 

fatty acid. Toxic effects of polyunsaturated fatty acids sources on cellulolytic bacteria 

have been reported by Vazirigohar et al. (2018), and Sinclair et al. (2005) reported that 

diets rich in polyunsaturated fatty acids reduced the gas production profiles. However, in 

our experiment, no major effect of PAL at any inclusion level was observed on barley 
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fermentation, and only a quadratic reduction of gas production was observed throughout 

the incubation period with the inclusion of LIN because of the response to d3 of LIN 

(Table 13). This was associated to a linear reduction in propionate proportion that may be 

associated to a depressed fermentation of barley starch. In the same way, no differences 

were observed among both additives. 

Certain medium-chain fatty acids have been assessed for their potential to interact 

with rumen microbiota to modulate ruminal fermentation and improve nutrient utilization 

(Hristov et al., 2004). Medium chain fatty acids have a stronger effect on bacteria and 

thus on carbohydrate fermentation than long-chain fatty acids. Klevenhusen et al. (2011) 

showed that addition of lauric acid in form of monolaurin affected many ruminal microbes 

involved in carbohydrate degradation, and Soliva et al. (2004) and Machmüller (2006) 

reported that the addition of medium chain fatty acids to ruminant diets reduce nutrient 

disappearance. In our experiment, the effect of MFA was manifested in a quadratic sense 

towards a trend (P=0.071) to depress 24 h gas production and a decrease (P<0.01) in 

DMd and estimated microbial mass (Table 13), although the accuracy of the latter 

approach is relative because of the non-specificity of the method of analysis. The fact that 

the response to this additive followed a quadratic trend indicates that a significant effect 

was not attained until d3, suggesting that the initial dose was to a certain extent 

undervalued, and a level of 8 mg per gram of substrate should be applied. In any case, no 

major effect on VFA profile were detected, supporting that the effect of MFA was of 

minor magnitude and not related to a different fermentation profile. 

 

4.2. Effect of essential oils 

The essential oils used here were chosen looking for a potential stabilisation in the 

rumen environment that should prevent, or at least reduce, the risk of acidosis. However, 

testing essential oils have often been conducted under forage or mixed diets conditions, 

whereas their effect on rumen fermentation may be affected by medium pH that can 

influence the dissociated or undissociated status of their molecules (Cardozo et al., 2005). 

In fact, Cardozo et al. (2006) stated that cinnamaldehyde may be interesting for 

intensively reared beef steers because of its selective activity over some Gram-positive 

bacteria by acting over the cell membrane, and because of its positive effects on rumen 

bacterial fermentation under low-pH conditions for reducing the rate of rumen 

fermentation and increase the acetate to propionate ratio (Busquet et al., 2006). In 
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contrast, eugenol, which has a wide spectrum of antimicrobial activity (Cobellis et al., 

2016b), decreased total VFA concentration and propionate proportion in an in vitro 

system with a 90:10 concentrate to forage diet (Castillejos et al., 2006), thus suggesting 

a limited interest in intensively reared beef steers diets. In any case, a combination of 

different compounds is the common practice in practical feeding conditions looking for a 

synergistic effect, and thus a commercial mixture of essential oils was also tested in this 

study. 

A moderate fermentative response was observed with EUG, that was manifested in 

a numerically lower accumulated gas volume with levels d2 and d3 at 24 h respect to CTL 

(Table 15), but this effect was more apparent on DMd and total VFA concentration (Table 

16). These results agree with those found in vitro by Benchaar et al. (2007), who reported 

a decrease in both gas production and DMd with 40 mg EUG/g over a 55:45 forage to 

concentrate mixture. However, Tager and Krause (2010) did not observed any effect on 

DMd at doses of 6 mg/g. The lower total VFA concentration and the reduction in 

propionate proportion with EUG agree with studies by Busquet et al. (2006) and Benchaar 

et al. (2007) using higher and lower dose levels than here (300 and 40 mg/g), respectively. 

Besides, the lower concentration of VFA was associated with a quadratic decrease of 

microbial mass (Table 3) that might be explained by the strong effect of EUG on ruminal 

bacteria (Dorman and Deans, 2000). 

In contrast to that observed with EUG, the inclusion of CIN resulted in a linear 

decrease of substrate fermentation. As expected, the results of gas production were 

supported by those of DMd. In contrast, no significant differences were observed on 

microbial mass between CIN and CTL, maybe because of the low specificity of the 

method used to determine the microbial mass. With similar doses than those used here 

(39 and 65 mg/g) Macheboeuf et al. (2008) observed a decrease in 16 h gas production 

and in total VFA concentration. However, others did not find any effect on in vitro 

fermentation at doses of 30 mg/g or lower (Busquet et al., 2006; Benchaar et al., 2007; 

Tager and Krause, 2010). Regarding to individual VFA proportions, our results showed 

a linear decrease on propionate (Table 16), without affecting others molar VFA 

proportions, results supported by those observed by Macheboeuf et al. (2008). In the 

present study, the response of CIN on in vitro patterns of microbial fermentation was 

lower than expected because the pH of the incubation solution (≈6.2) might consider 

slightly high according to Juven et al. (1994). 
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The effect of CIN on fermentation and microbiota seem to be related to 

environmental pH (Juven et al., 1994), and Cardozo et al. (2005) suggested that 

cinnamaldehyde can be potentially useful at the low ruminal pH expected in high-

concentrate diets for intensive beef production. Besides, despite the doses used were 

around those recommended by the manufacturer, they were lower to other in literature 

(Benchaar et al., 2011). However, Busquet et al. (2005b) suggested that at low doses, CIN 

might be an active modulator of rumen microbial activity.  

A lack of effect of essential oils blends has been reported in vivo (Flores et al., 2013; 

Tomkins et al., 2015) and variable responses have been observed in vitro (Ahmed et al., 

2014; Cobellis et al., 2016a). These different responses can be attributed mostly to their 

composition, the compounds proportions and the dose of additive (Dorman and Deans, 

2000; Busquet et al., 2006), as well as possible synergistic or antagonistic effects among 

compounds (Burt, 2004). In many cases blends are commercial products and their 

composition and proportion of ingredients is not published. In our case, we used a 

commercial, widely used mixture, choosing the dose recommended by the manufacturer 

as d2, with the aim to have a standard response to compare with CIN and EUG. With a 

50% concentrate substrate, Cobellis et al. (2016a) reported an increase in pH with 80 

mg/g of five different blends of EO, at a rate differing from one blend to another. 

Similarly, using corn silage as basal substrate with 64 mg/g of essential oils blend, 

Spanghero et al. (2008) observed an increase in pH. In any case, in contrast to the negative 

effect of CIN and the minor response to EUG, the supplementation of barley with CBC 

promoted a linear increase on gas production at 12 h (P<0.05) and a trend to such effect 

at 8 and 24 h (P=0.091, P=0.064; respectively), in addition to a linear increase in DMd 

(Table 15), but did not affect total VFA concentration. As commented regarding CIN, 

Spanghero et al. (2008) suggested that a blend of essential oils might be more effective 

in an acidic medium, and thus the effectiveness may be higher under intensive feeding 

conditions. In contrast to CIN and EUG, CBC increased the measured fermentative 

parameters respect to unsupplemented barley. This might be explained by the broad and 

often nonspecific antimicrobial activity of CIN and EUG (Cobellis et al., 2016a), in 

contrast to CBC which has been characterized by potential synergistic effects among its 

components (Burt, 2004). 
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5. Conclusions    

 

The use of fatty acids and essential oils as additives depends on the objective, since 

their effect on in vitro barley fermentation largely differ among the nature of the 

compounds used. The three studied fatty acids reduced the magnitude and rate of in vitro 

barley fermentation, but a lower rumen activity can be associated with a less challenging 

pH, that should be positive if it is balanced by the intestinal digestion of bypass feed. Such 

effect was dose dependent in the case of LIN, since the response was already maximised 

with d2. Similarly, a linear depression was observed with CIN, and a negative response 

although of a lower magnitude was also observed up to d2 of EUG. In contrast, CBC 

linearly enhanced the magnitude and rate of barley fermentation, thus increasing rumen 

substrate disappearance but without affecting fermentation pattern. Both fatty acids and 

essential oils did not negatively affect medium pH throughout the incubation, suggesting 

that both types of additives may modulate barley acidification potential. The reduction in 

the extent of barley fermentation with some of these additives does not mean that their 

effects were not nutritionally beneficial to beef cattle, since the increased proportion of 

feed that should reach the lower sites of the gastrointestinal tract could be digested there, 

providing nutrients to the animals. 
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Chapter VIII. Estimation of rumen fermentation pattern of barley supplemented 

with additives of different nature in an in vitro semicontinuous incubation system.  

 

Abstract. 

 

Grape condensed tannins (GCT, 20 mg/g), a mixture of medium-chain fatty acids 

(MFA, 4 mg/g), linoleic acid (LIN, 30 mg/g), eugenol (EUG, 120 mg/g), and 

cinnamaldehyde (CIN, 60 mg/g), were used as additives to evaluate their effect on barley 

fermentation. A semicontinuous in vitro system inoculated with rumen contents from beef 

calves fed ad libitum with concentrate and straw was used, with a poorly buffered medium 

from 0 to 6 h, and gradually buffered to 6.5 from 8 to 24 h the medium. Gas production 

and pH were recorded from 2 to 24 h. Total volatile fatty acids (VFA) concentration was 

determined after 8 and 24h. Microbial diversity was characterised at 8 h by terminal 

restriction fragment length polymorphism (tRFLP). Incubation pH reached its minimum 

after 6 h (6.89 ± 0.07), and from then maximum pH was reached at the end of incubation 

(6.41 ± 0.03). From 6 h onwards, GCT recorded the highest pH (p < 0.05), while CIN 

recorded lower pH values (p < 0.05). Throughout the incubation EUG and CIN produced 

lower volumes of gas (p < 0.05) than unsupplemented barley (CTR). The inclusion of 

different additives reduced 24h dry matter disappearance of barley, which was highest 

with CTR (p < 0.05) and lowest with GCT (p < 0.05). High total VFA concentration and 

higher acetate and propionate proportions were recorded at 8h (p < 0.05). Among 

treatments, MFA recorded the highest VFA concentration, while EUG and CIN recorded 

the lowest VFA concentration and propionate proportion, and the highest proportion of 

propionate was promoted by LIN (p < 0.05). Results were supported by those showed by 

bacterial diversity. Essential oils as additives, especially cinnamaldehyde, reduced barley 

fermentation at a higher extent, and negatively affected environmental conditions. In 

contrast, grape condensed tannins and fatty acids may reduce barley acidification 

potential.    
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1. Introduction  

 

In intensive ruminants fattening systems, the transition phase from milk and/ or 

forage-feeding to high concentrate diets is considered as the critical moment for animal 

health and productivity. Acidosis is the main frequent digestive disorder that occurs 

during this period, as a consequence of the intensive fermentation of readily available 

carbohydrates in non-adapted animals. However, it has been demonstrated that the risk 

of acidosis might be reduced by the use of feed additives that are able to modulate rumen 

fermentation, thus maximizing the efficiency of feed utilization and consequently 

increasing ruminant productivity (Greathead, 2003). It has to be considered that non-

degraded nutrients may reach the intestines to be digested there, providing to the animal 

more energy than that fermented in the rumen (Owens et al., 1986). Thus, the effects on 

ruminal microbial fermentation of additives such as tannins (Rodríguez at al., 2011), fatty 

acids (Beauchemin et al., 2009), and essential oils (Cardozo et al., 2005) have already 

been studied, but in most cases they have been compared within the same type of them. 

Because of this, a global comparison of their effects is needed for addressing a potential 

ranking of practical interest among them. 

Tannins are polyphenolic compounds that are able to bind to feed proteins and 

polysaccharides, limiting their degradability by rumen microbes (McAllister et al., 1994) 

but favourably modulating the rumen microbial fermentation (Patra and Saxena, 2011). 

The extent of their effect depends not only on their concentration, but also on their 

reactivity, which is associated with their chemical nature (Rodríguez et al., 2011). 

Condensed tannins from grape can significantly reduce fermentation of a fibrous substrate 

(Wischer et al., 2013), and a notable reduction of microbial fermentation has also been 

reported on barley grain (Amanzougarene et al., 2019). 

Medium chain fatty acids and long chain polyunsaturated fatty acids are often added 

to diets for fattening ruminants to improve their energy density, promoting changes in 

rumen microbial population and in fermentation processes (Huws et al., 2010; Bayat et 

al., 2018). Chilliard and Ollier (1994) suggested a positive effect of these lipids on the 

digestive process balancing the nutrients absorption and limiting rumen acidosis. 

However, Jenkins (1994) reported that supplementation of ruminant diets with 

unsaturated fatty acids tended to depress microbial activity. On the other hand, Henderson 

(1973) indicated that medium chain fatty acids have an antimicrobial selective effect, 

especially affecting those species involved in carbohydrate degradation (Klevenhusen et 
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al., 2011). In any case, Machmüller (2006) and Klevenhusen et al. (2009) concluded that, 

whatever the type of fatty acids added, the extent of rumen fermentation is reduced.  

Essential oils are natural feed additives characterised by their antimicrobial 

properties against different types of rumen microorganisms (Greathead, 2003). 

Furthermore, Busquet et al. (2005b) and Castillejos et al. (2006) reported that the 

inclusion of essential oils as additives in diets for ruminants might modulate and improve 

the ruminal fermentation. Cinnamaldehyde and eugenol are commonly used plants 

extracts because of their positive effects on the ruminal fermentation (Busquet et al., 

2006) and their capacity to maintain ruminal pH within its physiological limits (Benchaar 

et al., 2007; Tager and Krause, 2010).  

This work studies whether the inclusion of additives of different characteristics in 

concentrate-rich diets for ruminant fattening can reduce microbial fermentation, avoiding 

an excessive decrease in ruminal pH and thus contributing to prevention of acidosis. For 

doing so, an in vitro semicontinuous system adapted to mimic intensive feeding 

conditions was used. 

2. Material and methods  

 

Six experimental treatments, consisting of five additives from different nature 

sources included at doses previously established (Amanzougarene et al., 2019; 

Amanzougarene et al., 2017b; Amanzougarene et al., 2017c) were used supplementing 

barley, chosen as a reference feed commonly included in intensive feeding diets. These 

additives were: grape condensed tannins (GCT; procyanidins from Vitis vinifera, 0.75 

w/w tannins; Agrovin SA, Alcázar de San Juan, Spain) added at 20 mg/g; a commercial 

mixture of medium-chain fatty acids (MFA; 0.50 C12, 0.20 C10, 0.20 C8, and 0.10 C6; 

NUTRIKA, Zulte, Belgium) that was included at 4 mg/g; linoleic acid as a source of 

polyunsaturated fatty acid (LIN, 0.90 g/mL; Alfa Aesar, Thermo Fisher, Karlsruhe, 

Germany), included at 30 mg/g; and eugenol (EUG, 99% purity, 1.06 g/mL) and 

cinnamaldehyde (CIN, 98% purity, 1.05 g/mL), both provided by NOREL Animal 

Nutrition (Barcelona, Spain), included at 120 and 60 mg/g, respectively. Unsupplemented 

barley was also incubated as control (CTR).  
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2.1. Inoculum source and incubation procedures 

Rumen contents from three Limousine crossbred beef male calves (8 months of 

age, around 300 kg live weight), housed in the facilities of the Servicio de Apoyo a la 

Experimentación Animal of the University of Zaragoza, were used as inoculum. Calves 

were provided with a 2 cm i.d. cannula fitted in the dorsal sac of the rumen, and were 

daily fed ad libitum with a concentrate mixture (main proportions of 0.59 barley, 0.15 

maize, 0.17 soybean meal, 0.06 maize gluten and 0.03 mineral-vitamin mixture) and 

straw, at a concentrate:forage ratio of 0.91:0.09 of total feed intake. Rumen contents were 

sampled, filtered through cheesecloth, dispensed in 16 mL aliquots, immediately frozen 

in liquid nitrogen and maintained at -80ºC until utilisation (Prates et al., 2010).  Before 

incubation, rumen inocula were thawed in a water bath at 39ºC.  

Fermentation kinetics were determined in vitro in a semicontinuous system 

(Fondevila and Pérez-Espés, 2008, modified by Prates et al., 2010). In order to simulate 

daily rumen pH fluctuations, two buffered solutions were used: the first one consisted of 

a poorly buffered solution that was made up with 0.006 M bicarbonate ion and used for 

allowing pH to drop from the first 6 h incubation, and the second one was made up with 

0.058 M bicarbonate ion and was used for allowing pH to recover around 6.5 from 8 to 

24 h. Barley grain (Hordeum vulgare, var. Gustav; composition in g/kg dry matter, DM: 

crude protein, CPr, 105, ether extract, EE, 24,  neutral detergent fiber, aNDFom , 173, 

and starch, 672), ground to 1 mm particle size, was used as basal substrate. An 

approximate amount of 800 mg of barley was dispensed into 4 x 4 cm nylon bags (45µm 

pore size) that were sealed and introduced in duplicated bottles. Bottles were filled under 

CO2 flux with 80 mL of incubation solution including 16 mL inoculum (0.20 of total 

volume) and incubated in a water bath at 39ºC for 24 h in three incubation series, each 

corresponding to a different donor animal inoculum.  

Gas production was recorded from 2 to 24 h (every 2 h from 0 to 12 h incubation, 

or every 4 h from 12 to 24 h) with a HD8804 manometer provided with a TP804 pressure 

gauge (DELTA OHM, Caselle di Selvazzano, Italy). Readings were corrected for 

atmospheric pressure and then converted to volume (mL) using a pre-established linear 

regression (n=48, R2 =0.993), and expressed per unit of incubated organic matter (OM). 

Every time of reading, a volume of incubation medium was extracted immediately after 

gas measurement and replaced anaerobically by incubation solution (without microbial 

inoculum) to simulate an approximate liquid turnover rate of 0.08/h. Extracted liquid 
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medium was used for recording pH at every time of reading. Besides, samples of liquid 

medium were taken at 8 and 24 h to determine the concentration of volatile fatty acids 

(VFA; 2 mL on a 0.5 mL solution of 0.5M phosphoric acid with 1 mg 4-methyl-valeric 

acid as internal standard) and at 8 h for determination of microbial biodiversity (6 mL), 

being stored at -20 and -80 ºC, respectively, until analysis. At the end of incubation, 

substrate bags were removed from the bottles, rinsed in distilled water and dried at 60ºC 

for 48 h for determination of dry matter disappearance (DMd). 

 

2.2. Chemical and microbial analysis 

 

The barley substrate was analysed following the procedures of AOAC (2005) for 

DM (method ref. 934.01, organic matter (OM, ref. 942.05), CPr (ref. 976.05) and EE (ref. 

2003.05). Concentration of aNDFom was analysed as described by Mertens (2002) in an 

Ankom 200 Fibre Analyser (Ankom Technology, New York), using α–amylase and 

sodium sulphite, and results are expressed exclusive of residual ashes. Total starch 

content was determined enzymatically from samples ground to 0.5 mm using a 

commercial kit (Total Starch Assay Kit K-TSTA 07/11, Megazyme, Bray, Ireland).  

Frozen samples of incubation medium were thawed and centrifuged at 13,000 g for 

15 min, 4 ºC for their analysis of VFA. The concentration of individual VFA in incubated 

medium and of MFA in the additive were determined by gas chromatography on an 

Agilent 6890 apparatus equipped with a capillary column (HP-FFAP Polyethylene glycol 

TPA, 30 m x 530 µm id). For the microbial diversity analysis, frozen microbial samples 

were freeze-dried, thoroughly mixed and disrupted (Mini-Bead Beater, Biospec Products, 

Bartlesville, OK, USA). The DNA was extracted using the Qiagen QIAmp DNA Stool 

Mini Kit (Qiagen Ltd., West Sussex, UK) following the manufacturer recommendations, 

except that samples were initially heated at 95ºC for 5 min to maximise the lysis of 

bacterial cells. Concentration of extracted DNA was tested in Nanodrop ND-1000 (Nano-

Drop Technologies, Inc., Wilmington, DE, USA). PCR was performed using a 16S rRNA 

bacteria specific primer (cyanine-labelled forward 27F, 5´-AGA GTT TGA TCC TGG 

CTCAG-3´ and unlabelled reverse 1389R, 5´-AGG GGG GGT GTG TAG AAG-3´; 

Hongoh et al., 2003) using a DNAEngine® Gradient Cycler (Bio-Rad, Spain). The PCR 

product was purified using a Purelink PCR purification kit (ref. K3100-01; Invitrogen) 

and diluted to 10 µL. The DNA concentration of each amplified and purified sample was 

obtained by spectrophotometry (Nanodrop® ND-1000 spectrophotometer) to enable a 
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standardised quantity of 50 ng DNA to be used per restriction enzyme digest reaction. 

Digestion of samples was carried out using HhaI, HaeIII and MspI (Promega, Spain), 

following the manufacturer recommendations except for HhaI, where the recommended 

addition of bovine serum albumin was omitted. Restriction digests were purified by 

ethanol precipitation (de la Fuente et al., 2014) in 35 μL sample loading solution buffer 

including a 600 bp size standard (Beckman Coulter Inc., Fullerton) before being applied 

to a 3500xL Genetic Analyzer (Applied Biosystems). Once getting the size and height of 

every peak, 1% of the second highest peak was used as criteria for the lower threshold for 

peaks to detect and eliminate smaller, broader peaks that would not be indicative of single 

true OTUs.   

 

2.3. Calculations and statistical analyses 

 

The TRFLP results were analysed from a matrix generated for each data list 

obtained, and results were presented in the form of relative abundance. The three matrices 

resulting from each series and enzyme were concatenated and analysed with R statistical 

software (https://cran.r-project.org/bin/windows/base/, version 3.5.0). FactoMineR, 

Factoextra, MixOmics, Vegan, MASS, and Ggplot2 packages were used to carry out the 

analysis of hierarchical classification on principal components for obtaining the cluster 

dendrogram.  

Results were statistically analysed by ANOVA, using the Statistix 10 package 

(Analytical Software, 2010), with the incubation series (equivalent to donor animal, n=3) 

as block. Having into account that responses may be affected by the individual handling 

of each bottle for sampling along the incubation, bottles were considered as the 

experimental unit. Differences were considered significant when P<0.05, and a trend for 

significance was considered when 0.05 p <0.10. The Tukey t-test was applied at a p < 

0.05 for multiple mean comparisons among treatments. 

 

3. Results  

 

The mean incubation pH at the start of incubation was 6.43 ± 0.16. This pH 

dropped to values below 6.0 at 4, 6 and 8 h (5.96 ± 0.05, 5.89 ± 0.07 as minimum average 

value, and 5.93 ± 0.10, respectively). Thereafter, pH was allowed to recover, reaching its 

maximum at 20-24 h (6.41). Among treatments (Figure 21), no pH differences were 

https://cran.r-project.org/bin/windows/base/
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recorded in the first 4 h (p > 0.05), but at 6 h it was lowest with CIN and highest with 

GCT (5.80 and 5.99; p < 0.05). Lower pH values were recorded with CIN than CTR at 

12 and 16 h (p < 0.05), than LIN at 6 and 8 h, and than MFA, LIN and EUG at 10, 12, 16, 

and 20 h (P<0.05). From 6 h onwards incubation pH was the highest with GCT, recording 

differences between this treatment and CTR higher than 0.2 pH units.  

 

 

 

Figure 21. Pattern of in vitro incubation pH of barley, alone or supplemented with 

additives of different nature (CTR , GCT ; solid line, MFA , LIN  ; dashed 

line, EUG  , CIN ; dotted line). Upper bars show standard error of means (n=3). 

 

 

From 2 to 12 h the lowest volume of gas produced (Figure 22) was recorded by CIN 

(p < 0.05), whereas at 20 and 24 h differences between GCT, CIN, and EUG were not 

detected (p > 0.05). During the whole incubation period, the two essential oils treatments 

(EUG and CIN) promoted lower volumes than CTR (p < 0.05), whereas the volume of 

gas produced with GCT was lower than CTR after 8 h.  Lower volumes were produced 

when barley was supplemented with MFA and LIN than CTR at 2, 4 and 24 h for MFA, 

and at 2 and 4 h for LIN; however, no differences were recorded between these treatments 

and CTR at any other time of measurement.  
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Figure 22. Pattern of in vitro gas production from barley alone or supplemented with 

additives of different nature (CTR , GCT ; solid line, MFA , LIN  ; dashed 

line, EUG  , CIN ; dotted line). Upper bars show standard error of means (n=3). 

 

Following gas production results, DMd showed that the inclusion of different 

additives reduced barley degradability (p < 0.001). Thus, the proportion of DMd after 24 

h incubation was the highest (p < 0.05, SEM=0.010) with CTR (0.404), followed by CIN, 

MFA, EUG and LIN (0.356, 0.355, 0,352 and 0.350), and it was lowest with GCT (0.299).  

 

The concentration of total VFA was reduced along the incubation time, being higher 

(p < 0.05) at 8 h than 24 h (Table 17). Besides, molar proportions of acetate and 

propionate were higher (p < 0.05) at 8 h, whereas those of butyrate and valerate recorded 

higher values at 24 h (p < 0.05). On average, the highest concentration of total VFA was 

recorded by MFA, and the lowest by CIN (p < 0.05). Propionate proportion was highest 

(p < 0.05) for LIN, and lowest for EUG (p < 0.05), whereas no differences were recorded 

in acetate, butyrate, valerate and BCVFA proportions (p > 0.05). Respect to CTR, both 

treatments EUG and CIN promoted lower proportion of propionate (p < 0.05). Apart for 

butyrate, where the interaction time x treatment resulted significant (p = 0.043), this 

interaction did not reach significance for any other studied parameter (p > 0.05).  
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Table 17. Main effects means of total volatile fatty acids concentration (VFA, mM) and 

molar VFA proportions (mmol/mmol) recorded with the different treatments at 8 and 

24 h of incubation of barley alone or supplemented with additives of different nature. 

  VFA  Acetate Propionate Butyrate Valerate  BCVFA* 

Time      
  

8 24.1a 0.582a 0.228a 0.146b 0.020b 0.025 

24 16.7b 0.489b 0.181b 0.229a 0.075a 0.027 

SEM 0.51 0.0136 0.0063 0.0093 0.0052 0.0011 

Treatment        
CTR     21.3abc 0.523 0.222ab 0.179 0.050 0.027 

GCT     21.2abc 0.542 0.212ab 0.176 0.045 0.025 

MFA      22.1a 0.532 0.225ab 0.168 0.048 0.027 

LIN   21.8ab 0.519 0.234a 0.173 0.047 0.028 

EUG    18.1bc 0.585 0.148c 0.205 0.039 0.023 

CIN  17.7c 0.509 0.185bc 0.222 0.057 0.026 

SEM 0.88 0.0235 0.0110 0.0161 0.0091 0.0019 

Probability   
     

Time  <0.001  <0.001  <0.001  <0.001  <0.001  NS 

Treatment  0.004 NS <0.001  NS NS NS 

Time x Treat. NS NS NS 0.043 NS NS 
a,b,c Means within a column with different superscripts differ (P<0.05). SEM: standard error of means. 

*BCVFA: branched-chain volatile fatty acids (sum of isobutyrate + isovalerate). 

 

 

Bacterial biodiversity after 8 h of incubation (Figure 23) were markedly affected by 

the incubation series (which is equivalent to the donor animal). Apart of this, within each 

incubation series most treatments clustered together with CTR except for EUG and CIN 

(especially in series 2 and 3).  
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Figure 23.  Dendrogram of bacteria diversity from terminal restriction fragment length 

polymorphism (tRFLP) data generated by enzyme digestion (HhaI, MspI, and 

HaeIII) at 8 h in vitro incubation of barley, alone or supplemented with additives of 

different nature (CTR, GCT, MFA, LIN, EUG, CIN). Scale bar shows Euclidean 

distances, “ward method”. 

 

 

4. Discussion   

 

The pattern of incubation pH showed that using a poorly buffered solution from 0 

to 6 h and another solution buffered to pH 6.5 from 8 h onwards allowed to mimic the 

daily in vivo rumen pH fluctuation in high concentrate-fed ruminants, reaching a 

minimum below pH 6.0 from 4 to 8 h incubation, and subsequently increasing to 

maximum values of 6.4 at 20-24 h. Either in the first 8 h or from 8 h onwards, the pH 

values recorded were above 5.6, that is considered as a threshold for subacute acidosis 

(Krause and Oetzel, 2006). However, differences were observed in the response 

depending on the type of additive. Thus, tannins promoted more favourable medium pH 

than the non-supplemented barley, and moderate responses were also observed with 
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medium-chain fatty acids and linoleic acid, confirming the potential effect of these 

additives for modulating rumen fermentation (Hristov et al., 2004; Amanzougarene at al., 

2019; Amanzougarene et al., 2017b). Jones et al. (1994) reported that tannins may inhibit 

the activity of certain species involved in carbohydrate fermentation, such as Butyrivibrio 

fibrisolvens, Streptococcus bovis and Ruminobacter amylophilus, that are considered as 

lactate producers, and may negatively affect rumen pH. Similarly, Vazirigohar et al. 

(2018) suggested that polyunsaturated fatty acids may have some degree of toxicity on 

carbohydrate digesting bacteria, and Kleverhusen et al. (2011) indicated that the response 

to medium-chain fatty acids is based on their effect over a large scope of ruminal microbes 

involved in carbohydrate degradation, thus explaining that fats may depress overall 

microbial activity (Jenkins, 1994). In our experiment, these hypotheses may justify the 

increase of medium pH with GCT, and the moderate positive response with LIN and MFA 

compared to CTR. In contrast, the lowest values of medium pH were observed with both 

essential oils, especially with CIN. According to Cardozo et al. (2005), medium pH may 

influence the dissociated or undissociated status of essential oils molecules affecting the 

rumen fermentation in a different sense, so maintaining a wide range of pH by using 

different buffer solutions may express the trends in microbial fermentation in response to 

CIN and EUG compared to the other treatments. 

The supplementation of barley with the different additives showed a reduction in 

the volume of gas produced respect to non-supplemented barley, recording a lower 

magnitude of fermentation with both essential oils, especially with CIN. The reduction in 

gas production was supported by the decrease in DMd with all additives respect to CTR. 

Tannins have a direct effect on microbial diversity (McAllister et al., 1994; McSweeney 

et al., 2001), but their response on microbial rumen fermentation can be either beneficial 

or detrimental, depending on their nature and dose (Hagerman and Butler, 1991). Krause 

et al. (2005) indicated that tannins can be selectively toxic to ruminal bacteria; however, 

Patra and Saxena (2011) stated that the inclusion of tannins in ruminant diets has 

generally been beneficial to rumen fermentation. Thus, although the limited availability 

of proteins and polysaccharides for rumen microbes may reduce the extent of degradation 

of these nutrients in the rumen (McAllister et al., 1994; Theodoridou et al., 2012; Orlandi 

et al., 2015), Jones and Mangan (1977) indicated that stable and insoluble complexes 

formed by bound condensed tannins can dissociate in the abomasum at pH < 3.5, thus 

increasing nutrient availability in the small intestine for being digested there. In this 
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regard, Owens et al. (1986) estimated that the non-degraded starch that reaches the 

intestines to be digested there provides 0.42 more energy than that digested in the rumen.  

In terms of VFA, the reduction in total concentration along the incubation period, 

being highest at 8 h and lowest at 24 h should be explained by the major extent of 

fermentation occurred in the first part of incubation, but also in part because of the 

dilution of the incubation system. The interaction time x treatment (p = 0.043) observed 

in butyrate proportion indicates the different behavior of additives between 8 and 24 h 

incubation. These results may indicate that the potential effect of the different treatments 

on butyrate-producing bacteria like Butyrivibrio fibrisolvens, Megasphaera elsdenii or 

Clostridium lochheadii at 8 h was different than that at 24 h. On average, no differences 

were detected with GCT respect to control neither on total VFA concentration nor on 

VFA profile, in agreement with results observed by Patra et al. (2006) and Animut et al. 

(2008). However, a moderate response was observed with the inclusion of LIN and MFA 

on VFA concentration and propionate proportion, effect already stated by Doreau et al. 

(1991). This response can be partly explained by the antibacterial effect of these lipids on 

fibrolytic rumen bacteria (Kleverhusen et al., 2011; Vazirigohar et al., 2018), that promote 

a more acetogenic fermentation.  

Results with tannins and fats show an effect of minor magnitude on barley 

fermentation measured as gas production compared to both essential oils tested, which in 

addition to a decrease in gas production also reduced the VFA concentration and the 

proportion of propionate compared to the other treatments. In fact, Cardozo et al. (2006) 

indicated that these two essential oils can modify the microbial fermentation pattern, 

especially that of VFA. The antimicrobial characteristic of eugenol has also been reported 

by Dorman and Deans (2000) and Cobellis et al. (2016a), and Castillejos et al. (2006) 

suggested that the use of this additive in diets for intensively reared beef steers cannot be 

recommended. In our case, the effect with CIN over all fermentation aspects was more 

pronounced than expected, especially on incubation pH. Busquet et al. (2005b) suggested 

that cinnamaldehyde might be an active modulator of rumen microbial activity, and 

Cardozo et al. (2005) added that this essential oil might be used in high-concentrate diets 

for intensive beef production because of its potential effects to modulate rumen 

fermentation and microbiota.    

Results of bacterial biodiversity highlight the strong effect of both EUG and CIN 

on rumen microbiota, confirming the results observed on other parameters (pH, gas 

production, VFA pattern) with both essential oils. In contrast, the inclusion of MFA and 
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LIN, which are considered that depress microbial activity (Jenkins, 1994) especially those 

polyunsaturated, presented a lower effect on bacterial diversity and in vitro microbial 

fermentation of barley. On the other hand, the inclusion of GCT reduced the fermentation 

of barley but did not modify the pattern of VFA and bacterial biodiversity, and also 

promoted a higher fermentation pH than the other treatments. The strong effect of the 

donor animal on microbial diversity observed in this experiment agrees with our results 

in other studies (Amanzougarene et al., unpublished), but also are in agreement with 

findings reported by others (Taxis et al., 2015; Söllinger et al., 2018). In any case, it is 

very important to take into account that experimental factors such as the dose of the 

inclusion, the type of active compound, the nature of the diet or the experimental 

conditions (in vivo vs. in vitro) modulate the comparison of our results with those from 

other studies.  

5. Conclusions   

 

The comparison among additives by means of this semicontinuous in vitro 

incubation system allows for clearly differentiate their effect on rumen fermentation. 

Additives such as grape condensed tannins, linoleic acid and medium-chain fatty acids 

moderately reduce in vitro ruminal fermentation of barley, at the time they positively 

affect ruminal environment by maintaining a higher pH than barley alone, especially 

tannins. In contrast, essential oils, especially cinnamaldehyde, negatively affected 

environmental conditions and notably reduced barley fermentation to an extent that 

cannot be expected to compensate at the small gut.  
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Chapter IX. General discussion  

The intensive fattening of early weaned young ruminants requires good feeding 

management to prevent the onset of digestive disorder processes like acidosis. The in 

vitro evaluation of the ruminal fermentation pattern of different carbohydrate sources 

used as energy sources in intensive feeding systems helps to know the acidification 

potential of each carbohydrate type. Knowing the acidification potential of these nutrients 

is certainly the key factor contributing to acidosis prevention. However, standard in vitro 

conditions, though giving a good approach, are not the best to give an accurate image in 

the evaluation of the ruminal fermentation pattern of carbohydrates, as it is set up in a pH 

range between 6.5 and 6.9, well over the common rumen pH occurring in high concentrate 

diets. Therefore, used in vitro methods should be adapted for mimicking high concentrate 

diets, simulating some of the main physiological conditions such as pH and rate of 

passage. The interaction of these different parameters is the main factor to evaluate each 

carbohydrate type, and to obtain a good insight into rumen fermentation processes. 

As far as we know, the heterogeneous chemical nature of carbohydrate sources in 

terms of proportion and nature of structural and/or non-structural carbohydrates is 

reflected through the rate and magnitude of their fermentation, that differently affect the 

rumen environment leading to important shifts in bacterial diversity. Thus, the 

experiments included in section I were carried out using carbohydrate sources as 

incubation substrates chosen because of their marked differences in chemical structure 

(starch structure, presence or absence of phenolics compounds, protein matrix, soluble or 

insoluble fibre polysaccharides, etc.). 

Based on the results observed in the experiments of the first section and considering 

that barley grain is a major component in diets for intensive feeding systems, this cereal 

grain was chosen as the incubation substrate of reference in the experiments carried out 

in section II. Several feed additives were used to modulate barley fermentation, as 

fermentation enhancers/depressors that selectively affect microbial rumen population that 

are commonly used in diets for fattening ruminants in the last decades. Therefore, a major 

interest in this doctoral thesis was not only to evaluate and to compare the fermentation 

pattern of different types of carbohydrate, incubated alone (Experiment 1 of section I) or 

combined (Experiment 2 of the same section) under conditions simulating high 

concentrate feeding, but also to demonstrate the potential of certain feed additives to 
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modulate the microbial fermentation of readily fermentable carbohydrates (Experiments 

3 to 5 of section II).   

 

Buffering the pH of incubation medium for intensive feeding conditions 

The adjustment of pH of incubation medium within a certain range (5.5-6.5) can be 

an important tool to study the fermentation kinetics of diets destined to intensive feeding 

for fattening ruminants. Thus, contrary to the conventional in vitro batch system where 

the medium pH was maintained between 6.7-6.9 (Goering and van Soest, 1970, Mould et 

al., 2005a), Amanzougarene and Fondevila (2018) demonstrated that the incubation 

medium pH in such system can be maintained at low levels for some time by reducing 

the concentration of bicarbonate ion (HCO3
–) in the incubation solution. The maintenance 

of a low incubation pH might inform us about the buffering capacity of the incubation 

substrate and the fermentative capacity of microbiota, as it has been previously applied 

in our lab (Amanzougarene et al., 2017a; Amanzougarene et al., 2018a), but not about the 

effects of different shifts of the main rumen physiological factors such as the fluctuations 

of rumen pH along the day in vivo. Besides, with the conventional in vitro closed batch 

system we can study the nutritive value of incubation substrates, but we cannot estimate 

the effect of the rumen outflow rate for studying the fermentation pattern of high 

concentrate diets. 

Research based on adjustments of in vitro systems for the study of the fermentation 

pattern under conditions mimicking actual rumen conditions in high concentrate diets is 

scarce. For this reason, in this thesis we hypothesized that fitting of in vitro techniques to 

such conditions can give a real screening about the rumen microbial fermentation of these 

diets. Therefore, the two in vitro fermentation experiments of the first section were carried 

out using a simple semicontinuous incubation system (Fondevila and Pérez-Espés, 2008, 

modified by Prates et al., 2010), adapted for controlling incubation pH by applying the 

procedure proposed by Amanzougarene and Fondevila (2018).  

In Experiment 1 the objectives were to evaluate and to compare the rumen 

fermentation pattern of six carbohydrate sources with varying composition, adapting the 

rumen pH and the liquid outflow rate to conditions of intensive feeding systems. With the 

same incubation conditions, the synergistic and antagonistic effects of three mixtures of 

carbohydrate sources were studied in Experiment 2.  
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The results obtained in both experiments showed that the rumen fermentation 

pattern can be simulated in vitro by changing the buffer concentration, as well as by 

maintaining a high liquid outflow rate (0.08/h). Knowing that the incubation medium pH 

largely depends on the concentration of bicarbonate ion in the incubation solution 

(Amanzougarene and Fondevila, 2018), during the first six or eight hours of incubation a 

fraction of incubation solution was replaced at each time by a poorly buffered solution 

(0.006 M bicarbonate ion), and consequently the medium pH was allowed to abruptly 

decrease. From 8 h incubation onwards, the incubation solution inoculated for 

maintaining dilution rate was high in bicarbonate ion concentration (0.058M), and 

thereafter the medium pH gradually increased to reach its maximum at 20-24 h. With this 

in vitro method, we could reproduce the daily in vivo rumen pH fluctuation in high 

concentrate-fed ruminants, as planned in our hypothesis, showing that the in vitro 

semicontinuous method can be used for the study of microbial fermentation under 

intensive feeding conditions. Thus, Experiment 3 of section II was carried out using the 

same methodology, and again the conditions of this experiment reassured those recorded 

in both Experiments 1 and 2 of section I.  

 

Effect of inoculum source on in vitro fermentation kinetics  

 

According to the results obtained in both experiments carried out in section I, the 

inoculum source seems to have a major influence on in vitro fermentation kinetics of the 

incubation substrates, as already described (Broudiscou et al., 2014; Amanzougarene et 

al., 2018a; Kim et al., 2018). In this aspect, using rumen inoculum sources with different 

characteristics is another tool helping to explain the in vitro extent of adaptation of young 

ruminants abruptly introduced to high carbohydrate diets used in intensive feeding 

systems.  

The results recorded in both Experiments of section I showed that rumen inoculum 

from forage-based diets maintained a much more stable medium pH than concentrate-

based diets, which confirms the potential effect of concentrate inoculum in decreasing the 

incubation pH (Amanzougarene et al., 2018a). Thus, in Experiment 1 as well as in 

Experiment 2, it was observed that during the first six hours of incubation, the medium 

pH remained higher with the forage diet inoculum. The poorly buffering capacity of 

incubation solution during the first six hours of incubation allow to demonstrate the high 
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effect of concentrate inoculum causing such decrease in medium incubation pH (Sauvant 

et al., 2006). 

For both Experiments of section I, results showed a greater extent of gas production 

with concentrate inoculum, results that were reflected in a high concentration of total 

VFA. However, among inocula, at the studied incubation times the proportions of the 

main VFA (acetate, propionate and butyrate) did not reach significance in Experiment 1 

nor in Experiment 2, indicating that the production of these VFA followed the same trend 

whatever the source of inoculum. No effect was also detected on the concentration of 

lactic acid in Experiment 1 (CI; 3.45, FI; 3.31 mM, P>0.05), nor in Experiment 2 (CI; 

4.36, FI; 3.33 mM, P>0.05). These observed concentrations cannot be assumed as a factor 

for the onset of acidosis, because they are inferior to 5 mmol/L (Nagaraja and Titgemeyer, 

2007). The short incubation time (24 h) and the dilution of inoculum (0.20 of total 

incubation solution), enhanced by the periodic replacement of incubation medium by 

artificial saliva (every 2 h from 0 to 12 h, and every 4 h from 12 to 24 h) may partly 

explain the minor magnitude of differences. 

Although in both experiments the effect of inoculum sources resulted significant on 

several parameters studied, no differences were observed in DM disappearance. This 

response was also found by Calsamiglia et al. (2008), who explained it through a limited 

OM degradation by microbial activity with the concentrate inoculum, that may result 

from a limited bacterial growth, where an additional supply of energy does not improve 

growth or activity. Under these circumstances, bacteria reduce growth efficiency and then 

degradation of nutrients becomes limited by either concentration or activity of bacteria. 

Despite of it, the extent of DM disappearance was not expected to be so low (CI; 0.38, 

FI; 0.34 for both experiments), and in fact starch disappearance recorded in Experiment 

1 was also low (CI; 0.48, FI; 0.39). In this regard, comparing in vitro results with other 

from different in vivo studies (Demarquilly and Andrieu, 1988; Cerneau and Michalet-

Doreau, 1991) where the extent of degradation of substrates was estimated around 0.4-

0.8 depending on their richness in fiber and starch, Calsamiglia et al. (2008) concluded 

that these results were due to differences in the microbial ecosystem between the rumen 

in vivo and the in vitro medium.  

Comparing the two incubation environments (concentrate inoculum vs. forage 

inoculum) in carbohydrate fermentation, the use of rumen liquid from animals fed with 

the concentrate diet was more favourable for these incubated substrates than that from 
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animals given the fibrous diet in both experiments (Menke and Steingass 1988; Mould et 

al. 2005b). Thus, the three experiments of section II were carried out using rumen liquid 

from calves given concentrate diets.  

 

Effect of substrates on in vitro fermentation kinetics  

 

The six substrates used in Experiment 1 as carbohydrate sources present clear 

differences in chemical composition, which were reflected through their magnitude of 

fermentation during the whole incubation period. Thus, in this experiment we confirmed 

that among cereal grains, barley ferments at higher extent and promotes a higher drop of 

medium pH than maize and sorghum (Herrera-Saldana et al., 1990; Amanzougarene et 

al., 2018a). Similarly, based on results already found by Amanzougarene et al. (2017a), 

the high drop of pH with CP (Experiment 1) could be expected because of its higher 

proportion of soluble sugars (Hall et al., 1998; Ariza et al., 2001; Barrios-Urdaneta et al., 

2003). In addition, the medium pH also resulted low with WB, which can be attributed to 

its higher proportion of starch and soluble fibre. Moreover, the high drop in medium pH 

with CP and WB (although at a lower extent with the latter; Experiment 1) due to the fast 

fermentation of both substrates was reflected through a higher extent of total VFA 

concentration, especially with CP. In addition, the lactic acid concentration with CP at 6 

h was also the highest (8.68 mmol/l). Therefore, contrary to CP and WB, BP as a 

byproduct is characterised by a low sugar content, and high NDF and NDSF proportions, 

that are reflected in a positive effect on rumen pH (Marounek et al., 1985; Münnich et al., 

2017; Amanzougarene et al., 2017a). In addition, no marked differences were recorded 

in Experiment 1 between the fermentation extent of maize and sugarbeet pulp 

(Amanzougarene et al., 2017a), reasons why we chose both ingredients as components, 

at different levels, of the different mixtures evaluated in Experiment 2. 

Thus, based on results of Experiment 1, in Experiment 2 it was confirmed that the 

mixture MB, including 0.50 of barley, presented a higher acidification capacity that was 

reflected through its higher extent of fermentation. These results were clearly due to the 

faster rate of fermentation of barley starch compared to mixtures including maize and 

sugarbeet pulp (3MP and MP). Therefore, as initially hypothesized, the partial or total 

replacement of barley by maize and/or sugarbeet pulp may modulate the rate and extent 

of ruminal fermentation and thus prevent the onset of acidosis in these animals, especially 

during the transition period.  
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Concerning sorghum, despite its positive effect on microbial fermentation 

(Experiment 1) we preferred barley and maize as ingredients in Experiment 2 because of 

the shortage of this cereal in European cereal markets, and because its cost is expensive 

compared to barley and maize that are considered as major ingredients in ruminants diets 

in Europe. 

As expected, the different screenings of in vitro fermentation pattern of the 

incubation substrates obtained in both Experiments 1 and 2 showed positive responses 

confirming our hypotheses, especially that of the methodology used, in the sense that the 

in vitro semicontinuous system was adapted to study the microbial fermentation in 

intensive feeding conditions. Thus, our results showed that the adaptation of the in vitro 

systems to conditions based on the study objectives is a key to obtain clear and concrete 

results.  

Inclusion of feed additives to mitigate barley fermentation under in vitro conditions 

simulating intensive feed production. 

As cited above, three experiments were carried out in section II, with different 

objectives from one to another. Thus, in the first two experiments the objective was to 

evaluate the potential capacity of certain feed additives at different levels of inclusion in 

terms of reducing the fermentation of barley, chosen as a model type of concentrate feed, 

when incubated in vitro in closed batch cultures. These additives were tannins (quebracho 

and grape as condensed tannins, and chestnut and oak as hydrolysable tannins; 

Experiment 3), and fatty acids and essential oils (a commercial mixture of medium chain 

fatty acids, palmitic acid and linoleic acid as fatty acids, Experiment 4.1; and 

cinnamaldehyde, eugenol and a commercial blend of essential oils, Experiment 4.2). In 

both Experiments, the inoculum used was obtained from calves fed ad libitum with a 

concentrate mixture plus straw, both given ad libitum, and the pH of incubation solution 

was adjusted to about 6.2 to simulate high concentrate feeding conditions. Then, once the 

different additives were evaluated under conventional in vitro batch system conditions, 

another experiment (Experiment 5) was planned using the semicontinuous in vitro 

incubation system to compare the pattern of response of several additives, that were 

chosen based on the results of the first two experiments, on their effects on barley 

fermentation when the in vitro conditions were adjusted to the study of the fermentation 

pattern of high concentrate diets. This experiment was carried out with the same inoculum 
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type than in the first two experiments of this section, adjusting the buffer solution to a pH 

of 5.5 during the first six hours and allowing it to rise to around 6.5 from 8 hour onwards.  

  

Effect of type and level of tannins, fatty acids, and essential oils   

When unsupplemented barley was compared to the inclusion of different additives 

included at different levels in Experiments 3 and 4 no marked differences on incubation 

pH were detected, which means that the adjustment of medium pH around 6.2 was enough 

to prevent further effects on medium pH. In fact, this pH may be considered as slightly 

high to study the barley fermentation in conditions of intensive feeding; however, it is 

important to note that the buffer effect in the incubation solution is exhausted after ≈ 10 

h of incubation, as previously proved (Amanzougarene and Fondevila, 2018). On the 

other hand, the use of inoculum from beef calves fed on a high concentrate diet can 

reassure the incubation conditions in terms of incubation pH values and also in terms of 

rumen microbial population adaptation to fermentation of concentrate diets.  

In the first Experiment of this section, increasing levels of tannin extracts reduced 

in a different extent the magnitude of barley fermentation; thus, the extent of reduction 

was lower with CHT and higher with GCT, that showed a marked effect on microbial 

fermentation pattern. The effect of tannins on rumen fermentation pattern has been widely 

demonstrated, and it has been reported that tannins reduced microbial digestion of 

proteins (Hagerman et al., 1992; McAllister et al., 1994; Frutos et al., 2000) or fiber 

(Chiquette et al., 1988; Rodríguez et al., 2011). Barros et al. (2012) also reported the 

presence of interactions between condensed tannins and starch. This reduction in nutrients 

digestion was reflected in the lower rate and extent of feeds fermentation in the rumen. A 

lower rate and extent of substrate fermentation by the presence of phenolic compounds 

has been recently demonstrated by our group (Amanzougarene et al. 2018a; 

Amanzougarene et al. 2018b). In the present experiment the effect was markedly 

observed on gas production, and the effect on other parameters especially pH and VFA 

concentration was of minor magnitude. However, the classification of tannins into 

condensed and hydrolysable tannins does not imply that their effects are the same within 

each type, and Mueller-Harvey (2006) reported that the effects of tannins are relatively 

independent of their chemical composition. Thus, the observed response in this 

experiment between OHT and CHT, considered as hydrolysable tannins was not the same, 

neither that between GCT and QCT as condensed tannins extracts.  
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In Experiment 4.1, when barley was supplemented with fatty acids, its 

fermentation was reduced, as above. However, the effect of these lipids was of minor 

magnitude. The effect LIN resulted noteworthy compared to MFA and PAL. 

Furthermore, the microbial mass was the studied parameter that undergoes remarkable 

reductions, especially with high level of MFA, and similarly Maczulak et al. (1981) 

reported that the effect of lipids on rumen environment reduces bacterial growth. These 

results may be explained by the antimicrobial effect of dietary fats. However, it should 

be taken into consideration that each type of fatty acids has different characteristics, and 

Palmquist and Jenkins (1980) and Jenkins (1993) stated that the rumen microbial 

fermentation activity is more affected by polyunsaturated than by saturated fatty acids. 

Others (Sinclair et al., 2005; Vazirigohar et al., 2018) have shown reductions in gas 

production profiles when diets are rich in polyunsaturated fatty acids. In the case of 

medium-chain fatty acids, although Hristov et al. (2004) reported that these fats may 

modulate ruminants fermentation and improve nutrients utilisation, Kleverhusen et al. 

(2011) indicated that these fats exert a strong effect on ruminal bacteria involved in 

carbohydrates degradation, and it has been observed that nutrients disappearance is 

reduced after their addition (Soliva et al., 2004; Machmüller, 2006).  

The inclusion of certain essential oils in intensively reared ruminant diets may be 

an important tool to reduce the risk of acidosis. Nevertheless, their effects depend on 

factors such as the extent of their selective antimicrobial properties against different 

rumen microorganisms. Thus, in the second experiment of this section (Experiment 4.2), 

the supplementation of barley with EUG, CIN and CBC showed different responses. 

Microbial fermentation of barley increased at a higher extent with CBC than with EUG 

or CIN. Hence, although the reduction in the rate of barley fermentation when it was 

supplemented with cinnamaldehyde confirms the selective effect of this essential oil over 

some gram-positive bacteria (Cardozo et al., 2006), the high extent of depression was 

unexpected. Thus, the medium pH should be lower for reaching positive effects with 

cinnamaldehyde on rumen bacterial fermentation (Juven et al., 1994; Cardozo et al., 

2005), and therefore in our case the adjustment of buffer solution around of 6.2 might be 

too high, as cited above. In the same way, the observed response with eugenol, especially 

on total volatile fatty acids and microbial mass can be justified by the strong effect of this 

essential oil on ruminal bacteria (Dorman and Deans, 2000). In case of the commercial 

blend of essential oils used herein, its positive effect might be explained by the possible 

existence of synergistic and/or antagonistic effects among the different compounds of this 
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mixture (Burt, 2004). In ageement with what was cited regarding cinnamaldehyde, 

Spanghero et al. (2008) suggested that the effectiveness of the blend of essential oils 

might be higher under acidic medium conditions.  

In any case, based on what was observed in both Experiments 3 and 4, the reduced 

fermentation with the different additives (except with CBC) cannot be considered as a 

negative effect, assuming that, in vivo, substrate proportions that are not digested in the 

rumen will reach lower sites of the gastrointestinal tract where can be digested and 

directly provide nutrients to the animals. On the other hand, none of the additives used in 

these experiments negatively affected the medium pH. 

In the last Experiment from this section, five additives (grape condensed tannins, 

the mixture of mid-chain fatty acids, linoleic acid, eugenol and cinnamaldehyde) were 

chosen based on the results observed in both previous Experiments of this section, and 

they were studied to evaluate and to compare their effects on in vitro barley fermentation 

in intensive feeding ruminant diets, using the semicontinuous in vitro incubation system, 

and thus avoiding some of the methodological problems detected, that might affect the 

magnitude of the response.   

The results of this Experiment were distinguished by the highest pH values recorded 

with GCT from 6 h onwards. Compared to the results obtained with this additive when 

included at its medium level in Experiment 3 (when a conventional in vitro closed batch 

system was used), it can be seen that the simple semicontinuous in vitro incubation system 

adjusted to conditions of high concentrate diets fermentation wasd a useful tool to give a 

clearer vision of the effect of this additive. In the same way, when a conventional system 

was used, CIN and GCT showed the same trend reducing the barley fermentation without 

marked effects on medium pH, but lower values of pH were recorded by CIN when the 

semicontinuous system was used, and both essential oils reduce fermentation respect to 

barley alone. The minor effects of both fatty acids on barley fermentation pattern 

observed in this Experiment support those observed with both additives when the in vitro 

closed batch cultures system was used. Furthermore, the results of bacterial biodiversity 

in this Experiment showed a strong effect of both EUG and CIN on rumen microbiota, 

whereas supplementation of barley with MFA and LIN resulted in a lower effect on 

bacterial diversity and the inclusion of GCT did not modify the pattern of bacterial 

biodiversity.  
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The unexpected strong negative effect of the essential oils tested in this experiment 

could be associated to the antimicrobial characteristics of these additives (Busquet et al., 

2005; Castillejos et al., 2006). Thus, Castillejos et al. (2006) suggested that eugenol 

cannot be recommended in diets for intensive beef production. However, contrary to our 

results, Busquet et al. (2005b) and Cardozo et al. (2005) recommended the use of 

cinnamaldehyde in intensive beef production diets because of its potential effects to 

modulate rumen fermentation. This negative effect may be due to the evolution of the 

buffer capacity of the incubation solution during the whole incubation period, since 

medium pH may influence the dissociated or undissociated status of essential oils 

molecules, affecting rumen fermentation in a different sense (Cardozo et al., 2005). The 

positive effect of GCT and, in a minor extent with LIN and MFA on medium pH may 

confirm the capacity of these additives to inhibit the activity of certain species involved 

in carbohydrate fermentation (McAllister, et al., 1994; Kleverhusen et al., 2011; 

Vazirigohar et al., 2018).  

Finally, based on the results from the Experiments of section II, it can be suggested 

that the in vitro semicontinuous system is an adequate tool to evaluate the effects of the 

different additives on rumen microbial fermentation under intensive feeding conditions 

compared to the closed batch cultures. Through the use of this system it could be clearly 

concluded that grape condensed tannins bind to barley components and reduce its in vitro 

fermentation, at the time they may positively affect ruminal environment by maintaining 

a higher pH than with barley alone. Instead, the fatty acids affected at a minor magnitude 

both barley fermentation and environmental conditions. Thus, both types of additives may 

reduce barley acidification potential, reason why their inclusion in diets for fattening of 

young ruminants could be recommended. In contrast, essential oils, especially 

cinnamaldehyde, promoted an acute drop on pH and also reduce at a high extent barley 

fermentation, which cannot be of interest for using in these types of diets.  
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Chapter X. Conclusions  

Conclusions  

 

Based on the different results of all experiments carried out in this doctoral thesis, the 

following conclusions can be derived:  

 

1. The inoculum source strongly affects both the microbial fermentation pattern of 

incubation substrates and the medium pH. The use of rumen liquid from animals fed with 

a concentrate diet promotes a wider fluctuation of incubation pH and render a higher 

volume of gas production than when it is obtained from animals given a forage diet that 

is not well adapted to fermentation of non-fibrous carbohydrates. However, buffering of 

medium under low pH conditions may overestimate fermentation differences between 

inocula by increasing indirect gas production. 

  

 

2.   The chemical composition of the substrates determines the rate and extent of microbial 

fermentation between the different carbohydrate sources. Sources of highly fermentable 

fibre combined with sugars, such as citrus pulp, or at a lower extent with starch, such as 

wheat bran may create a more acidic environment than cereal grains. This acidification 

capacity is also associated with a high fermentation, as indicated by the in vitro gas 

fermentation pattern.  

 

3.  The inclusion of feed mixtures including by-products such as sugarbeet pulp at 0.50 

of total diet in diets for fattening ruminants may promote positive effects on ruminal 

fermentation due to synergistic interactions between diet components, promoting a more 

stable environment without largely affecting the extent of fermentation.  

 

 4.  The effect of inclusion of the different additives used in this doctoral thesis on in vitro 

microbial fermentation of barley depends on factors related with the experimental 

conditions (type of incubation system, medium pH), the concentration of the active 

compound and the dose of inclusion, that may confound their comparison and impede the 

understanding of their efficiency.  
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5.  Quebracho, grape, chestnut and oak tannins reduced rumen microbial fermentation of 

barley grain, with maximum and minimum responses being recorded with grape and 

chestnut tannins, respectively. Except for chestnut, all the other sources already reached 

their maximum level of response at their first level of inclusion (10 mg/g substrate). 

Qualitatively, the addition of tannins did not largely affect medium pH or other 

environmental parameters, except for an increase in butyrate proportion. 

 

6.  The magnitude and the rate of in vitro barley fermentation were reduced by the use of 

medium-chain fatty acids, palmitic and linoleic. Similarly, a linear depression was 

observed with cinnamaldehyde, and a negative response although of a lower magnitude 

was also observed up to dose (d2) of eugenol. In contrast, the commercial blend CRINA 

Ruminants linearly increased the magnitude and rate of barley fermentation. Both fatty 

acids and essential oils did not negatively affect medium pH throughout the incubation, 

suggesting that both types of additives may modulate barley acidification potential. The 

reduction in the extent of barley fermentation with some of these additives may be 

nutritionally beneficial to beef cattle, since the increased nutrient proportions that reach 

the lower sites of the gastrointestinal tract could be digested there. 

 

7.   Additives such as grape condensed tannins, linoleic acid and medium-chain fatty acids 

moderately reduce in vitro ruminal fermentation of barley, at the time they positively 

affect ruminal environment by maintaining a higher pH than barley alone. In contrast, 

essential oils, especially cinnamaldehyde, negatively affected environmental conditions 

and notably reduced barley fermentation to an extent that cannot be expected to 

compensate at the small gut. 

 

8.  The choice of the adequate methodology is a key to obtain clear and concrete results 

in the study of study the in vitro microbial fermentation of substrates under conditions 

simulating high concentrate feeding. Thus, reducing bicarbonate concentration in the 

incubation solution allows for adjusting medium pH to values of 5.5 to 6.0, as it is highly 

correlated with the in vitro gas production. Besides, to evaluate the in vitro microbial 

fermentation of concentrate substrates, the in vitro semicontinuous system used herein 

allows for the study of fermentation under daily pH pattern and liquid outflow rate that 

simulate rumen conditions of high concentrate diets. 
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Conclusiones  

 

Partiendo de los resultados obtenidos en los distintos experimentos realizados en la 

presente tesis doctoral, se pueden extraer las siguientes conclusiones:  

 

1.   La fuente del inóculo afecta notablemnete tanto el patrón de fermentación microbiana 

de los sustratos de incubación como el pH del medio. El uso de líquido ruminal de 

animales alimentados con una dieta concentrada promueve una fluctuación más amplia 

del pH de incubación y genera un mayor volumen de producción de gas comparado con 

el inóculo procedente de animales alimentados con una dieta a base de forraje, ya que éste 

no está adaptado a la fermentación de carbohidratos no fibrosos. Sin embargo, el sistema 

tampón del medio en condiciones de bajo pH puede sobreestimar las diferencias de 

fermentación entre los inóculos al aumentar la producción indirecta de gas. 

 

2.  La composición química de las diferentes fuentes de carbohidratos empleadas como 

sustratos determina el ritmo y la magnitud de la fermentación microbiana entre. 

Alimentos ricos en fibra altamente fermentable, asociada con azúcares, como la pulpa de 

cítricos o en meor medida con almidón, como el salvado de trigo, pueden crear un 

ambiente más acidótico que los granos de cereales. Esta capacidad de acidificación 

también está asociada con una alta fermentación, como lo indica el patrón de 

fermentación de gas in vitro. 

  

3.  La administración de mezclas incluyendo subproductos tales como la pulpa de 

remolacha al 0,50 de la dieta total en dietas para rumiantes de engorde puede promover 

efectos positivos sobre la fermentación ruminal debido a interacciones sinérgicas entre 

componentes de la dieta, favoreciendo un entorno más estable sin afectar en gran medida 

el grado de fermentación. 

  

4.  El efecto de la inclusión de los diferentes aditivos utilizados en esta tesis doctoral sobre 

la fermentación microbiana de cebada in vitro depende de factores relacionados con las 

condiciones experimentales (tipo de sistema de incubación, pH del medio), la 

concentración del compuesto activo y la dosis de inclusión, pudiendo interferir en su 

comparación e impedir la comprensión de su eficacia.  
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5.   Los taninos de quebracho, uva, castaño y roble redujeron la fermentación microbiana 

ruminal del grano de cebada, registrando respuestas máximas y mínimas con taninos de 

uva y castaño, respectivamente. Excepto para el castaño, el resto de los extractos 

alcanzaron su máximo nivel de respuesta con primer nivel de inclusión valorado (10 mg/g 

de sustrato). Cualitativamente, la adición de taninos no afectó sustancialmente el pH 

promedio u otros parámetros ambientales, excepto un aumento en la proporción de 

butirato.  

 

6.  La magnitud y ritmo de fermentación in vitro de la cebada se redujeron mediante la 

adición de ácidos grasos de cadena media, ácido palmítico y ácido linoleico. Del mismo 

modo, se observó una depresión lineal con el cinamaldehído, y una respuesta negativa, 

aunque de menor magnitud con el eugenol hasta la dosis d2. En contraste, la mezcla 

comercial de aceites esenciales mejoró linealmente la magnitud y la tasa de fermentación 

de la cebada. Los ácidos grasos y los aceites esenciales no afectaron negativamente el pH 

del medio durante la incubación, lo que sugiere que ambos tipos de aditivos pueden 

modular el potencial de acidificación de la cebada. La reducción en la extensión de la 

fermentación de la cebada con algunos de estos aditivos puede tener un efecto 

nutricionalmente beneficioso para el ganado vacuno, ya que la mayor proporción del 

alimento que debería llegar a los segmentos más distales del tracto gastrointestinal podría 

digerirse allí, aportando una mayor proporción de nutrientes a los animales. 

 

7.  Aditivos tales como los taninos condensados de uva, el ácido linoleico y los ácidos 

grasos de cadena media reducen moderadamente la fermentación ruminal in vitro de la 

cebada, en el momento en que afectan positivamente el ambiente ruminal al mantener un 

pH más alto que la cebada sola. Por el contrario, los aceites esenciales, especialmente el 

cinamaldehído, afectaron negativamente las condiciones ambientales y redujeron 

notablemente la fermentación de la cebada hasta alcanzar el punto en que no sea posible 

compensarse en el intestino delgado. 

  

8.  La elección de una metodología adecuada es clave para obtener resultados claros y 

concretos en el estudio de la fermentación microbiana de sustratos in vitro en condiciones 

que simulen una alta inclusión de concentrados. Para ello, la reducción de la 

concentración de bicarbonato en la solución de incubación permite ajustar el pH del 
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medio a valores de 5,5 a 6,0, reduciendo, ya que está altamente correlacionada con la 

producción de gas in vitro. Además, para evaluar la fermentación microbiana de sustratos 

concentrados, el sistema semicontinuo in vitro utilizado en este trabajo permite el estudio 

de la fermentación bajo un patrón diario de pH y una tasa de salida de líquido que simulan 

las condiciones del rumen en las dietas consistentes en alto contenido de concentrado. 
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