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Resumen 
 

La tecnología de impresión inkjet permite eyección controlada de gotas de tinta de volumen 

definido y su posicionamiento preciso en un sustrato. Esta tecnología, entre otras virtudes, 

ofrece una gran flexibilidad para la preparación de estructuras en superficies gracias a su 

carácter digital, siendo además un proceso fácilmente escalable a nivel industrial, 

distinguiéndose en estos aspectos de otras técnicas comúnmente utilizadas como, por ejemplo, 

la fotolitografía. Ya es posible, de hecho, encontrar la tecnología inkjet en aplicaciones de 

fabricación masiva como la impresión de cartelería o de elementos decorativos. Más allá de la 

impresión de texto y trabajos gráficos, la capacidad de depositar una gran variedad de 

materiales de manera digital en forma de recubrimientos homogéneos y patrones en superficies 

ha despertado gran interés para la preparación de superficies y dispositivos funcionales. Pese a 

ello, la penetración del inkjet en entornos industriales para la implementación de este tipo de 

aplicaciones es todavía muy limitada. Entre otras cosas, esto se debe a que los materiales a 

depositar requieren unas propiedades muy exigentes para poder ser eyectados en condiciones 

óptimas por los cabezales de impresión, lo que limita la disponibilidad de fluidos compatibles 

con esta tecnología. Por ello, se hace preciso una adaptación de la viscosidad de los fluidos para 

poder ser impresos sin que ello reduzca su estabilidad a lo largo de su vida útil ni se vea 

penalizada la funcionalidad de los depósitos finales, que han de cumplir unos requerimientos 

específicos, generalmente muy exigentes, para cada aplicación. Por ejemplo, en aplicaciones de 

micro-óptica u óptica integrada suele ser necesario que los materiales finales tengan buena 

transparencia y propiedades ópticas adecuadas como alto índice de refracción o luminiscencia 

según el caso de uso y que estas propiedades no se vean mermadas por el uso o el paso del 

tiempo. 

En este ámbito concreto de las aplicaciones de micro-óptica u óptica integrada, se encuentran 

en la literatura diversas aproximaciones para el desarrollo de tintas inkjet con las que 

implementar guías de luz o microlentes. Una de las más prometedoras consiste en la 

preparación de tintas basadas en materiales híbridos orgánico-inorgánicos que ofrecen una gran 

flexibilidad para funcionalizar el material gracias a su componente orgánica, a la vez que 

presentan gran resistencia mecánica y química debido a la red inorgánica. Típicamente, se lleva 

a cabo la hidrólisis y condensación de un organosilano y se añade un disolvente para ajustar la 

viscosidad de modo que la formulación sea eyectable. Una vez depositada se elimina el 

disolvente y se cura la parte orgánica. La necesidad de eliminar el disolvente añade complejidad 

al proceso. Por otro lado, los procesos de hidrólisis y condensación previos a la impresión del 

fluido suelen penalizar la estabilidad de las tintas. Asimismo, también es frecuente la 

combinación del inkjet con el uso de tecnologías adicionales como la fotolitografía para el 

acondicionamiento de la superficie, previo a la impresión, o procesos térmicos para la posterior 

fijación de la tinta en el sustrato. Si bien se ha demostrado en la literatura el desarrollo de 

depósitos y dispositivos de buena calidad óptica con estos materiales híbridos, la falta de 

estabilidad de las tintas y la complejidad de los procesos envueltos para implementar estos 

dispositivos ópticos limitan la integración de la tecnología inkjet a nivel industrial en estos 

ámbitos de aplicación. 

Buscando superar estas limitaciones, este trabajo se ha centrado en el desarrollo de tintas 

funcionales y la implementación con ellas, mediante impresión por tecnología inkjet, de 

elementos de micro-óptica y óptica integrada. Para ello, más allá de la formulación de tintas 

funcionales, se ha trabajado en la definición y optimización de todo el proceso, abordando desde 
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la preparación de la superficie hasta el proceso de impresión y fijación de la tinta al sustrato. 

Con esto, se ha perseguido conseguir depósitos funcionales mediante un proceso económico y 

viable en un entorno industrial. 

Para ello, las tintas desarrolladas se han basado en precursores híbridos orgánico-inorgánicos 

comerciales y ampliamente empleados en la literatura. De manera distintiva, con el fin de 

mejorar la estabilidad de las tintas y controlar los procesos de impresión y fijación, se ha 

perseguido que las tintas desarrolladas no empleen disolventes y sea posible el curado 

simultáneo de ambas redes (orgánica e inorgánica) únicamente mediante la exposición a luz UV 

tras el proceso de impresión. Para ello se han incorporado en las formulaciones fotogeneradores 

de ácido. Además, se han incluido en las tintas los aditivos necesarios para implementar las 

funcionalidades deseadas y controlar su viscosidad y tensión superficial, lo que permite una 

adecuada eyección y mojado de las superficies, así como unas prestaciones satisfactorias para 

las aplicaciones perseguidas. 

Siguiendo esta directriz, a lo largo de esta tesis se han desarrollado diferentes tintas inkjet, libres 

de disolventes y de curado directo. La primera de ellas, una tinta modelo eyectable sobre la cual 

se han incorporado posteriormente las funcionalidades deseadas. Así, se ha preparado otra tinta 

que resulta en depósitos de un elevado índice de refracción que ha permitido, por un lado, la 

fabricación de guías de luz planares cuando se imprime como un depósito homogéneo y, por 

otro lado, la preparación de microlentes cuando la tinta se imprime como gotas aisladas con 

geometrías controladas. Finalmente, también se han formulado dos tintas luminiscentes que 

permiten la preparación de elementos emisores de luz. 

Además del diseño y formulación de las tintas, se han diseñado y optimizado los procesos que 

intervienen en la preparación de los depósitos con el fin de desarrollar un sistema integral viable 

a nivel industrial. Por un lado, se han desarrollado diferentes protocolos de preparación de 

superficies con el fin de controlar la mojabilidad de estas y conseguir, desde gotas aisladas con 

geometrías controladas y patrones de gotas, hasta líneas continuas o depósitos homogéneos. 

Por otro lado, el propio proceso de impresión también ha sido optimizado, ajustando la 

configuración correspondiente para eyectar cada una de las tintas en las condiciones deseadas. 

Por último, como se ha remarcado anteriormente, el proceso de fijación de la tinta sobre el 

sustrato también ha sido llevado a cabo exclusivamente por activación mediante luz actínica. 

Para poner en valor la funcionalidad de las tintas y los procesos desarrollados, se han diseñado 

y preparado diferentes sistemas demostradores de casos de uso en micro-óptica y óptica 

integrada. Por ejemplo, como se ha mencionado con anterioridad, se ha llevado a cabo la 

impresión de guías de luz planares sobre diferentes sustratos, incluso flexibles, patrones de 

microlentes con geometrías controladas y un sensor óptico de temperatura planar con 

indicadores luminiscentes. 
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Conclusiones 
 

En el marco de esta tesis, se ha desarrollado una plataforma eficiente para la funcionalización 

de superficies, mediante tecnología de impresión inkjet, para aplicaciones en los campos de la 

micro-óptica y la óptica integrada. Esta plataforma incluye tintas funcionales basadas en 

materiales híbridos orgánico-inorgánicos, los procesos necesarios para la preparación de las 

superficies de un modo eficiente, la optimización del proceso de impresión del material y la 

subsiguiente fijación de este en el sustrato. 

En primer lugar, se han preparado formulaciones libres de disolventes, basadas en monómeros 

con grupos epoxi y silano, que contienen un fotogenerador de ácido y los aditivos adecuados 

para ser depositadas por tecnología de impresión inkjet. Gracias al fotogenerador de ácido 

incluido en la formulación de la tinta, la polimerización de ambas redes, orgánica e inorgánica, 

es activada de modo simultáneo mediante su exposición a la luz ultravioleta (UV). Esto permite 

retrasar el proceso de hidrólisis-condensación hasta que la tinta depositada es excitada con luz 

UV. Gracias a esto y a la ausencia de disolventes en la formulación, no son necesarias etapas 

adicionales de curado o evaporación, simplificando enormemente el proceso de fabricación. 

Además, la eliminación de la etapa de hidrólisis y condensación previa a la impresión confiere 

mayor estabilidad a las tintas a lo largo del tiempo, haciéndolas adecuadas para el uso en 

aplicaciones industriales. 

Mediante el uso de la formulación adecuada, este proceso de impresión y curado ha permitido 

la preparación de películas sólidas con buena adhesión y transparencia, consiguiendo guías de 

luz planares con alto índice de refracción y bajas pérdidas. 

Haciendo uso de la misma tinta formulada, se ha desarrollado un protocolo flexible y robusto 

para la preparación de superficies que permite crear microlentes con propiedades ópticas a la 

carta. Para controlar las propiedades geométricas de las microlentes y, por tanto, sus 

propiedades ópticas, este tratamiento consta de dos etapas. En la primera, mediante CCVD (de 

sus siglas en inglés Combustion Chemical Vapour Deposition), se deposita una capa de SiO2 

nanoestructurado. Posteriormente, mediante un proceso CVD (de sus siglas en inglés Chemical 

Vapour Deposition), esta superficie es funcionalizada con una capa de fluorosilano. En esta 

superficie así modificada, mediante el control del volumen de las gotas depositadas, se han 

preparado microlentes con geometrías a la carta, más allá incluso de la hemiesfera. 

Posteriormente se han incluido también moléculas luminiscentes en las formulaciones 

desarrolladas sin que se viese penalizada su mojabilidad ni su capacidad de ser impresas por 

tecnología inkjet. Esto ha permitido la preparación de depósitos luminiscentes a través del 

mismo proceso de impresión por inkjet y el subsiguiente curado en un solo paso mediante 

excitación por luz UV. Estos depósitos han derivado en superficies con patrones luminiscentes 

para su uso en dispositivos ópticos, con buenas propiedades mecánicas, así como buena 

adhesión. 

Para validar estas tintas luminiscentes en aplicaciones reales que demuestren su rendimiento, 

se ha preparado un sensor óptico de temperatura. Para ello se han combinado depósitos de 

tintas luminiscentes con otro recubrimiento de polímero cristal líquido, que responde 

modificando sus propiedades ópticas al cambiar la temperatura, sobre una guía de onda planar. 

En resumen, se han desarrollado formulaciones funcionales adecuadas para su impresión por 

tecnología inkjet, así como los procesos de preparación de las superficies para la 
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implementación efectiva en ellas de diferentes elementos ópticos, todo ello con capacidad de 

ser escalado a producción industrial. Además de esto, se han preparado diferentes 

demostradores para validar el uso de las tintas formuladas en aplicaciones reales. Las tintas 

desarrolladas se han impreso sobre diversos sustratos como superficies planas de calidad óptica 

o sustratos convencionales usados normalmente en la industria, tanto flexibles como rígidos, 

demostrando la versatilidad de estas tintas para poder ser adaptadas a diferentes superficies.  

Más allá de las tintas y elementos concretos implementados, la presente tesis ofrece nuevas vías 

para el desarrollo de tintas funcionales y procesos de preparación de superficies que puedan 

permitir la impresión digital de elementos funcionales con buenas prestaciones a través de una 

metodología sencilla e industrialmente viable. 
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1. Introduction to inkjet printing 
 

There currently are many different technologies used for the deposition of materials onto 

surfaces in order to generate films or patterns. For example, lithographic techniques such as 

photolithography are conventionally used for this purpose. These technologies make use of 

masks or molds to lead to well-defined patterns with submicron resolution, high-throughput and 

compatibility with wide range of materials. Nonetheless, these techniques rely on expensive and 

time-consuming processes and imply laborious steps. In contrast with them, a deposition 

process like inkjet printing has lately gained relevance thanks to its simplicity, its precision and 

the high material consumption efficiency that it offers. Despite it is difficult to achieve deposits 

with precision below micrometric order and materials require a specific adaptation of the fluid 

for being properly jetted, inkjet has become a valuable technology. Especially when it comes to 

patterning, it is particularly useful thanks to its capability to digitally control the deposition in 

comparison, for example, with mask photolithography, being possible to change the pattern 

from one sample to the next one simply by changing a digital file without the need of masks or 

molds [1]. 

As a general description, inkjet is a non-contact deposition technique that directly jets the fluid 

from a printhead to the substrate, which is placed under it. Different parts can be distinguished 

in an inkjet printing system, as seen in Figure 1a: typically, it counts with a printhead having 

multiple nozzles at the bottom, a small reservoir to store the ink to be printed, fluid connections 

to ensure that the printhead is fed with ink from an external larger reservoir and an electronic 

controller to command the jetting process. The system is digitally controlled by a computer, 

which sends an electrical signal to dictate the printhead when the ink should be jetted through 

each individual nozzle. When this occurs, a pressure change is induced inside the cavity and 

provoke the ejection of a small quantity of fluid in the order of picolitres trough the nozzle (in a 

subsequent section, the different activation methods will be detailed). In ideal conditions, this 

jetted fluid ends up in a spherically shaped droplet before it reaches the substrate, which is 

typically located at 1 mm distance below the printhead. Once these micrometric droplets reach 

the surface, they spread and relax to its final spherical cap shape. To provide an insight of the 

magnitudes and dimensions of these systems, Figure 1b shows a conventional industrial inkjet 

printhead with an active width of few centimeters that counts with more than 1000 nozzles. 

 

Figure 1. a) Schematic general representation of inkjet printing, b) conventional inkjet 

industrial printhead. 
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To understand the increasingly presence of inkjet technology for the preparation of deposits and 

patterns, these are some of the most significant benefits compared to other deposition 

technologies: 

- Digital patterns. With no need of masks or complex multi-steps processes, inkjet allows the 

deposition of homogeneous films and complex patterns only with the use of adequate digital 

printing files. Each pixel of the digital file is correlated with a drop; hence, the designed 

pattern is directly printed on the surface. 

- Flexibility. The control of each single nozzle of the printhead, together with the digitalization 

of the patterns to print, enable the preparation of completely different designs using the 

same process. Each printed pattern may be different from the preceding one and equally 

controlled. Moreover, one single electronic system is capable to control different printheads 

simultaneously, permitting the deposition of different materials in the same process, thus, 

making multimaterial patterning possible. 

- Precision. The reduced size and the constant volume of the ejected drops and their precise 

positioning enable the printing of patterns and coatings with resolution in the order of tens 

of microns. 

- Control. Multiple variables such as temperature of the ink during the deposition and the 

pressure changes in the cavity close to each nozzle can be regulated. Thanks to this, the 

jetting process can be controlled and optimized for multiple fluids and led to spherical 

droplets, avoiding the appearance of artifacts that may affect the final deposit. 

- Material consumption. Ink is only deposited where the pattern or area requires and, on the 

other hand, the volume of the droplets is very low. This makes that very few volume of ink is 

deposited even when printing big areas and nearly zero waste of material is produced. 

Concerning the use of the technology, inkjet is already present in our daily life. The most 

common well-known application is domestic printers as many of the printers used at home for 

document printing with ink use this technology. Beyond this, there already exist many examples 

of the use of inkjet printing in industrial and research applications. In the industry, the biggest 

sector where inkjet is already well settled down is graphics. Labeling, advertising or photography 

are some examples and efforts are now being dedicated to improve the quality of the images 

and provide high-throughput process for wide format sizes (Figure 2a). Another industry sector 

where inkjet is already well exploited too is packaging. Thanks to the possibility of printing 

different images and codes from one unit to another, being a non-contact technique and the 

low quality requirements of these patterns, inkjet technology is highly convenient for this 

application. Bar codes, Quick Response (QR) matrixes, expiration dates and other traceability 

indicators are usually printed with inkjet and can be seen in packaging of consumer products like 

soda cans, tetra bricks or food packaging. 

There are other industrial sectors like home appliances (Figure 2b) and architecture where inkjet 

is already present and gaining relevance too despite its use is not yet as extended as these 

previous cases due to the high-performance requirements. Increasingly, consumers request for 

new, cheaper and personalized aesthetics that conventional technologies are not capable to 

meet. Even more, cost production can be reduced thanks to inkjet. On one side, the process 

makes an efficient use of materials, which reduces the consumable costs. On the other hand, 

expensive materials used in architecture and interiors design can be replaced by cheaper 

materials with highly realistic patterns printed on them, imitating the natural appearances, such 

as marble, wood or ceramic aesthetics. Additional advantages are given by the reduction of 

complexity in the production and, hence, logistics. Digitalization of decoration process allows 
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the manufacture of unitary lot size, which implies a more effective management of the 

production and stocks. For example, for the production of products that share a common 

construction but different aesthetics, like some home appliances, they can be decorated on 

demand instead of producing big batches at once and store them until they are ordered; 

drastically reducing the inventory in warehouses. 

 

Figure 2. Example of commercial inkjet industrial use cases: a) wide format 

advertisement (Reproduced under the terms of Creative Commons CC0 license) and b) 

decoration of home appliances. 

All these introduced industrial applications are oriented to decoration and, indeed, this sector 

actually covers a relevant portion of the overall industrial inkjet business [2, 3]. For this reason, 

the large majority of commercially available inks are decorative color inks of different natures 

that can be used for a wide range of substrates and printers. 

Despite other functionalities besides decoration can be found in the industry, they find 

significant limitations to burst into industrial production in the same way as decoration does. On 

one side, inkjet technology requires high demanding fluid properties to allow the ink to be 

jetted; therefore, an adequate adaptation of the formulations is needed beforehand. In 

addition, the deposited inks should show a robust performance of the functionality over time, 

withstanding specific requirements for each use case. For instance, high conductivity is 

demanded for conductive inks used in micro-electro-mechanical systems (MEMS) and solar cells 

applications, good transparency and controlled optical properties are sought in microlenses and 

high emission efficiency is necessary in luminescent inks used in displays. Nevertheless, the 

versatility of inkjet to deposit multiple materials with high accuracy and precision over different 

substrates (even flexible ones), printing fine patterns over large areas and its compatibility with 

methodologies such as roll to roll, makes the efforts dedicated to the development of these 

applications worth [4-9]. Here it is briefly described some of the applications where inkjet is 

bringing additional value compared with existing deposition and production methods and where 

more presence in the industry can be foreseen: 

- Organic Light Emitting Devices (OLEDs). These devices consist of multilayer structures that 

convert electricity in light. In Figure 3, a conventional layout of these systems is shown. For 

an adequate performance, they require highly efficient emission, brightness and uniformity 

in the different colors as well as quick response and clear contrast between on and off states. 

The fabrication of these devices foresees a miniaturization and flexibility of the technology 

to give response to trends and needs of consumer electronics, where small platforms and 

flexible screens are being demanded. Thanks to its accuracy, patterning capability, efficient 
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material management and the possibility to deposit inks with emissive or conductive material 

(such as PEDOT), inkjet printing can give response to these needs. Hence, the direct 

deposition of functional materials for this multilayer structure (Figure 3) is being developed 

for the preparation of OLEDs like displays in a more flexible and industrially scalable fashion 

[10-16]. 

 

Figure 3. Schematic representation of the multilayer structure of a conventional OLED. 

 

- Printed electronics. Due to the growth of electronics market and its goal to miniaturize and 

make flexible devices, inkjet has become a promising technology for the future production 

of electronics. The current technologies used for the production of electronic circuits 

provides low cost processes with good performance and high definition patterns and, hence, 

inkjet technology is not competitive enough to replace current processes. Nonetheless, it 

offers additional features that make it potentially interesting for certain applications. Its 

digital nature makes it compatible with other production techniques that are usually required 

too for the incorporation of microelectronic devices in the circuits such as LEDs, transistors, 

RFID antennas or memories. In order to make inkjet printing a successful fabrication 

technology in this field, printed circuits should show good performance, for example, stable 

and controlled conductivity is required. This objective is actually highly sought and, for 

instance, silver nanowires, carbon nanotubes or graphene have already been used to provide 

efficient conductive functionality to inkjet printed elements (Figure 4) [17-20]. 

 

 
Figure 4. Flexible plastic substrate with printed conductive tracks based on graphene 

oxide and reduced graphene oxide inkjet inks. Adapted with permission from 

reference [20]. Copyright (2010) WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim. 

 

- Organic Photovoltaics. Photovoltaic energy is established worldwide as green energy source 

but still behind hydro and wind energy, among other reasons, because of its low efficiency. 

In this way, highly efficient crystalline silicon solar cells are normally used in current 

photovoltaic technologies but the cost of the material and the complicated production 
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process is still a limitation. In addition, as in the case of OLEDs, solar cells comprise a complex 

multilayer structure (Figure 5) where the control of the morphology and the interface 

between the layers is crucial for a proper performance. In this direction, inkjet may provide 

an accurate deposition of multiple materials in the same device and even print the 

conductive material to interconnect the layers, leading to a large-scale and low-cost 

production process compatible with roll to roll methodologies [21-24]. Nonetheless, the 

achieved efficiencies need to be still improved. 

 

Figure 5. Schematic representation of the multilayer structure of conventional 

photovoltaic (PV) panels. 

 

- Sensors. Sensors can be identified as devices that respond to an external stimulus, giving back 

feedback (as an electrical signal or an optical indicator for instance) to warn about it or using 

it as triggering systems (Figure 6). For example, in the field of optical sensors, chiral photonic 

structures based on liquid crystals have been explored as materials for sensing devices [25-

27]. A change in the molecular order, produced by an external stimulus, may modify the pitch 

of the chiral periodic structures and, therefore the reflection wavelength, becoming a sensor 

for this stimulus. Inkjet printing has already been used to generate this type of liquid 

crystalline cholesteric photonic structures and, with an appropriate design, they respond 

against external stimuli like pressure, temperature, vapour or humidity [28-30]. 

 

 
Figure 6. Example of humidity optical sensor made of water saturated cholesteric liquid 

crystal polymer salt film on polyimide coated glass in water (left red film) and after 3 

min at room temperature (right green film). Adapted with permission from reference 

[31]. Copyright (2012) American Chemical Society. 

 

- Micro-optics. With the purpose of miniaturizing optical devices such as mirrors or lenses, 

micro-optics has grown as a discipline of optics with highly demanding requirements from 

both the materials and process points of view. On one side, optical properties of the materials 
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should provide the desired functionality independently of the size of the systems. On the 

other hand, its performance becomes a challenge as long as the same requirements should 

be fulfilled but in smaller size. In addition, accuracy and precision in the deposition of 

materials is more difficult but inkjet is presented as a successful technology to overcome 

these issues as it is shown in many studies where this technology is used for the deposition 

of microlenses [32, 33] (Figure 7). Furthermore, the integration of micro-optical systems with 

other systems as lasers, sensors or LEDs, lead to a wide range of opportunities for the 

development of optical microsystem applications. 

 

Figure 7. SEM image of inkjet printed microlenses based on hybrid organic-inorganic 

polymer inks deposited on platforms that help to fix position: a) full printed pattern 

and b) detail of few microlenses showing spherical profiles (scale bars: 100 µm). 

Adapted with permission from reference [34]. Copyright (2015) Optical Society of 

America. 

 

- Integrated optics. Waveguides, able to guide light between different points, are key elements 

in optical-integrated circuits. For example, waveguides in planar integrated sensors enable 

the light to travel from the source to the detectors and sensor materials. In all these cases, 

planar waveguides need to present good optical properties for a suitable transmission of the 

light, high refractive index materials to ensure guiding and a reliable high-throughput 

fabrication process. Existing examples can be found in literature where combination of 

processing technologies, together with inkjet printing, are already used to prepare 

waveguiding structures [35-39] (Figure 8). 

 

 
Figure 8. Cross section of an inkjet printed planar waveguide under optical 

measurement setup focused with LED spot. Adapted with permission from reference 

[36]. Copyright (2016) Elsevier.  

 

Given the scope of this thesis, a more in-depth review of the use of inkjet in micro-optics and 

integrated optics fields will be done later in a subsequent section. 
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2. Inkjet printing technology 
 

Inkjet technology can be classified attending to multiple criteria like the nature of materials that 

are deposited (e.g. inorganic or polymeric) or the kind of applications that are being 

implemented (e.g. functional or decorative). Another widely used and representative 

classification is the one that takes into account the physics of the printheads to generate the ink 

droplets and direct them to the substrate. Attending to this criterion, the following main 

technologies to eject the fluid through the nozzles can be defined: 

- Continuous inkjet (CIJ): in this kind of printheads, the ink, stored in a reservoir inside the 

printhead, is pumped through the nozzles generating a stream of fluid. Consecutively, this 

stream of fluid derives into a continuous column of droplets, a phenomenon driven by the 

Rayleigh instability. Right after the nozzle, a small electrostatic charge is acquired by each 

drop while they are formed. Deflector plates at the exit of the nozzles determine afterwards 

which drops finally fall into the substrate and which ones are collected in a deposit and return 

back to the printhead to be reused (Figure 9). Thanks to the continuous firing of drops, the 

frequencies that are reached are considerable high, up to 175 kHz [40] and normally in the 

20 – 60 kHz range [41]. These values make this technology especially useful for applications 

such as coding and marking for packaging, where high speed is needed, dielectric fluids are 

recommended and high definition is not demanded (conventionally, drop sizes are in the 

order of 100 µm of diameter [41]). 

 
Figure 9. Schematic view of Continuous Inkjet (CIJ) printhead. 

 

- Drop On Demand (DOD): in this method, the ink, which is also stored in a reservoir inside the 

printhead, is only jetted through the nozzles when necessary. The nozzles generate single 

drops only when required by the designed pattern, thus it is, material wise, a more efficient 

way of jetting the ink. The drops are formed by pressure pulses independently sent to each 

nozzle but the way these pulses are generated can substantially vary, as it is described below. 

This technology is conventionally used for printing patterns with a decorative or functional 

purpose as it offers better quality due to smaller drop sizes, similar to the inner diameter of 

the nozzle (around 20 – 50 µm) and higher precision than CIJ. On the other hand, it needs to 

operate at lower frequencies (1 – 20 kHz [41]) and, as it could be seen later, the activation 

signal should be highly controlled as acoustics and resonances in the ink chamber can affect 

the drop jetting process. The two main methods to generate pressure pulses are the 

following: 
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o Thermal. Inside the printhead chamber that contains the ink to be jetted, close to the 

nozzle, a resistive element can be found. This element is suddenly heated above the 

boiling temperature of the ink, causing the evaporation of part of the ink and thus, a 

bubble is generated. Once this small vapour volume collapses, it creates the pressure 

pulse needed to push the ink away and jet it through the nozzle (Figure 10). Due to this 

phenomenon, a very precise control of fluid properties is required, limiting the number of 

inks that can be used. Nonetheless, the small size of the nozzles, the compact format of 

the printheads and the reduced cost of this technology, have made this kind of printheads 

highly suitable for domestic printers [41]. 

 
Figure 10. Schematic view of Thermal Drop On Demand Inkjet printhead. 

 

o Piezoelectric. The walls close to the nozzle are in contact with a piezoelectric actuator that 

suddenly deforms the cavity when an electric pulse is applied to the piezoelectric element. 

The pressure caused by this quick deformation results into the jetting of the ink through 

the nozzle (Figure 11). The size of the ejected drops is normally in the order of tens of 

micrometers (the order of magnitude of the diameter of the nozzle) and the velocity of 

the drops reaches up to few meters per second. Despite the higher cost of production (in 

comparison with thermal DOD printheads), its robustness and the capability of being used 

with a wider range of fluids, make this technology more frequently used than thermal 

DOD. 

 

 
Figure 11. Schematic view of Piezoelectric Drop on Demand Inkjet Printhead. 

 

As it can be seen, each technology is suitable for a certain kind of fluids and applications 

according to their properties. Because of this, the requirements of the application together with 

the material properties will define the most suitable type of printhead for each specific case. As 
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introduced before, CIJ is suitable for coding and use cases where speed and cost are prioritized 

against quality and precision while thermal DOD is widely used in desktop printers, as they are 

miniaturized enough and cost effective. Finally, due to the capability of control the pulse 

generation and its versatility to be used with a high variety of inks, piezoelectric DOD is the 

preferred one in many of the industrial and research printers. 

 

3. Drop formation 
 

There exists multiple piezoelectric DOD printhead sizes, from a single nozzle printhead up to 

more than a thousand as seen in Figure 1b. For industrial scenarios, printheads with large 

number of nozzles are convenient but the working principle behind the technology of the 

printhead is the same independently of the number of nozzles. In order to facilitate the 

understanding of the working principle, a single nozzle printhead (as represented in Figure 12a) 

is used to introduce the physics of the formation of a drop. This system can be schematically 

described as a feeding tube connected to a cavity with cylindrical geometry filled of ink and a 

tubular excitable piezoelectric element with its corresponding electrodes surrounding the wall 

of this cavity. As an example of activation signal reaching the mentioned piezoelectric element, 

a simple trapezoidal voltage excitation, as represented in Figure 12b is chosen. This trapezoidal 

signal consists of three differentiated phases: increasing, maintenance and decreasing of the 

voltage signal; each one with their corresponding duration (trise, tdwell and tfall respectively). 

 

Figure 12. a) Schematic representation of piezoelectric printhead and b) example of a 

trapezoidal signal sent to the piezoelectric walls of the printhead. 

Once this trapezoidal signal is sent to the piezoelectric actuator, it is deformed accordingly to 

generate the pressure pulses needed for the drop formation. In Figure 13, a schematic 

representation of the pressure pulse propagation is represented to conduct the explanation of 

the involved events. The rise stage of the signal generates a quick expansion of the cavity, 

producing a pressure decrease in the fluid. In ideal conditions, this pressure change can be 

ideally divided in two waves, each one with half amplitude of the original signal and propagating 

in opposite directions to both ends of the cavity. As detailed before, one of the two ends of the 

cavity is connected to an ink supply tube of larger diameter so it can be modelled as an open-

end. Because of this, the negative signal arriving to this boundary is reflected with a pi phase 

shift changing to a positive pressure pulse with same amplitude but travelling in opposite 

direction to the end of the nozzle. This other end of the cavity, with a very small nozzle aperture 

in comparison with the cavity diameter, can be modelled as a close-end. Therefore, the initial 

negative signal arriving to this side will be reflected with no change in the phase, being negative 

and with the same amplitude [42, 43]. During tdwell there is no additional disturbance in the 
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system and the above-mentioned propagation of the signal takes place. When voltage starts the 

decreasing phase, the signal introduces in the cavity the opposite reaction of the initial rising 

one. This voltage drop causes a fast decrease of the diameter of the cylinder, generating a 

positive pressure disruption. In an analogous way than before, half positive pressure will move 

upwards and, if properly synchronized, it could compensate the existing half negative pressure 

that was going in that direction, while the other half positive pressure going downwards to the 

exit of the nozzle could add the previous half positive pressure moving in that direction too. 

Hence, every time that this positive pressure arrives to the open cavity of the nozzle, if kinetic 

energy is enough to overcome the surface tension that holds the fluid inside the cavity, the ink 

will be jetted and, eventually, a drop could be formed. 

 

Figure 13. Generation, propagation and reflection of the cavity pressure perturbation by 

a trapezoidal voltage excitation.  

As it can be seen, pulse characteristics have a strong impact on the jettability of the fluid and, 

hence, on the proper formation of drops [42, 44, 45]. For example, in order to reach the 

necessary pulse frequencies, trise and tfall should just last a few microseconds. On the other hand, 

tdwell influences this process too. As described before, during this phase, the generated pulses at 

trise are propagating along the cavity so its optimal value will depend on the length of the cavity 

in order to coordinate the cancellation and overlapping of the negative and positive pressures. 

In particular, the starting of the fluid compression at tfall phase should take place at the same 

time that the reflected waves (originated by the initial fluid expansion) pass by the mid-point of 

the cavity, where the piezoelectric element is located. Thus, only a double positive amplitude 

pressure travels towards the nozzle to reach the exit.  

In real conditions, there are additional factors that may affect the generation and propagation 

of the pulses and the fluid behavior such as damping of viscosity, non-ideal reflection or energy 

losses for example. In addition, this signal is not usually a single pulse but a series of consecutive 

pulses where residual pressure waves can generate disturbances in the subsequent ones. 

Therefore, the periodicity of these pulses can affect the performance too and the frequency of 

the signal is a relevant factor in the jetting process that should be controlled [42, 43, 46-48]. Due 

to this confluence of phenomena in the generation and propagation of the pulses, the voltage 

signal should be carefully designed according to the printhead characteristics and the fluids to 

be jetted and becomes a crucial contribution from the know-how of the printhead 

manufacturers. 

As important as the acoustics of the printhead and the control of the piezoelectric system, fluid 

properties directly influence the good performance of the printing process too. Fluid 
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characteristics like surface energy, viscosity and density will define the drop generation process. 

These parameters merge into various non-dimensional numbers that allow to create a 

theoretical framework to understand the drop formation process. The principal ones are the 

Reynolds number (Re), which correlates inertial forces with viscosity and the Weber number 

(We), which do likewise with kinetic energy and surface energy when the fluid is being jetted. 

Equation 1 and Equation 2 provide the definition of Re and We respectively. 

𝑅𝑒 =
𝑣𝜌𝑎

𝜂
     (1) 

𝑊𝑒 =
𝑣2𝜌𝑎

𝛾
     (2) 

Where v is the velocity of the jetted drop, η is the viscosity, ϒ is the surface tension, ρ is the 

density of the fluid and a is the diameter of the nozzle. 

For a proper drop formation, once the jet is formed, it thins before breaking up and form a drop. 

This thinning phase will directly depend on the surface tension and will be influenced by the 

viscosity of the fluid and the inertial forces. For Newtonian fluids with high viscosity, for instance, 

surface tension forces squeezing the fluid need to overcome viscosity to thin the jet. On the 

other hand, for fluids with low viscosity, inertial forces of the accelerating fluid will be the ones 

opposing the jet thinning [49, 50]. 

Apart from We and Re, Wolfgang von Ohnesorge defined an additional non-dimensional number 

(Equation 3) to set the fluid regimes that could be identified once the fluid is jetted. This 

equation does not involve the velocity of the drop and so only depends on intrinsic physical 

properties of the ink and the inner diameter of the nozzle [49, 51]. 

𝑂ℎ =
√𝑊𝑒

𝑅𝑒
=

𝜂

√𝛾𝜌𝑎
     (3) 

According to existing literature, Oh numbers in the range of 0.1 and 1 typically lead to stable 

drop formation [52] and even a narrower range between 0.07 and 0.25 is given by other groups 

[53]. In these cases, in the drop formation process, the jetted fluid is supposed to thin and break, 

generating a ligament that retracts and return back inside the cavity while the expelled fluid 

achieves a spherical drop shape before reaching the substrate (Figure 14a). Beyond these limits, 

high values of Oh, which means that viscous forces govern the thinning of the jet, can impede 

the ink to leave through the nozzle. On the other hand, too low Oh numbers indicate that the 

inertial forces are the ones that regulate the jetting. In this case, with very low viscosity, it can 

even result in a stream of fluid leaving the nozzle, leading to a drop surrounded of multiple 

smaller drops called satellites (Figure 14b) [49]. If these satellites are still present when the drop 

reaches the substrate, it can cause non-homogeneous circular drops after deposition, affecting 

the quality and accuracy of the printed deposits. 
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Figure 14. Sequence of photographs taken by a home-built dropwatcher, showing the 

sequence of the formation of drops of inks developed along this thesis a) in optimal 

situation, achieving spherical drop shape and b) with the formation of satellites 

(Advanced Manufacturing Laboratory – ICMA). 

Despite speed is not considered in Oh number, kinetic energy, as previously indicated, should 

be considered for a proper jetting process. Researches carried out in this respect have defined 

limits for We and Re numbers to predict its effect on jettability. For instance, We numbers above 

4 are supposed to have enough kinetic energy to exceed the surface tension and allow the 

jettability of the fluid [41, 54]. On the other side, Equation 4 defines a regime in which the energy 

that pushes the fluid is low enough to avoid the fluid splash and spread all over the surface when 

the drop reaches it [41, 55, 56]. 

(𝑊𝑒)1 2⁄ (𝑅𝑒)1 4⁄ < 50     (4) 

Combining these thresholds into a common graphic, the printability of a fluid can be determined 

by the combination of certain values of Re, We and Oh, as represented in Figure 15. 

 

Figure 15. Printability limits of inkjet fluids. 
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The previous description is standardly defined for Newtonian fluids but, normally, the addition 

of high molecular weight polymers in the formulations to control the rheological properties of 

the ink and other additives to functionalize them can cause that these fluids do not always 

behave as purely Newtonian. Nonetheless, small concentration of polymers can positively 

contribute to reduce the risk of creating satellites by helping in the retraction of the tail after jet 

breaking thanks to the induced viscoelasticity [41]. This kind of phenomenon can lead to 

situations where, despite the Oh number is out from a defined range, the fluid leads to well-

defined droplets. 

As it can be foreseen, complex formulations are needed to fulfil the demanding requirements 

that certain application requires for a proper performance. This makes the modelling of the 

physics of the jetting of the ink highly difficult and, hence, additional models have been 

proposed trying to give response to the need of predict when a fluid is printable or not [49, 57]. 

Anyhow, experimental printability and direct observation of fluid jetting is the ultimate test to 

validate and ensure the proper jettability of a determined fluid with independency from 

theoretical models. 

To facilitate proper drop formation, printheads typically count with thermoresistive control 

systems that enables the heating of the fluid. This feature is highly beneficial as it contributes to 

a better adaptation of the viscosity of the fluid, which is, indeed, particularly important due to 

the narrow range of fluid properties allowed by the printhead. 

Within the printability limits, the fluid itself together with the generated pulses in the printhead 

will determine, therefore, the volume of jetted ink drop. For example, low Oh numbers or large 

pulse voltages will typically derive into bigger drop sizes [43, 58]. Apart from that, the inner 

diameter of the nozzle will affect drop dimensions too. In addition, a widely used alternative to 

control the dropsize is the firing of several drops of the same size that merge together while 

flying before reaching the substrate, the so-called grey scale printing. 

 

4. Drop deposition 
 

Once the droplet has been formed in the air, it continues its descendant trajectory until it finally 

reaches the substrate. This step affects to the result of the deposition process too and the 

subsequent performance of the ink since it influences on the final geometry of the drop. It is 

mainly driven by the following forces: inertial, capillary and gravitational. Nonetheless, 

gravitational forces can be ignored for the conventional volume of inkjet droplets because its 

magnitude in comparison with the rest of the forces is negligible [40, 41]. 

In the deposition process, three principal phases can be normally identified (Figure 16) [40, 41]. 

The first one corresponds to the impact of the drop into the surface, where it begins to be 

deformed by the inertial forces generated by the impact with the substrate. In a second phase, 

the kinetic energy lead to surface energy and causes the droplet to spread in a radial direction, 

giving a ring-like film with a larger diameter (dm) than the droplet in the air (d0). Finally, in the 

last phase, there is a retraction of the extended drop due to the surface tension and, after 

several oscillations where the energy is dissipated by viscous forces, the drop acquires its 

definitive geometry with an equilibrium diameter deq and a contact angle Ɵeq , being dictated by 

the interaction of the ink and substrate [59, 60]. 
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Figure 16. Three main phases of the drop when reaching the substrate. 

In consequence, the volume of the ejected droplet directly affects to the size of the drop after 

being deposited as well as to the final resolution of the film or pattern. As explained before, 

gravitational effects can be ignored and so the shape of the drop once relaxed on the surface 

can be modelled by a spherical cap defined by the interaction between the fluid and the surface 

according to Equation 5 [60]: 

𝑑𝑒𝑞 =  𝑑0   (
8

𝑡𝑎𝑛
𝜃𝑒𝑞

2
(3+ (𝑡𝑎𝑛

𝜃𝑒𝑞

2
)

2

)

)

1
3⁄

    (5) 

If a sequence of single drops is consecutively deposited along one defined direction, it can lead 

to continuous lines where their definition will be dictated by the interaction of the fluid and the 

substrate. Moreover, printing process characteristics as pulse frequency and substrate speed 

with respect of the printhead permits the control of the spacing of the jetted drops and, hence, 

the quality of these lines. If the separation between subsequent droplets is large enough, they 

will not overlap and so a row of single isolated droplets can be deposited (Figure 17a). If the 

distance between droplets is diminished, they may coalesce and form a continuous line of fluid. 

Nonetheless, it exists an optimal spacing that will derive into an ideal straight line (Figure 17c). 

Out from this optimal range, two additional phenomena can be appreciated in the formed lines. 

When drops are still printed separately but they start merging when spreading due to wettability 

of the fluid and the surface, a continuous line with rounded contour can be appreciated (Figure 

17b). On the other hand, if drops are deposited too close, the continuous line can present 

bulging along the width caused by the accumulation of ink in those areas (Figure 17d). 

 

Figure 17. Sequence of droplets deposited in a row with decreasing distance between 

adjacent drops: a) spaced independent drops, b) line with rounded contour, c) straight 

line and d) line bulging (Advanced Manufacturing Laboratory – ICMA). 

In the same manner, consecutive parallel lines could merge and derive in areas. In this case, 

wetting agents are normally used in the formulation of the inks to control the spreading after 

the deposition and avoid dewetting areas that lead to heterogeneous deposits. 
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5. Drop fixation 
 

Once the ink is deposited, the fluid needs to be solidified to deploy the functionality into the 

surface as, for example, provide color for decorative applications or stablish conductivity of the 

deposit for electronic devices. This solidification of the fluid depends on its composition and 

requires a large degree of control as in the previous stages of the ink droplet formation and 

deposition. 

With regards of the nature of functional inkjet inks, fluids composed by a solvent and a solid 

load can be usually found (being this solid load, for instance, pigments, dyes or nanoparticles 

that provides the functionality to the ink). Besides this kind of inks, photopolymerizable inks are 

also commonly used. Even if solvent is used as a carrier too, these inks comprise different kind 

of monomers and oligomers that finally lead to a solid structure given by the polymeric chains 

or networks generated when irradiated with actinic light. 

Concerning solvent inks, the principal component is typically the solvent itself, which should be 

evaporated by a drying step after deposition, while the solid phase elements present in the 

formulation remain afterwards on the surface, providing the desired functionality. In addition 

to the solvent and the solid load, other additives can be added too, such as viscosity or surface 

tension modifiers, in order to control the ink properties and make it jettable. 

If a drop of pure solvent ink is deposited over a smooth surface, the contact angle will be 

continuously reduced due to its evaporation until the receding contact angle is reached and, 

hence, the diameter of the drop will also be reduced. On the contrary, if the surface is rough, 

the contact line will be pinned and, therefore, as long as solvent evaporation evolves, the 

contact angle is reduced too but the droplet is not retracted. If this solvent ink contains solid 

phase materials (as described before for certain inks), the evaporation of the solvent will lead 

to a ring of the material with the initial diameter of the drop. This pined solid phase can avoid 

the recession of the liquid, anchoring the droplet to its initial size and controlling the dimensions 

of the final deposit. Nonetheless, as long as evaporation continues and reach the edges, the loss 

of solvent in the edge can be compensated by flow of liquid from the inner side of the drop, 

carrying additional solid phase material to the outer and being deposited. This is known as 

“coffee ring effect” and is one important effect caused by the solvent content of these kind of 

inks (Figure 18) [61-63]. To prevent this and achieve homogeneous deposits, mechanisms to 

control the flow of solids during the evaporation can be used. For example, controlled 

atmospheres while evaporating could reduce the solvent elimination rate in the pinning line, 

minimizing or precluding the formation of the ring. Besides, the use of more than one solvent 

with different boiling point and surface tension may cause Marangoni effect (flow driven by 

surface tension gradients) and, hence, compensate the coffee ring effect too. Therefore, despite 

the presence of solvent may contribute to make the jettability of the inks easier, it also leads to 

additional difficulties to control the process and the final deposit. 

 

Figure 18. Schematic representation of coffee ring effect. 

Additional difficulties that can cause damage in the printheads may arise when using solvent 

inks. As seen in previous sections, if printhead is not activated, the ink to be deposited remains 

stored in the reservoir of the printhead and lie down on the base of the nozzles, being its surface 
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tension what prevents it to be jetted. If the printhead is not in use for a certain period of time 

and the solvent is evaporated, it can cause the nozzles to clog because of the solid particles 

remaining in the apertures. 

In contrast, photopolymerizable inks may prevent these problems. As described before, 

photopolymerizable inks experience a solidification when curing but, if no solvent is present in 

the formulation, there is no relevant loss of material after the deposition process and therefore, 

drop shape is retained with better fidelity on fixation. Nonetheless, this process also leads to 

inefficiencies as polymerization rates are usually below 100%. As long as the polymer is 

generated and the reaction progresses, viscosity increases and this makes more difficult for the 

monomers to move. Depending on the nature of the monomers, they will evolve to a different 

molecular structure, like linear chain when they are monoreactive or 3D network if they are 

multireactive. As a result, some molecules can find limited mobility around them and take more 

time to find accessible monomers to polymerize with or finally remain unreacted. 

Attending to the chemistry of photopolymerizable inks, addition polymerization reaction (so-

called chain growth polymerization reaction) is the most commonly employed for inkjet inks. 

This reaction usually involves monomers and a photoinitiator that is activated by light, triggering 

the addition of monomers to a polymeric chain. Depending on how this process is initiated, it is 

possible to identify different polymerization types, from which radical and cationic are normally 

used for inkjet inks. 

In radical photopolymerization (Figure 19) the decomposition of the photoinitiator (I) upon light 

activation lead to the generation of radical species (A*) which can react with double carbon 

bonds. This reaction of a radical with an accessible monomer opens this bond and results into 

larger radical species that keeps reacting with new monomers in close proximity. This addition 

reaction continues until polymerization finishes, for example by a combination of polymer 

chains [1, 64]. 

 

Figure 19. Initiation and chain growth of free radical polymerization. 

As double carbon bonds are required in the reaction, acrylates are very commonly used 

monomers in this kind of ink formulations. In addition, due to the possibility to include 

monomers with several reactive groups, crosslinked networks are normally formed, providing 

structures with good mechanical and chemical resistance [1]. 

On the contrary, there exist some limitations too that should be controlled during the free 

radical photopolymerization reaction for a proper solidification of the ink like, for example, 

inhibition by oxygen, shrinkage caused by polymerization or, as introduced before, insufficient 

conversion rates. 



35 
 

In contrast with free radical photopolymerization, in cationic photopolymerization, cationic 

species are generated when the photoinitiator is excited. These cationic species react with the 

monomers of the formulation and causes the beginning of the polymerization chain reaction. 

This atomic reaction avoids some of the above-mentioned problems that can be found in radical 

photopolymerization. For instance, cationic photopolymerization is not hindered by reasonable 

oxygen atmosphere conditions, shrinkage is not that relevant, polymerization continues once 

the process is activated even if there is no light and, in addition, it is compatible with a wider 

range of monomers [1, 65]. Nonetheless, because of the high viscosity ranges of cationic 

photopolymerizable inks, they have a limited compatibility with inkjet technology, reducing the 

number of existing cationic photopolymerizable inkjet inks [40]. 

As an example of cationic photopolymerization, epoxy ring polymerization can be commonly 

found in inkjet inks. An epoxy group is a cyclic ether consisting of a triangular ring with an oxygen 

atom and two adjacent carbons. When the cation reaches the ring, this is opened and the 

polymerization reaction starts, creating polyether molecules (Figure 20) [66]. 

 

Figure 20. Cationic photopolymerization of epoxy ring. 

With regards of the photoinitiator, onium salts (On+X) such as triarylsulfonium are some of the 

most widely used in cationic photopolymerization, among other reasons, because they present 

good thermal stability and absorption at UV wavelengths [67-72]. 

The described chain photopolymerization reactions are typically used in purely organic 

monomers but it can be also found in the polymerization of the organic part of hybrid organic-

inorganic materials. In these cases, to confer the inorganic nature, alkoxides groups are typically 

used as precursors. One example of these kind of materials frequently used is 3-

glycidoxypropyltrimethoxysilane (GPTMS) that bears an epoxy group as the organic part and a 

trialkoxysilane as the inorganic one [73-78]. 

As stated above, the organic part of this molecule polymerizes through a chain polymerization 

reaction while the inorganic part requires a hydrolysis and condensation process to polymerize. 

To start this last reaction, the system requires the presence of water and besides, typically an 

acid that act as a catalyst. Once hydroxyl groups are generated after the hydrolysis step, the 

policondensation phase starts leading to the Si-O-Si bonds and, hence, providing the inorganic 

structure to the network. In this step, together with siloxane molecules, water and alcohol are 

also released as byproducts (Figure 21). 
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Figure 21. Representation of hydrolysis and condensation reaction. 

Once both organic and inorganic structures are formed, the resulting 3D network structure 

confers to the material a series of properties that make hybrid materials suitable for highly 

demanding applications. On one side, the organic part provides flexibility to the structure, 

facilitating the bonding between different kinds of molecules and, hence, permitting the 

introduction of additional functional molecules into the formulation that may lead to a better 

performance of the deposits. On the other hand, the inorganic nature confers a strong structure, 

presenting excellent chemical and mechanical stability as well as good adhesion to inorganic 

surfaces [79-83]. 

Despite these interesting properties, the use of hybrid materials for inkjet inks is still limited. 

The coexistence of two polymerization reactions and their different curing mechanisms, make 

the fluid properties of the ink, and the subsequent fixation process, difficult to be controlled. 

Typically, inks are prepared by carrying out the pre-hydrolysis and condensation of the 

organosilane. A solvent is normally added to adjust the rheology to the jetting requirements. 

Disadvantageously, once printing is performed, evaporation of solvent prior to curing needs to 

be carried out further complicating the process. Apart from this, pre-hydrolysis and 

condensation steps may imply additional stability problems as reactions do not go to completion 

and may continue during the life of the ink, therefore increasing its viscosity. This can eventually 

lead to clogging of the nozzles and reduction of the self-life of the inks. Besides, the need of 

additional pre-hydrolysis and condensation steps makes the overall process more complicated 

[84, 85]. 

In order to simplify and improve the efficiency in the curing process of these hybrid systems, 

Croutxè et al. have proposed the use of a photoacid generator (PAG) together with GPTMS to 

concomitantly activate both organic and inorganic networks, leading to a direct 

photopolymerization of hybrid materials [73-77]. In this way, when activated by UV light, the 

generated photoacid reacts with the epoxy ring and organic polymerization reaction starts, 

giving place to the organic chains as previously represented in Figure 20. At the same time, the 

acid molecules released by the decomposed PAG catalyze, in the presence of water, the 

hydrolysis and subsequent condensation process to create the inorganic network (Figure 22). 

Despite the potential of this approach to control in space and time the polymerization step, its 

use in inkjet inks formulations has not been explored yet. 
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Figure 22. Representation of photopolymerization of GPTMS. 

 

6. Inkjet printing in micro- and integrated optics 
 

Being at the central scope of this thesis, a more detailed analysis of the state of the art of inkjet 

printing applied to micro- and integrated optics is being presented in this section. 

As previously introduced in first section, the field for micro-optics applications has been growing 

up to become a clear subdiscipline of optics. After preliminary attempts, the first microlenses 

were fabricated more than 30 years ago by using a photoresist material and photolithography 

masking technique followed by a thermal treatment [86]. Later on, thanks to the ability of inkjet 

printing for accurate deposition and patterning, it has been possible to efficiently print 

microlenses with a technology significantly cheaper and simpler than photolithography (Figure 

23). 

 

Figure 23. Topography measured using confocal microscopy of an inkjet microlens 

obtained using a UV-curable hybrid organic-inorganic ink (Advanced Manufacturing 

Laboratory – ICMA). 

The optical performance of the microlenses will be mainly determined by the refractive index of 

the material itself and the geometry of the lenses once they are fabricated. This is strongly 
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influenced by the interaction of the surface and the liquid droplets, mainly given by the contact 

angle. Inkjet permits high accuracy in the control of the volume of each drop and therefore, this 

will have also a direct impact on its shape as well as the solidification process of the ink.  

Some works firstly reported inkjet printed microlenses made of molten polymer being cooled 

down after deposition and getting diameters between 70 and 150 μm with focal lengths 

between 50 and 150 μm [33]. More recently, cap shaped microlenses made of prepolymers 

cured with UV light were also achieved [87-88]. Solvent inks have been commonly used too but, 

as explained in previous section, the curing process, implying solvent evaporation, brings more 

complexity to achieve spherical caps due to the need of evaporation rate control and to the 

volume changes taking place while the solidification phase [89, 90]. 

The control of the topography of the surfaces that will interact with these deposited droplets 

has been explored too. For this purpose, different approaches of pre-patterning with micro-

platforms are used, combining wetting and non-wetting areas that will help to fix the fluid in the 

desired spots, confining the drop and controlling its geometry by the deposited volume (Figure 

24). Photolithography, as shown before, has been commonly used for the creation of these 

patterned pillars [91] on top of which inkjet technology is employed to generate the microlenses 

[91, 92]. By precisely defining the geometry of these columns (their surface area and rim angle 
ϕ) and controlling the drop volume, it is possible to adjust the angle between the drop edge and 

the surface (Ɵeq), allowing a wide range of geometries. For instance, using this methodology, 

differences up to 85° for platforms with 100 μm of diameter have been achieved [93, 94]. 

Despite inkjet has been introduced as an advantageously technology to make such microlenses 

with large angles at the contact point, the platforms needed to hold the droplets are still 

prepared by using sophisticated photolithographic steps, making the overall fabrication process 

less suitable for industrial production [95]. 

 
Figure 24. Schematic representation of dropshape control by the use of pillars being a) 

the droplet before reaching the substrate, b) the minimum contact angle (νmin) for a 
drop covering the area of the pillar and c) the maximum edge value (νmax) that depends 

on the contact angle (Ɵeq) and the angle of the platform rim (ϕ). 
 
From the materials point of view, optically clear systems are sought. For this purpose, materials 

such as acrylates or epoxy resins (already described above) are good candidates for these micro-

optic applications as they present high transparency, together with good mechanical properties 

as well as temperature and chemical resistance. 

Besides, as remarked before, hybrid materials can provide a wide variety of advantages for the 

preparation of functional inkjet inks and, therefore, this family of materials have been studied 

before in literature for micro-optics too. For example, UV curable sol-gel hybrid-based inks have 

led to directly printed microlenses with good optical properties. With this approach, Aegerter et 
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al. achieved transparent spherical microlenses with diameters from 50 to 300 μm and focal 

lengths of 70 to 3000 μm [96]. With the same goal, the same authors, used epoxy-based hybrid 

inks to get diameters of 50 to 1000 μm and focal lengths from 100 to 2200 μm [84, 85]. 

Other groups like Brugger and coworkers have explored different strategies to develop micro 

lenses arrays with inkjet. For that, their work is based on hybrid photocurable resist inks and a 

proper surface preparation to control its wettability. Thanks to this, they achieved initial 

microlenses with focal distances of 45-50 μm and radius of curvature up to 29 μm with 1.553 of 

refractive index at 635 nm. Going a step further, modifying the number of drops per microlens, 

hence, modifying their volume, the focal length was controlled from 64.1 to 175.1 μm. 

Furthermore, by combining microstructuration of the surface with a fluorinated treatment, 

parabolic-shaped microlenses were produced too [34, 97-99]. 

Anyway, in these cases where hybrid-based inks are used for the deposition of microlenses, 

different strategies are currently being used to release the polymerization and adapt the fluid 

properties for a proper jettability. For instance, a pre-hydrolysis and condensation steps are 

normally required, increasing the complexity of the process and penalizing the stability of the 

ink. Besides this, solvents are used too to adapt the viscosity of the ink, requiring an evaporation 

process after the deposition. In addition, short focal lengths and large curvature lenses typically 

need the preparation of the surfaces with sophisticated protocols to control the wettability. 

These additional steps in the preparation of the microlenses causes more limitations in their 

applicability and scalability. 

Regarding the applications of these microlenses deposited by inkjet, we can find different fields 

of interest as already pointed before. Within photonics, for instance, they have been deployed 

to improve the coupling angle of light on fibers or waveguides and to improve the efficiency of 

light collimation in diode lasers. An additional example is the use of microdots on top of 

photodetectors to improve the amount of light collected [100-103]. On the other hand, 

microlenses can be also used for display backlighting applications by depositing light decoupling 

microlenses patterns over a light guiding plate [104, 105]. 

As described in previous sections, due to deposition control of inkjet, not only independent 

drops can be deposited but also thin lines and well-defined areas. Besides microlenses, other 

optical elements such as planar waveguides, key elements in integrated optical circuits, can be 

efficiently printed by using inkjet technology. This possibility brings relevant advantages with 

regards of cost, flexibility and easiness for patterning waveguides in comparison with other 

technologies such as lithography, direct writing or extrusion printing [32, 37, 106]. On the other 

hand, this application requires deposits with high transparency and homogeneity, having high 

refractive index and low optical losses. These properties are difficult to meet and constitute a 

challenge for inkjet due to the fluid restriction and the difficulty to control the application of 

deposits with high definition. 

The first research carried out focused on the preparation of waveguides printed with inkjet is 

dated more than twenty years ago by Hayes et al., introducing a combination of printing 

processes of solders and polymers for electronic devices [32]. The inks they formulated were 

epoxy-based fluids, with which they deposited waveguides with a refractive index of 1.74 [107]. 

With a similar orientation, Chappel and coworkers provided a study of the stability of printed 

waveguides. In particular, they worked with a commercially available UV curable acrylate 

monomer with some concentration of solvent to control the viscosity of the fluid for a proper 

jetting. Nevertheless, this study was focused on the influence of temperature of the substrate 



40 
 

on the geometry of the printed material, leaving the characterization of the optical properties 

of the printed waveguides aside [108].  

As an additional example, Vacirca and Kurzweg introduced SU-8 into the inkjet ink formulation: 

a photoresist polymer solution that was previously reported being used with other technologies 

such as photolithography and providing good optical properties for waveguides [109, 110]. In 

this case they combined UV and thermal curing processes, achieving good and uniform 

waveguides but with losses of 16.1 dB in 7.5 cm [111]. To put in perspective the difficulty of 

getting waveguides with low losses with inkjet and the room for improvement in this field is 

worthy to contrast these results with those achieved by alternative technologies. For instance, 

waveguides generated by a direct UV patterning of dip-coated films of hybrid organic-inorganic 

ORMOCER® materials led to higher quality channels, having rms surface roughness down to 2-5 

nm and just 0.07 dB/cm of propagation losses, measured at 850 nm [112].  

Despite the gap between the performance of digitally printed waveguides and those prepared 

by conventional technologies such as photolithography, inkjet printed ones have shown 

improvements in terms of transparency and promising low losses. Advantageously, when 

compared with other preparation techniques, inkjet printing provides flexibility and simplicity in 

terms of pattern preparation and deposition on different types of substrates [38, 39, 112]. 

In summary, inkjet printing offers a wide range of possibilities to generate micro and integrated 

optical elements showing good performance through a simple and flexible preparation process. 

Along this section the intense activity and interest around this field has been surveyed but 

additional research is needed to fit with the strict fluid properties required by the technology, 

provide high-throughput processes and assure a robust implementation of the functionalities 

afterwards. Different materials have already demonstrated to be highly efficient for these 

purposes. Among others, especially hybrid organic-inorganic materials provide excellent 

properties and, hence, they are presented as a promising solution but their use with inkjet 

technology still presents limitations in comparison with conventionally settled techniques. 

Formulation of jettable inks with suitable optical properties together with the implementation 

of industrial viable surface preparation and curing processes becomes the backbone to foster 

the use of inkjet printing in the manufacturing of optical elements in real-life applications. 

 

7. Summary and outlook 
 

Considering the current state of the art described along previous sections, we are in the position 

to assure that inkjet is a mature technology. Existing industrial massive production systems show 

a promising future for the upcoming applications that are being developed in different research 

and technology fields. Nonetheless, the demanding requirements of the materials in terms of 

printability and the required final performance seems to be the main limitation to find this 

technology present in more applications. 

The technology itself shows high capability of adaptation. We can find from cheap and 

miniaturized printheads for conventional applications like desktop printers up to high-

performance technology for printing conductive circuits on flexible substrates. Specially, the use 

of piezoelectric printheads has been highly extended because of their robustness and capability 

to accept a wide range of fluids. Even more, their working principles as well as the jetting process 

are widely studied and modelled, permitting a deep understanding of the physics behind. 
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Multiple studies can be found to model the behavior of the fluid to be jetted. Non-dimensional 

numbers like Re, We or Oh permit us to understand the interaction between the different forces 

taking part during the jetting and drop formation processes and predict the printability of the 

fluid. In any case, due to the existence of very different ink natures, as important as this 

modelling is the experimental observation of the jetted drop. 

Once the drop is jetted, it is of paramount importance its interaction with the substrate to 

achieve the desired deposits. An adequate balance between inertial forces, surface tension, and 

viscosity, together with printing parameters like frequency or the speed of the substrate with 

respect of the printhead will enable the well-defined deposition of isolated droplets or 

continuous lines or areas. 

The nature of the materials used in the ink formulation will determine the fixation process of 

the fluid onto the surface. Due to fluid properties restrictions, solvent inks are widely used but 

these inks present drawbacks that make their use and control challenging: for instance, they 

require a drying process after deposition and therefore, the volume of the deposit changes; in 

addition, the coffee ring effect can lead to imperfections in the final deposit. 

As an alternative to solvent inks, photopolymerizable inks are also commonly used utilizing UV 

light as activation source to trigger the curing process. This provides several benefits as they may 

not use solvents and, therefore, relevant volume changes are avoided during curing. 

Disadvantageously, the change of viscosity caused by photopolymerization due to chain growth 

and crosslinking may lead to curing inefficiencies and curing conditions should be carefully 

controlled too for a proper fixation. 

Chain polymerization reactions are typically used in inkjet inks, like acrylate or epoxy chemistries 

which are two representative examples of free radical and cationic polymerization respectively. 

Besides, these reactions can be found too in the polymerization of the organic part of hybrid 

organic-inorganic materials. Together with the organic polymerization, in order to complete the 

solidification of hybrid materials, it is also required the activation of the polymerization of the 

inorganic part, where alkoxides are conventionally used as precursors. For this, typically water 

and acid are needed to trigger the hydrolysis and condensation process that will create the Si-

O-Si bonds of the inorganic network. 

Hybrid organic-inorganic materials provide relevant advantages for those cases where 

demanding performance is required as they combine the flexibility of organic structures to 

implement functionalities into the material together with the chemical and mechanical 

robustness of the inorganic structure to withstand exigent conditions. On the other hand, due 

to the coexistence of both organic and inorganic natures, the control of the fluid properties of 

hybrid-based inkjet inks becomes more difficult. 

Focusing on the viscosity of the inks, solvents are typically incorporated for its control. Rheology 

is also affected by the activation of the hydrolysis and condensation steps done prior to printing. 

Despite the proper jet of the fluid, in both cases, the ink stability is compromised. 

As a promising alternative, the use of photoacid generator (PAG) has been recently explored to 

trigger both, organic and inorganic reactions concomitantly. This photoinitiator activates the 

organic polymerization when irradiated with UV light and, at the same time the acid generated 

catalyzes the hydrolysis-condensation processes of the inorganic part. Nonetheless, literature 

does not show studies of this approach being used in combination with inkjet printing 

technology. 
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With regard to the applications, this thesis is focused on the use of inkjet applied to the micro- 

and integrated optics field. In this direction, inkjet printed microlenses and waveguides have 

been targeted, where good transparency is required in the final material. Apart from the optical 

properties of the final material, the interaction of the ink with the surface will have a direct 

influence on the performance of the optical element too. 

In the case of microlenses, spherical geometries with large contact angles have been reported 

but, normally, laborious processes involving additional technologies like photolithography to 

structure the surface are needed. On the other hand, despite inkjet has shown promising results 

for the preparation of waveguides, their optical losses are still far away from those achieved by 

conventional technologies such as dip coating. 

In summary, inkjet is already a well-known technology that provides considerable advantages to 

deposition processes, especially when patterning is necessary, but the fluid restrictions and the 

demanding performance of the use cases are the main reasons why some applications are still 

away from industrialization. To further exploit this technology, complex formulations are being 

developed. One of the most promising ones are hybrid organic-inorganic based fluids but still 

count with some limitations like the pre-hydrolysis and condensation steps carried out prior to 

print and the use of solvents to control the rheology of the inks. In addition, especially in micro-

optics field, additional steps are required for the preparation of the surfaces prior to the 

deposition or for curing the ink. 

In this framework, this thesis is focused on the development of photopolymerizable solvent-free 

hybrid organic-inorganic based formulations for inkjet printing with long term stability, leading 

after curing to deposits with good mechanical and optical properties. The implementation 

through inkjet printing of optical elements based on these photocurable inks has been explored 

to demonstrate their added value in real use cases. 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

MEMORY 
  



44 
 

  



45 
 

1. Goals 
 

The general goal of this thesis is the development of jettable inks and their use for the generation 

of surfaces and elements with optical functionalities and good mechanical performance by using 

inkjet printing technology and high-throughput industrially viable processes. 

Firstly, from the materials point of view, hybrid organic-inorganic materials have demonstrated 

to be a highly suitable candidate for micro- and integrated optics applications. Nonetheless, 

there exist difficulties for their industrial use in combination with inkjet printing, hence, a proper 

adaptation of the fluid properties and stability improvement is nowadays pursued. In addition, 

not only ink printability and stability are required but good performance after deposition should 

be addressed too: good mechanical properties and proper optical functionality of the final 

deposits. Furthermore, versatile inks showing suitability for multiple substrates could provide 

and added value to expand their use to additional applications. 

Secondly, from the process point of view, inkjet technology already provides a flexible and 

precise deposition process with high-throughput. Additional steps required for functional 

surfaces and elements preparation include the conditioning of the substrate or the fixation of 

the ink. For example, like masking or complex photolithographic, for the precise positioning of 

droplets or solvent evaporation, prior to ink fixation, may add complex and time-consuming 

steps. Therefore, developing robust and flexible printing and curing processes as well as 

minimizing complexity of the surface conditioning could facilitate the introduction of this 

technology in real industrial applications. 

In this framework, to accomplish the above-mentioned general goal, the following specific goals 

have been defined: 

1. Formulation of jettable solvent-free inks based on hybrid organic-inorganic 

photopolymerizable materials with direct UV curing leading to deposits with good 

mechanical properties and adhesion to the substrate as well as good optical 

transparency and suitable optical properties and functionality (e.g.: high refractive index 

or luminescence). 

2. Control of the interaction between ink and substrate, assuring an adequate wettability 

that could permit a good performance of the deposited material. 

3. Implementation of optical elements: waveguides, microlenses and luminescent 

deposits. 

4. Validation of inkjet printed devices, demonstrating the applicability of the developed 

inks and preparation processes into specific relevant applications. 
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2. Scope 
 

As described in previous sections inkjet printing is a powerful technique for the implementation 

of optical applications, in particular, functional elements such as microlenses or waveguides. In 

this direction, a literature research of inkjet technology and its use in different fields was done 

in first instance, giving place to the review paper “Inkjet Printing of Functional Materials for 

Optical and Photonic Applications” published in the journal Materials (Publication 1). In this 

review, an in-depth revision of the jetting and deposition phenomena was conducted as well as 

an overview of the use of inkjet for the manufacturing of different optical elements and photonic 

devices, with special emphasis in the materials used and the added value that inkjet provides in 

the manufacturing processes as well as the current challenges in each application field. 

The present thesis is focused on the development of materials and their use with inkjet printing 

technology for the manufacturing of optical elements such as microlenses or waveguides. For 

this purpose, suitable fluids to be jetted in proper conditions and with good performance after 

deposition are needed. In particular, characteristics such as good transparency, high refractive 

index, good adhesion and flexibility are typically targeted in the different studied applications. 

Within the different available materials, as remarked in previous sections, hybrid organic-

inorganic ones are suitable candidates to fulfill these requirements. These materials provide 

good mechanical properties given by the inorganic structure as well as flexibility to be 

functionalized thanks to their organic nature. 

Conventionally, inkjet inks described in literature based on hybrid organic-inorganic materials 

require multiple steps for curing and trigger polymerization of both organic and inorganic 

networks or they make use of solvents to adapt their rheology to the requirements of the 

printhead. As described in the introduction, these features penalize the efficiency and 

throughput of the process. To overcome these issues, in the article “Photoacid catalyzed 

organic–inorganic hybrid inks for the manufacturing of inkjet-printed photonic devices”, 

published in Journal of Materials Chemistry C (Publication 2), we present solvent-free photoacid 

catalyzed jettable hybrid organic-inorganic inks with good optical properties. These inks can be 

cured right after the deposition by UV light activation that triggers the concomitant 

polymerization of the organic and inorganic networks in an efficient manner, simplifying 

enormously the curing process. 

These formulations are based on 3-glycidoxypropyltrimethoxysilane (GPTMS) as the principal 

component (Figure 25). This precursor counts with an epoxy ring and a triethoxysilyl group, 

providing the organic and inorganic nature respectively. Looking for a concomitant 

polymerization of both organic and inorganic reactive groups, a photoacid generator (PAG) is 

added in order to trigger the curing process. The selected PAG was a triarylsulfonium 

hexafluorophosphate salt (Figure 25) that reacts when excited with UV light. In addition, in order 

to adapt the fluid properties of the material and make it jettable, a surface tension modifier is 

used. In this case, a polyether-modified polydimethylsiloxane (BYK-333) was added to the 

formulation, giving place to the first printable fluid (so-called Model ink). 

Looking for an adequate performance of this ink into optical applications, further additives are 

selectively introduced to tune the optical properties of this ink. On one side Epikote 157 (Figure 

25) was added, an epoxy resin composed by 8 benzene rings each one bearing an epoxide ring, 

which is expected to react with the organic part of the network. On the other side, 
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dimethoxydiphenylsilane (dPDMS) (Figure 25), comprising two aromatic rings, having each one 

a silane group that can react to the inorganic network, was added too. Thanks to these additional 

multi-reactive components, the network is reinforced, favouring an improvement of mechanical 

properties of the final deposit while the aromatic rings help to increase its refractive index, what 

provides a better performance to this material for waveguiding applications. In this way, a new 

ink with high refractive index (so-called HRI ink) was formulated. 

 

Figure 25. Molecular structure of GPTMS, Epikote 157, dPDMS and PAG. 

Deposits of these inks with excellent adhesion to different substrates, refractive index of 1.56 

and good transparency were obtained by properly adjusting the printing and curing conditions. 

Planar and channel optical waveguides were also successfully prepared on various substrates 

with propagation losses as low as 0.5 dB/cm (Figure 26).  

 

Figure 26. Photograph of flexible substrate with inkjet printed waveguide. 

Apart from the deposition of waveguides, the precise deposition of luminescent materials with 

inkjet can be highly beneficial for different applications such as energy harvesting, 

optoelectronics or anti-counterfeiting. In this direction, a luminescent ink was presented in the 

article “Digital Luminescence Patterning via Inkjet Printing of a Photoacid Catalyzed Organic-

Inorganic Hybrid Formulation”, published in the journal Polymers (Publication 3). 

Taking advantage of the optical properties of the previously formulated HRI ink, luminescence 

functionality was included by adding a luminescent dye (Rhodamine B) into the formulation and 

resulting in a stable solution (so-called HRI-RhodB-02 ink). No penalty in the jetting, UV curing 

process nor its mechanical properties were noticeable due to the incorporation of this dye. Even 

more, the deposition on different types of substrates other than glass and even on flexible films 

was also demonstrated. Overall this study further demonstrates the potential and robustness of 
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these inks to keep its properties despite the modifications suffered in the formulation to 

introduce new functionalities (Figure 27). 

 

Figure 27. Examples of luminescent ink deposited on multiple substrates under green 

light excitation. Luminescent marks on (a) glass, (b) rigid cyclic olefin polymer (COP), 

(c) flexible indium tin oxide (ITO) coated poly(ethylene terephthalate) (PET) and (d) 

luminescent quick response (QR) code printed on flexible COP. 

To put in value the capabilities of this luminescent ink and its applicability, an optical planar 

waveguide sensor was presented in the following article: “Optical Planar Waveguide Sensor with 

Integrated Digitally-Printed Light Coupling-in and Readout Elements”, published in the journal 

Sensors (Publication 4). An optical temperature sensor was developed by integrating two 

luminescent inkjet ink deposits as light coupling-in and readout elements respectively with 

matched emission and excitation together with a temperature responsive material. 

Taking HRI-ink as base ink, a small percentage of the dye Fluorescein F27 was introduced in the 

formulation. Following an analogous process as the performed for HRI-RhodB-02, fluid 

properties did not show relevant changes when this dye was added to the ink formulation. 

Therefore, the so-called HRI-F27-02 ink was formulated and used to create a coupling-in film 

deposited by inkjet. When blue light excites this element, it emits light in the green wavelength 

in all directions. Light emitted by this deposit is partially coupled in the planar light guide where 

it is printed. Thanks to this, light coupling can be performed remotely by exciting this 

luminescent deposit without special alignment of the light source. In addition, a 

thermoresponsive Liquid Crystal Polymer (LCP) was formulated to be used as light controller 

and, hence, regulate the amount of light transmitted through the planar waveguide. This LCP 

has an isotropization temperature at 134 ⁰C that causes the material to be translucent below 

this temperature and, hence, the light is dispersed and coupled out from the waveguide. On the 

contrary, if temperature is above this temperature, the order of the liquid crystal is lost and 

becomes transparent, allowing the light go straight through it, remaining coupled in the 

waveguide (Figure 28). On the other side of the planar waveguide, the previously described HRI-

RhodB-02 inkjet ink was deposited, behaving as readout element. This second luminescent 

element absorbs part of the green light emitted by HRI-F27-02 ink and emits at longer 

wavelengths, therefore, it behaves as readout element through luminescence intensity 

measurements. 
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Thanks to this demonstrator (Figure 28), the capability of inkjet technology to efficiently print 

luminescent elements to facilitate the coupling-in and readout of light in waveguides as well as 

the miniaturization of sensing devices and the integration of their elements was evidenced. 

 

Figure 28. a) and b): schematic representation (top) and photograph (bottom) of an 

optical planar waveguide sensor comprising a luminescent coupling-in element and a 

luminescent temperature readout element (a) in the scattering/non-transmissive 

state, at low temperature, and (b) in the transmissive state, at high temperature. The 

inset in (b) shows a plot of the emitted red light (633 nm) measured as a function of 

temperature at the sensing region. 

Finally, relying on the good optical properties of the HRI ink formulated in the framework of this 

thesis and the capability of precise deposition of single drops with inkjet, microlenses with 

tailored geometrical properties and, hence, optical properties, were prepared and 

characterized. Precise positioning of these microlenses can be of great interest to improve the 

efficiency in coupling of light in optical fiber communication systems, light extraction from LEDs 

or improve light collection in sensing devices. Nonetheless, currently used processes, such as 

photolithography, require complex steps to condition the surface in order to get the desired 

geometries in the lenses. 

In the article “Facile fabrication of microlenses with controlled geometrical characteristics by 

inkjet printing on nanostructured surfaces prepared by combustion chemical vapour 

deposition”, published in the journal Applied Surface Science (Publication 5), we introduce a 

high-throughput process to prepare the surface and, therefore, control the geometry of the 

inkjet printed microlenses. This surface treatment protocol is based on a Combustion Chemical 

Vapour Deposition (CCVD) process, which generates a porous layer with nano-roughness on the 

substrate. This surface is subsequently processed through a silanization step with fluorosilane 

at mild vacuum conditions. After this treatment, HRI-ink is deposited by inkjet as independent 

droplets on the treated surface. Thanks to the absence of solvent in the formulation of the ink 

and the curing process in one single step by UV light activation, the geometry of these droplets 

is not significantly modified while curing, favouring the control of the final optical properties of 

the microlenses. 
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In order to tailor the geometry of these microlenses, the nano-roughness given by the CCVD 

process is controlled, allowing the preparation of microlenses with a large range of contact 

angles, achieving single droplet microlenses beyond the hemisphere (contact angles up to 115⁰) 

and reproducible well-defined digital patterns of microlenses (Figure 29). 

 

Figure 29. Oblique view FESEM images of a single-drop inkjet printed microlens using HRI-

ink on a CCVD-fluorosilane treated glass substrate with (a) 2, (b) 4 and (c) 8 passes 

through the CCVD system. Oblique view FESEM images of arrays of single-drop inkjet 

printed microlenses on a CCVD-fluorosilane treated glass substrate with (d) 2, (e) 4 and 

(c) 8 passes through the flame. 

In conclusion, through this thesis, we present how photoacid catalyzed formulations, containing 

hybrid organic-inorganic monomers with epoxy and silane functionalities can be innovatively 

applied for the preparation of jettable inks suitable for the generation of photonic devices such 

as planar waveguides, luminescent coatings or microlenses through inkjet printing. The 

capability of delaying the hydrolysis and condensation of the reactive inorganic precursor by 

protecting the ink from UV light confers high stability to the ink too. In addition, we have 

leveraged the advantages of concomitantly polymerize the organic and inorganic networks, 

providing a highly throughput process suitable for industrial production. 

Apart from that, the interaction between the inks and the substrate has been thoroughly 

studied, leading to the definition of different surface treatments and protocols to control the 

wettability of the surface and, hence, the geometrical characteristics of the deposits and their 

adhesion to the underlying substrate. 

Thanks to this, we have been capable to get solid films with good adhesion and mechanical 

properties together with tailored optical characteristics, achieving inks with high refractive index 

and low propagation losses or luminescent properties. Apart from films, controlled spherical 

caps with adjustable geometry have been also successfully targeted. 

In addition, besides the development of the inks themselves, this research has focused its effort 

in demonstrating the applicability of the printed elements in specific applications in the areas of 

micro- and integrated optics that could be industrially scaled up. 

The presented thesis also opens the door to further achievements by showing the versatility of 

these formulations to be used in other use cases where other functional materials are needed 

and even flexible substrates are used. 
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3. Methodology 
 

Depending on the formulations and the substrate to be used, the preparation of the fluid and 

the surface, the analysis and characterization of materials differ from one case to another. Here, 

the different methods and procedures employed in the different studies carried out are detailed: 

Ink preparation: for the formulation of the inks, the following materials were used in the 

concentrations detailed in the corresponding papers: 

o GPTMS (3-glycidoxypropyltrimethoxysilane): hybrid organic-inorganic monomer bearing 

an epoxy and a trialkoxysilane group, purchased from Alfa Aesar. 

o Epikote 157: an epoxy resin consisting of an average of eight aromatic benzene rings and 

eight epoxide reactive groups, acquired from Momentive. 

o dPDMS (dimethoxydiphenylsilane): a disilane monomer having two aromatic rings, each 

having a methoxysilane group, supplied by Aldrich. 

o Photoacid Generator (PAG): triarylsulfonium hexafluorophosphate salt (50% in propylene 

carbonate), acquired from Aldrich that, after excitation with UV light, it triggers the 

polymerization reaction of the organic epoxides and, concomitantly, catalyzes the 

hydrolysis and condensation of the alkoxide groups. 

o BYK-333: a polyether-modified polydimethylsiloxane, from BYK Chemie, was used to 

adjust the surface tension of the inks and to promote the surface wetting. 

o Rhodamine B: a luminescent dye that strongly absorbs in the green region of the spectrum 

and emits orange-red light, centered at 585 nm, was purchased from Lambda Physic. 

o Fluorescein 27 (F27): a luminescent dye absorbing in blue region, having an emission 

centered at 520 nm (green light), was purchased from Lambda Physic. 

Substrate preparation: a well-defined procedure was followed for the cleaning of the substrates 

in order to have reproducibility in the behavior of the printed inks. Nonetheless, depending on 

the application, additional surface modifications apart from cleaning were done to activate and 

functionalize the surface: 

o Substrate cleaning: The glass slides used as substrate were cleaned using soapy water and 

gently hand rubbing the surface using nitrile gloves. After that, once rinsed, the substrates 

are introduced in an ultrasonic bath with soapy water too during 10 minutes. After this, 

mili-Q water was used to reflux them again and repeat ultrasonic bath for 10 minutes in 

mili-Q water. A third cleaning and 10 minutes of ultrasonic bath step, both with isopropyl 

alcohol, was done. The drying of the substrates was done using compressed air. 

o Ozone treatment: Samples treated with UV Ozone were introduced into a UVO 342 

reactor (Jeligth company Inc.) in order to remove the contamination on the surface of the 

glass. In this way, silanol groups of glass are left exposed after this activation, increasing 

the wettability behavior of the substrate [113]. 

o Combustion Chemical Vapour Deposition (CCVD): This surface treatment (Pyrosil®, SURA) 

consists in a combustion chemical vapour deposition where a propane-air flame is put in 

close contact with the substrate. The air stream feeding the flame contains an 

organosilicon precursor, causing the deposition of a SiO2 like thin coating (between 50-

100 nm) [114].  

o Chemical Vapour Deposition (CVD): Substrates are introduced into a desiccator together 

with a glass slide with ~50 µl of the reactive used for the coating, 1H,1H,2H,2H-

Perfluorooctyltrichlorosilane (FOTS) in our case. Vacuum is then applied to diminish the 
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pressure to 100 mbar and samples are taken out after 30 minutes. The coated samples 

are rinsed with isopropyl alcohol, dried with compressed air and finally heated during 10 

minutes in air at 110 ⁰C [115]. 

 

Inkjet Printing: For the deposition of the different inks, the same equipment was used, although 

specific configuration of the printing system was needed for a proper jetting in each case. This 

configuration was set according to the analysis done with a dropwatcher that allowed analyzing 

the drops on the fly and achieving spherical isolated droplets prior to their deposition on the 

substrate. 

 

o Printer: Specific equipment was used based on a custom-made printer system. For this, 

the chosen technology is piezoelectric DOD from Xaar. This printhead (Xaar-126/80) 

counts with 126 nozzles of 50 µm of diameter and 137 µm of pitch. The substrate to be 

printed moves in perpendicular direction to the line of nozzles with a distance gap of 

around 1 mm between both of them and a native resolution of 185 dpi. This printhead is 

driven by electronics provided by the same manufacturer who have also designed the 

signal command of the piezoelectric walls, allowing its adjustment (as well as the printing 

parameters) through its software. The printhead temperature is stabilized by making use 

of a heater and thermocouple assembled into the metallic block where the printhead is 

mounted. An additional printhead holder was mounted in series to the original one to 

allow the printing of two different inks in the same setup just by connecting the desired 

printhead to the electronic control board. For the movement of the substrate, an eTrack 

linear stage from Newmark Systems Inc. was used, being commanded by IMS-Terminal 

software and achieving a constant speed of around 20 mm/s. A picture of the equipment 

can be seen in Figure 30. 

 

Figure 30. Image of the printer set-up used for the development of this thesis. 

 

o Dropwatcher 

This equipment is used for the observation of drops being jetted on the fly, allowing the 

analysis of the characteristics of these drops. It consists on a stroboscopic light and a 
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camera, both connected and synchronized with the printhead by using a pulse generator, 

following the scheme shown below (Figure 31a). For the work developed during this 

research, a home-built dropwatcher system was used. A pulse generator sends a voltage 

signal to the printhead to trigger the drop ejection process. The same generator sends 

another voltage pulse to trigger the camera image acquisition and a third pulse is sent to 

trigger a short pulse (50 to 200 ns duration) of light from a strobe LED. According to the 

following representation in Figure 31b, the three signals should be synchronized so the 

camera acquires a picture when the drop is flying through the camera field of view and 

the LED light is on. Using this setup (Figure 31c), images of ink jets and flying droplets like 

those of Figure 14 can be taken and, hence, analyze the jet formation process and the 

characteristics of the drops, adjust the system configuration and validate if the ink is jetted 

in proper conditions. 

 
Figure 31. a) Schematic representation of dropwatcher system, b) representation of pulse 

coordination for visualization of drops and c) photograph of the home-built developed 

dropwatcher system. 

 

Photocuring: After the deposition, the materials needs to be solidified. In this case, all the 

formulated inks are photopolymerizable fluids, which means that actinic light is used for the 

initiation of the polymerization process and, hence, the fixation of the fluid on the substrate. 

 

o UV curing: For the curing of the samples, an UV lamp Exfo OmniCure S2000 UV was used 

with a bandpass filter to set the wavelength range to 320 – 390 nm. The power used was 

10 mW/cm2 and the coatings were exposed during 5 minutes at RT. Depending on the 

required conditions, the samples were cured at ambient atmosphere with relative 

humidity between 30 % and 40 % or under mild vacuum. When mild vacuum was required, 

the samples were introduced in a chamber with optical access through a quartz glass that 

allows the UV light to reach the substrate while a pressure of 100 mbar was set by using 

a vacuum pump. After this pressure was achieved, UV light was immediately applied to 

the sample. 

 

Finally, once the patterns and films were prepared, each case has required specific 

characterization. Below, a brief description of the used techniques for the corresponding 

analysis is given. 
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Ink properties characterization: 

 

o Viscosity: Viscosity of the inks was measured using a Haake Rheostress 1 rotational 

rheometer from Thermo Scientific. 

o Surface tension: Surface tension were measured by using an Attension Goniometer Theta 

Lite. 

o Density: Density measurements were carried out using a 10 ml pycnometer. 

 

Ink-substrate interaction: 

 

o Contact angle: Contact angle was measured by using an Attension Goniometer Theta Lite. 

 

Morphology characterization: 

 

o Microscopy: The shape of the drop after deposition and after curing as well as the quality 

of the printed material were analyzed by using an optical microscope OLYMPUS Eclipse 

i80. In those cases where liquid crystal is employed and so temperature dependence is 

required to be analyzed, this equipment counts with a Linkam LTSE420 heating stage to 

provide this feature. 

o Atomic Force Microscopy (AFM): Characterization of the surface quality and topography 

was performed with the support of CEQMA Service by using a Ntegra Aura Scanning Probe 

Microscopy from NT-MDT. 

o Field Emission Scanning Electron Microscopy (FE-SEM): Morphology of the surface was 

also studied by using a Merlin Carl Zeiss equipment that belongs to SAI – University of 

Zaragoza Service, who provided the necessary support for this characterization. 

 

Thermal characterization: 

 

o Thermogravimetry Analysis (TGA): TGA analysis was performed by using a Netzsch TG 209 

Libre F1 equipment. 

 

Spectroscopy characterization: 

 

o UV-Vis Spectrophotometry: Absorption of the samples where measured by using a 

VARIAN Cary-500 spectrophotometer. 

o Fourier Transform Infrared Spectroscopy (FTIR): A Perkin Elmer Spectrum 100 with 

Attenuated Total Reflectance (ATR) accessory was used to perform the FTIR spectroscopy. 

The measurements were done between 4000 cm-1 and 450 cm-1. 

o Spectrofluorometry: Luminescence properties were characterized with a Perkin Elmer LS 

50B spectrofluorometer. 

 

Mechanical characterization: 

 

o Adhesion cross cut: Adhesion test were done following the ASTM D3359 standards. In this 

case, a round cutter provided by Neurtek was used to scratch the coating. After this, a 

normalized Tesa 4024 adhesive tape was applied over the coating and quickly removed at 

an angle of approximately 180⁰. 
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o Nanoindentation: Mechanical properties of the deposited cured films such as hardness 

and elastic module were characterized by using nanoindentation technique with support 

from CEQMA Service. A Nanoindenter G200 from Agilent Technologies equipment was 

used with a Vickers indenter tip. 

 

Optical characterization: 

 

o Digital transmission microscopy: For the analysis of geometrical characteristics of 

microlenses, a home-made digital transmission microscope at the Applied Physics 

Department (University of Zaragoza) was employed where a collimated laser beam (λ = 

514.5 nm) was used to illuminate the sample. Planachromat extra-long working distance 

microscope objectives were used to image the microlenses into a digital camera 

(2560x2160, 6.5 µm pixels). In addition, a home-made holder permitted the rotation of 

substrate, allowing the observation of the microlenses from any direction. 

 

Waveguiding characterization: 

 

o Prism coupler: Propagating modes were analyzed using a prism coupler Metricon 2010 

equipped with a HeNe laser at 632.8 nm for the transverse electric (TE) and transverse 

magnetic (TM) polarization. For this technique, a laser beam is directed to a prism with a 

high refractive index and the light is then reflected to a photodetector. The film to be 

analyzed is placed against the base of the prism and, by using a pneumatic knee, it is 

pressured to minimize the air gap between the prism and the sample. The setup is, 

afterwards, rotated with respect to the laser beam. If the angle matches that of the 

waveguided modes, light may be coupled into the waveguide, causing a decrease in the 

intensity of the light reaching the detector. Thanks to this, the refractive index and 

thickness of the film can be measured. By using the same equipment, propagation losses 

can be also characterized. To do that, several cm of the surface to be analyzed are scanned 

with an optical fiber while the light is being propagated, detecting the scattered light that 

is considered to be proportional to the intensity of light being propagated at each 

position. The remaining intensity in the waveguide after propagating a distance x is given 

by Equation 6. 

 

𝐼(𝑥) = 𝐼010(−
𝛼𝑥

10
)     (6) 

 

Where I0 is the initial intensity, I(x) is the transmitted intensity through the waveguide at 

position x (cm), and α is the attenuation coefficient measured in decibels per centimeter 

(dB cm-1). 
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4. Conclusions 
 

From a general perspective, we have developed a complete platform to implement micro- and 

integrated optic functionalities directly on glass surfaces. The platform comprises the 

formulation of hybrid organic-inorganic solvent-free based photoacid catalyzed inks, high-

throughput processes for the preparation of the surfaces, the deposition of the material by 

inkjet printing and its subsequent fixation. 

Firstly, solvent-free photoacid catalyzed formulations, based on epoxy and silane monomers 

have been prepared and properly adapted to be deposited by inkjet printing. These inks contain 

a photoacid generator that allows the polymerization of the organic and inorganic networks to 

occur concomitantly. This permits the delay of the hydrolysis-condensation after the printing 

step (by protecting the ink against UV light) and, hence, directly curing the ink by UV excitation. 

As a result, with no solvents involved, no additional post-printing steps are needed, 

advantageously simplifying the fabrication process and providing long-term stability to the inks, 

making them suitable for industrial applications. 

By using an appropriate formulation, this deposition and curing process has led to the 

preparation of solid films with good adhesion, transparency and high refractive index leading to 

planar waveguides with low optical losses. 

By making use of the same formulation, a flexible and robust methodology for the preparation 

of microlenses with tailored optical properties has been developed. In order to control the 

geometrical characteristics of the microlenses, a two-steps surface treatment has been defined 

to adjust the interaction between the ink and the substrate. Firstly, a CCVD step results into a 

SiO2 nanostructured surface. Secondly, this surface is functionalized with a fluorosilane layer 

deposited by a CVD process. Later, by controlling the volume of the deposited drop and the 

described surface treatment, microlenses beyond the hemisphere have been prepared with this 

methodology. 

The inclusion of luminescent molecules in these formulations has not significantly affected the 

jettability of the inks and their wettability, allowing the preparation of luminescent deposits with 

the same simple inkjet printing process and the subsequent curing in one single step by UV light 

excitation. These deposits have led to patterned light emissive surfaces with good adhesion and 

mechanical properties for the fabrication of optical devices. 

As a proof of concept, these luminescent inks have been used for the preparation of an optical 

temperature sensor by combining these deposits with a smart thermoresponsive liquid 

crystalline polymer on a planar waveguide architecture. 

In summary, we have developed suitable functional formulations for inkjet and substrate 

conditioning processes to prepare optical elements with capability to be scaled into industrial 

production. In addition, different demonstrators have been prepared to highlight the use of the 

developed inks into real applications. Besides this, the formulated inks have been also deposited 

on additional rigid and flexible surfaces used in industry, showing the versatility of the developed 

inks to be adapted to different surfaces. 

Beyond the formulated inks and their implementation in specific applications, the present thesis 

also provides new avenues for the development of jettable inks and processes for the 
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preparation of surfaces that could enable the digital printing of functional elements with good 

performance through a simple and industrially viable methodology. 
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