000099706 001__ 99706
000099706 005__ 20230519145501.0
000099706 0247_ $$2doi$$a10.3390/rs13040616
000099706 0248_ $$2sideral$$a123205
000099706 037__ $$aART-2021-123205
000099706 041__ $$aeng
000099706 100__ $$0(orcid)0000-0003-0775-4641$$aAlonso, R.$$uUniversidad de Zaragoza
000099706 245__ $$aAnalysis of the snow water equivalent at the aemet-formigal field laboratory (Spanish pyrenees) during the 2019/2020 winter season using a stepped-frequency continuous wave radar (SFCW)
000099706 260__ $$c2021
000099706 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099706 5203_ $$aSnow makes a great contribution to the hydrological cycle in cold regions. The parameter to characterize available the water from the snow cover is the well-known snow water equivalent (SWE). This paper presents a near-surface-based radar for determining the SWE from the measured complex spectral reflectance of the snowpack. The method is based in a stepped-frequency continuous wave radar (SFCW), implemented in a coherent software defined radio (SDR), in the range from 150 MHz to 6 GHz. An electromagnetic model to solve the electromagnetic reflectance of a snowpack, including the frequency and wetness dependence of the complex relative dielectric permittivity of snow layers, is shown. Using the previous model, an approximated method to calculate the SWE is proposed. The results are presented and compared with those provided by a cosmic-ray neutron SWE gauge over the 2019–2020 winter in the experimental AEMet Formigal-Sarrios test site. This experimental field is located in the Spanish Pyrenees at an elevation of 1800 m a.s.l. The results suggest the viability of the approximate method. Finally, the feasibility of an auxiliary snow height measurement sensor based on a 120 GHz frequency modulated continuous wave (FMCW) radar sensor, is shown.
000099706 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T20-17R
000099706 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000099706 590__ $$a5.349$$b2021
000099706 592__ $$a1.283$$b2021
000099706 594__ $$a7.4$$b2021
000099706 591__ $$aGEOSCIENCES, MULTIDISCIPLINARY$$b30 / 203 = 0.148$$c2021$$dQ1$$eT1
000099706 593__ $$aEarth and Planetary Sciences (miscellaneous)$$c2021$$dQ1
000099706 591__ $$aIMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY$$b6 / 28 = 0.214$$c2021$$dQ1$$eT1
000099706 591__ $$aREMOTE SENSING$$b11 / 34 = 0.324$$c2021$$dQ2$$eT1
000099706 591__ $$aENVIRONMENTAL SCIENCES$$b83 / 279 = 0.297$$c2021$$dQ2$$eT1
000099706 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000099706 700__ $$0(orcid)0000-0001-6531-5810$$aGarcía del Pozo, J.M.$$uUniversidad de Zaragoza
000099706 700__ $$aBuisán, S.T.
000099706 700__ $$aÁlvarez, J.A.
000099706 7102_ $$12002$$2385$$aUniversidad de Zaragoza$$bDpto. Física Aplicada$$cÁrea Física Aplicada
000099706 773__ $$g13, 4 (2021), 616 [23 pp]$$pRemote sens. (Basel)$$tRemote Sensing$$x2072-4292
000099706 8564_ $$s1904180$$uhttps://zaguan.unizar.es/record/99706/files/texto_completo.pdf$$yVersión publicada
000099706 8564_ $$s2658047$$uhttps://zaguan.unizar.es/record/99706/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099706 909CO $$ooai:zaguan.unizar.es:99706$$particulos$$pdriver
000099706 951__ $$a2023-05-18-14:57:26
000099706 980__ $$aARTICLE