000099734 001__ 99734
000099734 005__ 20230519145505.0
000099734 0247_ $$2doi$$a10.3390/app11031099
000099734 0248_ $$2sideral$$a123234
000099734 037__ $$aART-2021-123234
000099734 041__ $$aeng
000099734 100__ $$0(orcid)0000-0002-1490-6423$$aDufo-López, R.$$uUniversidad de Zaragoza
000099734 245__ $$aComparison of lead-acid and li-ion batteries lifetime prediction models in stand-alone photovoltaic systems
000099734 260__ $$c2021
000099734 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099734 5203_ $$aSeveral models for estimating the lifetimes of lead-acid and Li-ion (LiFePO4 ) batteries are analyzed and applied to a photovoltaic (PV)-battery standalone system. This kind of system usually includes a battery bank sized for 2.5 autonomy days or more. The results obtained by each model in different locations with very different average temperatures are compared. Two different locations have been considered: the Pyrenees mountains in Spain and Tindouf in Argelia. Classical battery aging models (equivalent full cycles model and rainflow cycle count model) generally used by researchers and software tools are not adequate as they overestimate the battery life in all cases. For OPzS lead-acid batteries, an advanced weighted Ah-throughput model is necessary to correctly estimate its lifetime, obtaining a battery life of roughly 12 years for the Pyrenees and around 5 years for the case Tindouf. For Li-ion batteries, both the cycle and calendar aging must be considered, obtaining more than 20 years of battery life estimation for the Pyrenees and 13 years for Tindouf. In the cases studied, the lifetime of LiFePO4 batteries is around two times the OPzS lifetime. As nowadays the cost of LiFePO4 batteries is around two times the OPzS ones, Li-ion batteries can be competitive with OPzS batteries in PV-battery standalone systems.
000099734 536__ $$9info:eu-repo/grantAgreement/ES/UZ/UZ2020-TEC03
000099734 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000099734 590__ $$a2.838$$b2021
000099734 592__ $$a0.507$$b2021
000099734 594__ $$a3.7$$b2021
000099734 591__ $$aENGINEERING, MULTIDISCIPLINARY$$b39 / 92 = 0.424$$c2021$$dQ2$$eT2
000099734 591__ $$aPHYSICS, APPLIED$$b76 / 161 = 0.472$$c2021$$dQ2$$eT2
000099734 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b218 / 345 = 0.632$$c2021$$dQ3$$eT2
000099734 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b100 / 180 = 0.556$$c2021$$dQ3$$eT2
000099734 593__ $$aEngineering (miscellaneous)$$c2021$$dQ2
000099734 593__ $$aComputer Science Applications$$c2021$$dQ2
000099734 593__ $$aProcess Chemistry and Technology$$c2021$$dQ2
000099734 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ2
000099734 593__ $$aFluid Flow and Transfer Processes$$c2021$$dQ2
000099734 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000099734 700__ $$0(orcid)0000-0002-2854-5809$$aCortés-Arcos, T.
000099734 700__ $$0(orcid)0000-0001-7764-235X$$aArtal-Sevil, J.S.$$uUniversidad de Zaragoza
000099734 700__ $$0(orcid)0000-0003-2813-1240$$aBernal-Agustín, J.L.$$uUniversidad de Zaragoza
000099734 7102_ $$15009$$2535$$aUniversidad de Zaragoza$$bDpto. Ingeniería Eléctrica$$cÁrea Ingeniería Eléctrica
000099734 773__ $$g11, 3 (2021), 1099 [16 pp]$$pAppl. sci.$$tApplied Sciences (Switzerland)$$x2076-3417
000099734 8564_ $$s420321$$uhttps://zaguan.unizar.es/record/99734/files/texto_completo.pdf$$yVersión publicada
000099734 8564_ $$s2349272$$uhttps://zaguan.unizar.es/record/99734/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099734 909CO $$ooai:zaguan.unizar.es:99734$$particulos$$pdriver
000099734 951__ $$a2023-05-18-15:05:11
000099734 980__ $$aARTICLE