000099747 001__ 99747
000099747 005__ 20210902121637.0
000099747 0247_ $$2doi$$a10.1016/j.applthermaleng.2020.115186
000099747 0248_ $$2sideral$$a117165
000099747 037__ $$aART-2020-117165
000099747 041__ $$aeng
000099747 100__ $$0(orcid)0000-0002-9174-9820$$aBailera, Manuel$$uUniversidad de Zaragoza
000099747 245__ $$aCalcium looping as chemical energy storage in concentrated solar power plants: Carbonator modelling and configuration assessment
000099747 260__ $$c2020
000099747 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099747 5203_ $$aThis paper addresses the analysis of different configurations of carbonator for thermochemical energy storage for concentrated solar applications. The design of this equipment is different from the previous experience of calcium looping cycle for carbon capture. The use of fluidized beds and large particles are not feasible for this novel application of calcium looping. New reactors and different arrangements for the carbonation process are necessary. The design of a carbonator reactor for a specific Calcium Looping-Concentrated Solar Power application has not been addressed yet in detail in literature. In this work, a comparison of single stage reactor, two parallel reactors and two reactors in series with intercooling are simulated to calculate conversion rates, gas temperatures and flow rates, and heat transfer rates to the external cooling fluid. The modelling encompasses fluid dynamics, lime conversion kinetics and heat transfer, which are solved using a 1-D discrete mesh. The third arrangement results in the most reasonable sizes, and larger conversion rates, avoiding the occurrence of internal reactor zones in which the reaction is inhibited. Energy balance components are also quantified for each configuration.
000099747 536__ $$9info:eu-repo/grantAgreement/ES/DGA/T46-17R$$9info:eu-repo/grantAgreement/EC/H2020/727348/EU/SOlar Calcium-looping integRAtion for Thermo-Chemical Energy Storage/SOCRATCES$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 727348-SOCRATCES
000099747 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000099747 590__ $$a5.295$$b2020
000099747 591__ $$aENGINEERING, MECHANICAL$$b14 / 133 = 0.105$$c2020$$dQ1$$eT1
000099747 591__ $$aTHERMODYNAMICS$$b6 / 60 = 0.1$$c2020$$dQ1$$eT1
000099747 591__ $$aMECHANICS$$b13 / 135 = 0.096$$c2020$$dQ1$$eT1
000099747 591__ $$aENERGY & FUELS$$b41 / 114 = 0.36$$c2020$$dQ2$$eT2
000099747 592__ $$a1.714$$b2020
000099747 593__ $$aIndustrial and Manufacturing Engineering$$c2020$$dQ1
000099747 593__ $$aEnergy Engineering and Power Technology$$c2020$$dQ1
000099747 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000099747 700__ $$aLisbona, Pilar
000099747 700__ $$0(orcid)0000-0001-7379-6159$$aRomeo, Luis M.$$uUniversidad de Zaragoza
000099747 700__ $$0(orcid)0000-0003-4304-6685$$aDíez, Luis I.$$uUniversidad de Zaragoza
000099747 7102_ $$15004$$2590$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Máquinas y Motores Térmi.
000099747 773__ $$g172 (2020), 115186  1-14$$pAppl. therm. eng.$$tApplied Thermal Engineering$$x1359-4311
000099747 8564_ $$s2175849$$uhttps://zaguan.unizar.es/record/99747/files/texto_completo.pdf$$yPostprint
000099747 8564_ $$s1634742$$uhttps://zaguan.unizar.es/record/99747/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000099747 909CO $$ooai:zaguan.unizar.es:99747$$particulos$$pdriver
000099747 951__ $$a2021-09-02-08:56:59
000099747 980__ $$aARTICLE