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Abstract: Microwave (MW) heating has been applied to increase the selectivity to propylene in the 

oxidative dehydrogenation (ODH) of propane. The preferential heating of the solid monolith (made of 

SiC, a good microwave susceptor), allows working with a lower gas phase temperature, reducing the 

formation of undesired by-products in the gas phase via homogeneous reactions. Conversion levels of 

~21% and selectivity to propylene up to 70% have been achieved with MW-heated straight channel 

monolithic reactors coated with a VMgO catalyst. These competitive values contrast with the more 

limited performance delivered by the same catalytic system when it is subjected to conventional heating 

in a fixed-bed reactor configuration, thereby corroborating the advantage of working under a significant 

gas-solid temperature gap to minimize the extent of homogeneous reactions.  
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1. Introduction 

The catalytic oxidative dehydrogenation (ODH) of alkanes to alkenes offers an interesting 

alternative to the conventional synthesis of alkenes in the chemical industry by direct dehydrogenation 

[1, 2]. Among all the oxidative dehydrogenations, the ODH of propane is one of the most relevant due 

to the huge importance of its main product, propylene, the second most produced chemical intermediate 

in the petrochemical industry after ethylene [3]. Traditionally, the main reaction pathway for propylene 

production is based on naphta cracking [4]. Nevertheless, over the course of the years, this process has 

been unable to successfully fulfill the increasing worldwide production demand and additional reaction 

routes have been proposed to overcome the propylene production gap [3]. In this regard, a large fraction 

of the propylene produced worldwide is presently obtained through the catalytic direct dehydrogenation 

of propane [5]. 

The main disadvantage of the current direct dehydrogenation route is that the reaction is strongly 

endothermic [6]. In addition, coke formation rapidly deactivates the catalyst at the high temperatures 

required. The alternative oxidative route [7] using molecular oxygen to give propylene and water has 

not been implemented yet because of the limited selectivity levels. These low selectivities are a direct 

consequence of the competing series-parallel pathway that leads to the formation of deep oxidation 

products (CO, CO2) as well as the co-generation of lighter hydrocarbons such as methane and/or 

ethylene in the homogeneous gas phase [8, 9]. In this regard, it would be desirable to find novel 

catalysts capable of increasing propylene yields by: (i) minimizing the effects of over-oxidation [10] 

and/or (ii) working at reaction temperatures sufficiently low as to prevent homogeneous competing gas 

phase.  

The conventional catalysts for the ODH of propane [11-13] are mostly based on vanadium (VMgO 

[14-16], V/Al2O3 [17-19], V/SiO2 [20-22], etc.), working usually at the highest temperature possible, 

since for a given conversion the selectivity increases with temperature [23-25]. However, increasing the 

temperature also leads to the concomitant formation of other gas-phase by-products such as ethylene 

and methane [1, 9, 26], thereby hindering considerably the propylene selectivity. Therefore, these 
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homogeneous gas phase contributions effectively set an upper limit in the propylene yield: as the 

temperature is raised progressively above 550 ºC, a strong decrease of propylene selectivity takes place 

mainly due to its thermal cracking into methane and ethylene [2, 27].  

Two well-differentiated competing reaction pathways can take place in the propane oxidative 

process [26]: i) the heterogeneous route in the surface of the catalyst following a Mars-Van Krevelen 

mechanism with CO and CO2 as undesired byproducts, and, ii) the homogeneous route in the gas phase 

that  preferentially forms methane and ethylene (see Scheme 1). So far, most of the efforts to improve 

propylene selectivity have been devoted to the development of smarter catalyst formulations [8, 10]. 

However, gas phase reactions are inherent to the gas phase chemistry of the process and independent of 

the catalyst nature. For this reason, the limitation associated to reaction temperature cannot be 

circumvented. Within this topic, some alternatives typically addressed to reduce the gas phase role have 

been already explored. In 1990 Kung et al. designed a specific reactor that reduced the homogeneous 

contributions by packing most of the gas phase volume with quartz chips, which not only acted as a 

radical quencher but also reduced free volume at the expense of increasing bed pressure [23]. 



 -4- 
 
 
 

 

Scheme 1. Proposed ODH propane reaction pathways that can take place depending on the operating temperature 

and the heating mechanism (conventional versus microwave-assisted). MWH facilitates a temperature gap 

between the SiC monolith where the VMgO catalyst is deployed and the gas phase. The preferential heating 

enables a different temperature in the gas phase and prevent undesired non-selective secondary reactions typically 

occurring at higher temperatures under conventional heating conditions (i.e. with homogeneous high reaction 

temperatures). 

Another approach to mitigate this contribution was proposed by Sadykov et al. through the use of 

monolithic supports based on Pt with low contact times [28]. Cooling the reactor outlet was proposed by 

Pavlova et al. with the same goal of minimizing the homogeneous formation of ethane and methane [29]. 

Nevertheless, none of these approaches was completely successful and nowadays the vast majority of 

the experiments never exceeds 500 ºC as temperature threshold [8, 24] to minimize the gas phase 

reactions. 
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In this work, we have explored the use of microwave (MW) irradiation as a tool that enables 

working with lower gas phase temperatures. In our previous works we have shown that direct heating of 

the solid (support + catalyst) under MW irradiation (the gas heating is negligible in the MW field) in 

monolith reactors allows to work under a stable solid-gas temperature gradient [30]. Thus, the gas phase 

temperature can be significantly lower (approx. 50K) than onto the solid support, helping to avoid 

undesired gas phase reactions. This concept has been previously demonstrated in the oxidative 

dehydrogenation of isobutane using CO2 (rather than oxygen) as the oxidant [31]. In that system, the 

catalyst was almost 100% selective and all unselective contributions came from the gas phase. In this 

work, we have applied the same concept to oxidative dehydrogenation of propane with oxygen as the 

oxidant, a more complex system, where both the catalyst and the gas phase are able to deliver selective 

and non-selective contributions. To demonstrate the wide applicability of the concept we have chosen 

VMgO, a well known oxidative dehydrogenation catalyst with no significant MW absorption properties 

attributable to the MgO support [32]. Selective MW heating was instead obtained by deploying the 

catalyst on an excellent MW susceptor, SiC structured support.  Therefore, the direct microwave heating 

of the solid phase can be applied to any catalyst, irrespective of its MW absorption properties. 

2. Experimental Section 

2.1. Chemicals  

Magnesium Hydroxide (Mg(OH)2 99%, Aldrich), Ammonium Metavanadate (NH4VO3 99%, 

Aldrich) and Ammonium Hydroxide solution (NH4OH, Aldrich) were all used as received. Silicon 

carbide monoliths with straight, 1.5 mm channels were purchased from IRESA INGENIERIA S.L. and 

Silicon carbide foams with 30 ppi porosity were purchased from SICAT CATALYSTS INC.  

2.2. Characterization techniques  

Scanning electron microscopy (SEM) analysis was carried out with a FEI-Inspect S50 equipment. 

X-ray diffraction patterns were obtained in a PANalytical Empyrean equipment in Bragg Brentano 

configuration using CuK radiation and equipped with a PIXcel1D detector. Raman spectra were 
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recorded on an Alpha 300 Raman spectrometer of WITec. Excitation of the samples was carried out 

with a 633 nm Helium-Neon laser at room temperature. TEM (Transmission electron microscopy) 

images were acquired with a FEI Tecnai T20 operated at 200 kV and a FEI Tecnai F30 at 300 kV at the 

LMA (Laboratorio de Microscopias Avanzadas). Aberration corrected scanning transmission electron 

microscopy images were acquired using a high angle annular dark field detector in a FEI XFEG TITAN 

electron microscope operated at 300 kV equipped with a CETCOR Cs-probe corrector from CEOS 

Company allowing forming an electron probe of 0.08 nm. The geometric aberrations of the probe-

forming system were controlled to allow a beam convergence of 24.7 mrad half-angle to be selected. 

Elemental analysis was carried out with EDS (EDAX) detector which allows performing EDX 

experiments in scanning mode. The samples were suspended in doubly-distilled water, under sonication, 

and 3 drops of each sample were carefully dropcasted onto Cu mesh grids. 

2.3. Catalyst preparation and deposition 

The preparation of the VMgO catalyst was done according the work of Kung et al. [33, 34]. The 

preparation of catalyst-coated reactors was done according to our recent work [31]. Briefly, the catalyst 

deposition was carried out by controlled immersion of the structured supports in ethanolic suspensions 

of catalyst particles (0.5 g of catalyst in 30 mL) inside an ultrasonic bath for 15 minutes followed by 

calcination for 2 h at 250 ºC. This cycle of immersion-sonication and heating was repeated several times 

until the desired catalyst loading was achieved (ca. 50 mg of total loading corresponding to ~5% 

loading). Both SiC supports had less than 20 m2/g of surface area. The syntheses of the nanomaterials 

have been performed by the Platform of Production of Biomaterials and Nanoparticles of the 

NANOBIOSIS ICTS, more specifically by the Nanoparticle Synthesis Unit of the CIBER in 

BioEngineering, Biomaterials & Nanomedicine (CIBER-BBN). 

2.4. Microwave heating system and temperature measurements 

Microwave-induced heating was addressed in a TE510 monomodal cavity equipped with a 

magnetron generator operating at 2.45 GHz (maximum power 300 W). The experimental set-up is 

described elsewhere [30, 31] and a detailed scheme can be found in the SI. The structured reactor (15 x 
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15 mm) was placed inside a quartz tube with internal diameter 16 mm, introduced in the microwave 

cavity, at a nodal position where the electric field reaches a maximum. The gas inlet (100 mLSTP/min; 

10% Propane, 5 % Oxygen, 85% Helium) was introduced from the bottom part of the quartz tube. The 

monolith/foam temperature was increased from 500 to 600 °C in steps of 25 °C, varying the microwave 

power from 50 to 75 W. The flow rate was set to obtain a space velocity WHSV equals to 2 L min-1 gcat
-

1. The reactor was pretreated under the reaction atmosphere at 550 ºC for 2 hours. The composition of 

the outlet gas was analysed by online gas chromatography (Agilent 490 Micro GC) equipped with 

thermal conductivity detectors and two gas separation columns (a PPQ and a MS5A molecular sieve) 

using He as carrier. CO, CH4 and O2 were analysed on the MS5A while CO2 and the C2-C3 

hydrocarbons were analysed on the PPQ. Hydrogen formation was not monitored during the experiment. 

Closure of carbon balance was better than 2%. 

During reaction, the temperature of the catalyst top surface was measured with a pyrometer located 

in the upper part of the tube and an external thermographic camera that had a direct view of the quartz 

tube. The external thermographic camera was used as a control measurement to verify (indirectly) that 

no significant hot-spots were formed during reaction.  The thermographic camera is a NEC InfRec 

R300 which operates over 8-14 µm and allows temperature measurement between -40 ºC and 500 ºC 

with a sensitivity (NETD) of 0.03 K, a spatial resolution of 1.2 mrad and an accuracy of ±1.0 K. The 

pyrometer is an OPTRIS CL 2MH1 with a temperature range 490 to 2000 ºC, a spectral range of 1.6 µm, 

a sensitivity (NETD) of 0.1 K and an accuracy of ±1.0 K. The temperatures were continuously recorded 

using commercial software, after calibrating the emissivity of the surface as a function of temperature 

[30, 35].  For preliminary experiments to compare temperature differences between solid and gas 

depending on the heating mode, an optical fiber (Neoptix Fiber Optic sensor, temperature range from 

−270 to +300 °C, response time of 500 milliseconds, accuracy of ±0.8 K) was placed at 1 mm 

downstream of the solid monolith/foam to measure the temperature of the exit gas, while the solid 

temperature was measured by the pyrometer facing the gas exit side of the monolith/foam. However, 
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these measurements were limited to a maximum of 300 ºC, due to the temperature limitations of the 

optical fiber.  

For conventional heating, the same quartz tube was placed inside an electrical oven. In this case 

temperature profiles were measured with the pyrometer and a thermocouple located in the central 

position of the structured reactor, connected to a PID controlled electrical furnace to maintain the 

desired temperature. 

3. Results and Discussion 

3.1.  Preparation of the structured catalysts and evaluation of their heating capabilities under 

microwave irradiation 

VMgO was selected as ODH propane catalyst and synthesized according to the work by Kung et al. 

[33, 34] (see also Experimental Section for further details). XRD analysis confirmed the presence of 

two crystalline structures corresponding to magnesium oxide (MgO) and magnesium orthovanadate 

(Mg3(VO4)2), respectively (Figure 1b). This latter structure consists of chains of edge-sharing MgO6 

units linked together by isolated VO4 tetrahedra [33]. HAADF-STEM analysis coupled with EDX-

mapping analysis detected a fairly homogeneous distribution of the elements, V, Mg and O in the 

catalysts nanoparticles (Figure 1a).  

A closer EDX evaluation of different areas revealed different V/Mg ratios between an isolated 

nanoparticle placed in an outer area (Figure 1c referred to Area 1) and a larger area including several 

nanoparticles  (see Figure 1c referred to Area 2). High-Resolution TEM images further corroborated the 

co-existence of both crystalline species, being MgO preferentially present as an external layer (Figure 

S1). Raman spectroscopy confirmed the presence of the (Mg3(VO4)2) plus a small contribution of nano-

structured vanadium oxides at 258 cm-1 (Figure S2). The SEM-EDX analysis also shows an average 

composition containing ca 37% wt. Mg and 28% wt. V (Figure S3). 

Since the VMgO catalyst does not exhibit a good capability to absorb microwaves, it was deployed 

onto the surface of silicon carbide (SiC) structured reactors. The dielectric properties of SiC make this 
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material an excellent candidate for MW induced heating [36]. In addition, SiC remains remarkable inert 

under reaction conditions (i.e. temperatures above 450 ºC and an oxidative atmosphere). Two different 

SiC commercial monoliths were evaluated as structured supports: α-SiC monoliths with straight, 1 mm 

channels, and β-SiC foams with 30 ppi porosity (see Figure 1d and 1e). Both supports had less than 20 

m2 g-1 according to N2 isotherm absorption measurements. The diameter and total length was 12 mm for 

both supports. X-Ray Diffraction and Raman spectroscopy measurements confirmed the presence of the 

SiC phases (either in the hexagonal or cubic phase) (see Figures S4 and S5). One of the most critical 

challenges when applying microwave heating to heterogeneous catalysis consists on achieving a nearly 

homogeneous heating of the solid to prevent the formation of hot spots, which usually lowers product 

selectivity or generates misleading and difficult to interpret catalytic results [35, 37].  

 

Figure 1. Characterization of the structured catalyst VMgO@SiC: a) Combined HAADF-STEM-EDX mapping 

analysis of two representative freestanding VMgO nanoparticles revealing a pseudo-planar structure with a 
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homogeneous distribution of Mg, V and O as demonstrated by EDX mapping. (V = Purple, O = Red, Mg = 

Yellow; scale bar referred to 20 nm)); b) XRD spectrum of the VMgO catalyst including the presence of the 

Mg3(VO4)2 phase and a secondary phase of MgO; c) HAADF-STEM imaging and corresponding EDX analysis 

of two different areas of the VMgO catalyst; The EDX corresponding to a broader area of catalyst (labeled as 

Area 2) exhibits a higher fraction of Mg in comparison with a single nanoparticle (labeled as Area 1); d) Digital 

micrograph of the SiC monolith and corresponding temperature mapping distribution of the microwave heated 

monolith including front and side views and temperature profiles acquired with the IR thermographic camera; e) 

Digital image and temperature mapping distribution of the microwave heated SiC foam including the front and 

side views and temperature profiles. Temperature histograms represent the temperature distribution of the boxes 

incorporated in the side view mappings. Power input = 40 W. Temperature scale ranges from 300 ºC to 500 ºC. 

For this reason, the heating behavior of both silicon carbide supports under MW heating was 

initially evaluated in the absence of catalysts. The temperature profiles obtained with a thermal camera 

are shown in Figure 1d and Figure 1e. Significant differences on the temperature heating profiles of 

both SiC monolithic supports were observed. The temperature distribution on the monolith was more 

homogeneous than on the foam, having a temperature variation of only ± 12 K at an average 

temperature of 385 ºC (Figure 1d), while the foam-shaped SiC support showed the presence of multiple 

hot spots and wider temperature gradients of ± 54 K at 400 ºC (Figure 1e). In addition, due to the more 

tortuous flow within the foam the gas-solid contact will be more intense [38], likely limiting the 

temperature gradient that could be established between the gas phase and the SiC support.  

Finally, it was also observed that the foam reached higher temperatures than its monolith 

counterpart at equivalent power inputs (i.e. 40 W) (Figure 1e). These differences can be attributed to the 

different structural composition of each support. XRD and Raman analysis confirmed that the ordered 

monolith was composed by hexagonal phases of α-SiC (4H and 6H phases) (Figure S4 and Figure S5) 

while the foam contained β-SiC (cubic phase) and an additional fraction of carbonaceous nature 

according to the Raman bands detected at 1350 cm-1 and 1600 cm-1 (Figure S4 and Figure S5) [39]. The 

dielectric properties, in particular the electric loss tangent tan δ = ε”/ε´ is higher for β-SiC (tan δ = 0.5) 

than for α-SiC (tan δ = 0.05) at temperatures between 500-600 ºC [40]. This loss tangent value 

correlates the real and imaginary components of the permittivity (ε = ε´- jε”), that is the dielectric 

constant (ε´) and the dielectric loss factor (ε”) and it is indicative of the capability of materials to 
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convert microwave energy into thermal energy. In addition, the residual carbon content of β-SiC also 

contributes to the overall MW heating of the foam. As a result, the more intense MW heating by the β-

SiC foam phase [40], together with its convoluted nature [41] and the presence of residual carbon, favor 

the formation of the hot spots as shown in Figure 1e. 

To verify the possibility of establishing a stable solid-gas temperature gradient during reactor 

operation under MW heating, preliminary experiments were carried out using different heating systems 

while simultaneously measuring the temperature of the gas (using an optical fiber located 1 mm 

downstream from the monolith) and of the solid using a pyrometer that gives a reading of the top (exit) 

monolith surface (see Experimental Section). The results are shown in Figure 2, where it can be 

observed that a significant solid-gas temperature difference can be established when MW heating is 

used, while the gas and solid are at essentially the same temperature under conventional heating. 

Although the temperature limits of the optical fiber restrict the comparison to a maximum temperature 

of 300 ºC, extrapolation of the readings to the temperatures of propane oxidative dehydrogenation 

would give temperature differences around 40 ºC.  

These data are in line with those reported in our previous works [30, 31]. Additionally, the 

temperature gradient measured within the foam reactor is smaller than in the monolith due to the higher 

gas-solid contact, suggesting that these foams configurations will exhibit a less promising performance 

than the straight channeled monoliths. Therefore, in view of the more homogeneous heating achieved, 

the straight channel SiC monolith was selected for most of the reaction experiments described below. 

The VMgO catalyst was deployed by impregnation, forming deposits on the surface of the structured 

support and inside its macropores (see catalyst deposition in experimental section). Both structured 

supports were characterized by SEM coupled with EDX mapping analysis to confirm the homogeneous 

distribution of the VMgO active catalytic phase (Figure S6).  
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3.2. Evaluation of the propane ODH product distribution under MW and conventional heating 

conditions 

As already mentioned, the propane ODH reaction may occur via two different pathways (see 

Scheme 1) that are temperature dependent. At temperatures below 550 °C reactions on the catalyst 

prevail, and oxidative dehydrogenation takes place following a purely heterogeneous Mars Van 

Krevelen mechanism [26]. Interestingly, the propylene selectivity, for a given conversion, increases 

with temperature since the apparent activation energy towards the propylene combustion is lower than 

that for dehydrogenation [24]. However, at temperatures above 550 ºC gas-phase homogeneous 

contributions become increasingly dominant and eventually responsible for the product distribution 

observed [9, 23]. These homogeneous gas phase reactions follow two main routes: (i) the oxypyrolysis 

of propane [27], and (ii) the gas phase reactions with propyl radicals that are generated on the catalyst 

that, upon desorption from the catalyst surface, can react homogeneously with up to 70 propane 

molecules per radical [42, 43]. In our study MW heating was used to enable operation with a stable 

solid-gas temperature difference with the ultimate goal of minimizing the undesired homogeneous 

contributions. Thus, the SiC monolith used as catalyst support underwent a rapid and selective heating 

under microwaves, while the gas phase remained at a lower temperature (see Figure 2).  

 

Figure 2. Determination of gas-solid temperature gaps: Gas-solid temperature gap for different solid phase 

temperatures under conventional and MW heating. 
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A first set of blank experiments was carried out with naked (i.e. catalyst free) SiC supports either 

on a conventional furnace or inside the MW cavity. As expected, in a conventional furnace (where the 

catalyst and the gas phase are at essentially the same temperature [31]) the contribution of homogeneous 

reactions is significant, especially at temperatures higher than 550ºC. It can be observed (Figure 3a) that 

at these temperatures, propane oxypyrolysis takes place and a wide distribution of gaseous products, 

including methane, propane, ethylene, propylene and carbon dioxide could be detected. In contrast 

(Figure 3b), when the same quartz reactor containing the monolith was heated inside the MW cavity, 

selective heating of the SiC support takes place and, at the same solid temperature, no secondary 

homogeneous gas phase reactions take place as consequence of the colder gas phase. The detailed 

product concentrations can be found in Table S1 and Table S2. 

 

Figure 3. Product distribution after the propane ODH reaction under different reaction conditions: a) Product 

distribution of the SiC monolith support at different reaction temperatures with conventional (CH) heating; b) 
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Product distribution of the SiC monolith support at different reaction temperatures with microwave (MW) 

heating; c) Product distribution of the VMgO-SiC monolith support at different reaction temperatures with 

conventional (CH) heating; d) Product distribution of the VMgO-SiC monolith support at different reaction 

temperatures with microwave (MW) heating. Q = 100 mL/min. Reaction mixture: 10% Propane, 5 % Oxygen, 

85% Helium. 

 

The product distributions for the loaded monolith (i.e. SiC monolith plus V/MgO catalyst) under 

conventional and microwave heating, are displayed in Figures 3c and 3d respectively. A significant 

difference between the product distributions obtained by both heating mechanisms can be easily 

observed. The formation of secondary by-products such as ethylene and methane was considerably 

minimized under MW heating conditions (up to 80% lower at 600 ºC). This reduction is attributed to the 

lower temperature of the gas phase and the corresponding decrease of the homogeneous pathways. 

Likewise, this large reduction of the ethylene and methane formation translated into a strong increase of 

the selectivity to propylene under MWH conditions (see Figure 4a). 
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Figure 4. Evaluation of the selectivity to products in the propane ODH: a) Selectivity of propylene versus 

conversion for the VMgO-SiC monolith and foam supports under microwave and conventional heating. Dash 

lines represent isoyield values; b) Ethylene and methane formation at different temperatures for the VMgO-SiC 

monolith and foam supports under microwave and monolith conventional heating. Q = 100 mL/min. Reaction 

mixture: 10% Propane, 5 % Oxygen, 85% Helium. 

 

As a comparison, the performance of the SiC foam support was also evaluated and the catalytic 

outcome was consistent with our previous assumptions: the more intense heat exchange in the foam due 

to the tortuous path of the gas means that the gas-solid temperature gap is less significant. As a 
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consequence the selectivity to propylene, though better than under CH conditions, is lower than for the 

straight channel SiC monolith. Indeed, Figure 4b shows that the formation of ethylene and methane, 

undesired gas phase products, was more favored in the foam structured support indicating a higher 

average gas temperature compared to the straight channel monolith. To confirm that these differences 

were not caused by the different SiC crystalline phase (β-SiC / α-SiC) or due to interactions catalyst-

support, we tested both structured reactors under conventional heating (see Figure S7). We observed an 

analogous performance for both supports under conventional heating, thereby discarding the influence 

of the SiC structured materials on the VMgO catalyst performance under CH conditions. 

Finally, it is worth mentioning that the production rate of propylene achieved in the straight 

monolith under MW heating using a standard V/MgO catalyst reached 3.4 kgC3H6/kgcat·h, above 

typical values of the literature [10, 17, 44, 45], including state of the art catalysts (see Figure 5) and not 

too far from the 3.8 kgC3H6/kgcat·h recently reported for a sophisticated boron nitride nanotubes 

catalyst [10]. These values are considered close to those required for commercial implementation [8]. It 

is clear that, for a given temperature, the intrinsic performance of the VMgO catalyst used is far from 

that of those made from boron nitride nanotubes. The fact that comparable productivities are obtained is 

simply due to the fact that MW heating allows operating with a lower gas phase temperature, and 

therefore the solid temperature can be increased to higher values than other catalysts performing under 

conventional heating. Furthermore, thanks to the temperature gradient, the selectivity to propylene 

reported in this work is the highest among vanadium-based catalyst (see Figure 5b), with more than 30 

points of difference for similar reported yields [46].  
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Figure 5. Comparison of the propylene productivity of the VMgO-SiC monolith under MW irradiation and some 

of the best catalysts reported in the literature for propane conversion values higher than 10%. Values in 

parenthesis represent the reference and temperature of each point.  

4. Conclusions 

Although MW absorption by a standard VMgO catalyst is low, microwave heating can be 

successfully applied for the oxidative dehydrogenation of propane when the catalyst is deposited on a 

good microwave susceptor, such as a SiC structured monolith. Thanks to the preferential solid heating 
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afforded by microwaves, a significant solid-gas temperature gap is induced. This cooler gas phase 

prevents the homogeneous formation of ethylene and methane that takes place intensely at gas phase 

temperatures above 550ºC. As a consequence, higher selectivity to propylene is achieved in comparison 

with conventional heating conditions. The SiC monolith with straight channels performs better than the 

foam-like monolith due to the less intense heat transfer in the straight channel monolith that translates 

into a higher solid-gas temperature gradient. The lower gas phase temperature leads to a consistent 

increase of selectivity around 5 percentage points throughout a wide conversion interval when 

compared to conventional heating (see Figure 4). In addition, the catalyst temperature can be increased 

while still maintaining a gas phase temperature within acceptable values, and therefore the productivity 

obtained approaches that obtained with much more efficient catalysts. The results shown here for 

propane oxidative dehydrogenation under MW heating are, in principle, applicable to any catalytic 

system with undesired contributions in the gas phase, allowing to increase the selectivity towards the 

products of interest by minimizing these homogeneous contributions.  
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