000099812 001__ 99812
000099812 005__ 20230519145417.0
000099812 0247_ $$2doi$$a10.3390/nano11020389
000099812 0248_ $$2sideral$$a123378
000099812 037__ $$aART-2021-123378
000099812 041__ $$aeng
000099812 100__ $$aAimonen, K.
000099812 245__ $$aRole of surface chemistry in the in vitro lung response to nanofibrillated cellulose
000099812 260__ $$c2021
000099812 5060_ $$aAccess copy available to the general public$$fUnrestricted
000099812 5203_ $$aWood-derived nanofibrillated cellulose (NFC) has emerged as a sustainable material with a wide range of applications and increasing presence in the market. Surface charges are introduced during the preparation of NFC to facilitate the defibrillation process, which may also alter the toxicological properties of NFC. In the present study, we examined the in vitro toxicity of NFCs with five surface chemistries: nonfunctionalized, carboxymethylated, phosphorylated, sulfoethylated, and hydroxypropyltrimethylammonium-substituted. The NFC samples were characterized for surface functional group density, surface charge, and fiber morphology. Fibril aggregates predominated in the nonfunctionalized NFC, while individual nanofibrils were observed in the functionalized NFCs. Differences in surface group density among the functionalized NFCs were reflected in the fiber thickness of these samples. In human bronchial epithelial (BEAS-2B) cells, all NFCs showed low cytotoxicity (CellTiter-GloVR luminescent cell viability assay) which never exceeded 10% at any exposure time. None of the NFCs induced genotoxic effects, as evaluated by the alkaline comet assay and the cytokinesis-block micronucleus assay. The nonfunctionalized and carboxymethylated NFCs were able to increase intracellular reactive oxygen species (ROS) formation (chloromethyl derivative of 2', 7'-dichlorodihydrofluorescein diacetate assay). However, ROS induction did not result in increased DNA or chromosome damage.
000099812 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000099812 590__ $$a5.719$$b2021
000099812 592__ $$a0.839$$b2021
000099812 594__ $$a6.6$$b2021
000099812 591__ $$aPHYSICS, APPLIED$$b37 / 161 = 0.23$$c2021$$dQ1$$eT1
000099812 593__ $$aMaterials Science (miscellaneous)$$c2021$$dQ1
000099812 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b109 / 345 = 0.316$$c2021$$dQ2$$eT1
000099812 593__ $$aChemical Engineering (miscellaneous)$$c2021$$dQ1
000099812 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b55 / 180 = 0.306$$c2021$$dQ2$$eT1
000099812 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b53 / 109 = 0.486$$c2021$$dQ2$$eT2
000099812 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000099812 700__ $$aSuhonen, S.
000099812 700__ $$aHartikainen, M.
000099812 700__ $$aLopes, V.R.
000099812 700__ $$aNorppa, H.
000099812 700__ $$aFerraz, N.
000099812 700__ $$0(orcid)0000-0003-2936-242X$$aCatalán, J.$$uUniversidad de Zaragoza
000099812 7102_ $$11001$$2420$$aUniversidad de Zaragoza$$bDpto. Anatom.,Embri.Genét.Ani.$$cÁrea Genética
000099812 773__ $$g11, 2 (2021), 389 [18 pp]$$pNanomaterials  (Basel)$$tNanomaterials$$x2079-4991
000099812 8564_ $$s946382$$uhttps://zaguan.unizar.es/record/99812/files/texto_completo.pdf$$yVersión publicada
000099812 8564_ $$s2709217$$uhttps://zaguan.unizar.es/record/99812/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000099812 909CO $$ooai:zaguan.unizar.es:99812$$particulos$$pdriver
000099812 951__ $$a2023-05-18-14:02:24
000099812 980__ $$aARTICLE