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Abstract

The FEM has proven to be one of the most e�cient methods for solving
di�erential equations. Designed to run on di�erent computer architectures,
technological improvements have led over the years to the fast solution of
larger and larger problems. Among these technological improvements, we
emphasize the development of GPU (Graphic Processor Unit).

Scienti�c programming in graphics cards was extremely di�cult until
2006 the company NVIDIA developed CUDA (Compute Uni�ed Device Ar-
chitecture). It is a programming language designed for generic computing
which does not require knowledge of traditional graphics programming.

GPUs are capable of performing a large number of operations simulta-
neously. This capability makes them very attractive for use in FEM. One
of the parts of the FEM which requires large computational capacity is the
solution of systems of linear equations.

In this work, an algorithm for solving systems of linear equations in
CUDA has been implemented. It will be applied as a part of a hp-FEM code
that tries to solve Laplace equation. The aim of this study is to compare the
performance of an an implementation of a solver in CUDA vs. a C imple-
mentation and check if CUDA has advantages over traditional programming.

For that purpose, we select an algorithm suitable for GPU program-
ming. The iterative algorithms have properties that �ts to CUDA program-
ming architecture. However, the use of these algorithms require from double
precision arithmetic to minimize round-o� e�ects. Nowadays, only high per-
formance GPUs are able to work in double precision.

FEM matrices are sparse and the use of compression format for the sys-
tem matrix is needed. Exist multiple compression formats and we select one
which better �ts to the matrix structure that FEM generates in our problem.

The implementation in CUDA introduces improvements in execution
times compared to traditional programming in C. Recent works has proved
that it can be obtained programs that works until 80 times faster. But, this
result can not be generalized because the improvements depends on di�eren-
tial equation, boundary conditions, mesh generation, FEM, model of GPU,
version of CUDA(now 5.0), and of course implementation.
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Chapter 1

Introduction

The �nite element method FEM is a numerical technique for �nding ap-
proximate solutions of partial di�erential equations associated with physical
problems on di�erent types of geometry. Since its inception in 1950 until to-
day, the use of FEM has spread of continuum mechanics to many �elds such
as heat transfer, �uid mechanics, and even the study of biological systems.

The FEM converts a problem de�ned in terms of linear second order
partial di�erential equations in a linear system of equations. For a basic
introduction on FEM, see [53] [28]. Currently exist di�erent types of FEM,
including:

AEM(Applied Element Method)

GFEM(Generalized Finite Element Method)

hp-FEM

hpk-FEM

XFEM(Extended �nite element method)

S-FEM(Smoothed �nite element method)

Spectral methods

Meshfree methods

Discontinuous Galerkin methods

Finite element limit analysis

Stretched grid method.
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CHAPTER 1. INTRODUCTION 4

In this master thesis, we chose hp-FEM [12]. Although its computa-
tional implementation is somewhat challenging, it is currently one of the
most e�cient methods due to its adaptability and the fast convergence of
their solutions.

From a computational point of view, the problem with FEM solution
consists of the following tasks:

1.- Pre-processing:

1.-De�nition of geometry.

2.-Mesh generation.

3.-Boundary conditions.

2.- Calculation:

1.-Generation of the basis functions.

2.-Numerical integration.

3.-Solving the system of linear equations.

3.- Post-processing:

1.-Determination of approximation errors.

The steps that have greater computational cost are the numerical inte-
gration and the solution of the system of linear equations. In this master
thesis, we will focus on the e�cient solution of systems of linear equations.
There are two types of solvers: direct and iterative. Direct solvers have ex-
plicit expressions for the solution. These methods provide an exact solution
(up to round-o� errors). In contrast to this, iterative methods calculate an
approximate solution in every step and the accuracy of the solution increases
with the number of the iterations, achieving a superior computational speed
than direct solvers. An advantage of the iterative solvers is that can provide
su�ciently accurate solutions in a reduced number of iterations. A disad-
vantage of iterative methods that the former only over direct methods is to
calculate approximations to the solution.

The hp-FEM method applied to Laplace equations generates symmetric
positive de�nite matrices with a speci�c pattern of sparsity. In practical ap-
plications the dimension of the sti�ness system can be quite large. Systems
of dimension 1000000 are commonly solved by commercial software. Larger
ones, up to tens or hundreds of millions, are being solved on supercomputers.

To solve large systems it is necessary to have a high computational capac-
ity and a code to run in parallel. Initially, this capability was only available
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to large computer centers and parallel programming was extremely complex.
Today, this has changed due to technological advances in GPUs. Initially de-
signed as graphics accelerators were able to perform very speci�c tasks [49].
Now, however are programmable devices with capacity to perform many op-
erations simultaneously.

In 2006, NVIDIA, one of the leading companies in the development of
graphics cards created CUDA. This new language makes it easier to parallel
program in parallel using GPUs because it was created as a extension of C
language. For more information see [33,35�37,39].

The main objective of this master thesis is to implement a solver

of systems of linear equations in CUDA in a hp-FEM method ap-

plied to Laplace equation.

A second objective is to determine whether the implementation

of this program in CUDA provides signi�cant advantages versus

its implementation in sequential CPU.

In the last years have appeared many works related with GPUs [5],
CUDA, FEM, and linear equation solvers. But commonly each publica-
tion focuses in very speci�c themes [13, 15, 22]. However, recently works
have been published in which CUDA it is commonly used in FEM meth-
ods [22, 34, 42, 43]. In contrast, this master thesis focuses in the CUDA
implementation of an iterative solver in a hp-FEM method, which is unde-
veloped.

In the second chapter we are going to expose the basic ideas about CUDA.
In the third chapter we will explain de model problem and the FEM formu-
lation applied to Laplace equation. In the forth chapter we will see the most
common solvers. In the �fth chapter it is explain how have been imple-
mented the algorithm. The sixth chapter shows the results obtained. In the
last chapter we will describe the conclusions.



Chapter 2

Parallel programming in

CUDA

The �rst section of this chapter discusses basic ideas on parallel comput-
ing. The second section explains what is CUDA and its most important
characteristics.

2.1 Parallel computing

The most basic unit of operation is a transistor, which is able to perform
operations in binary. Its main characteristics are size, operation frequency,
power consumption, and heat dissipation. From the beginning of comput-
ers, the objective has been to increase the number of operations that an
integrated circuit can perform.

Normally, the two ways to increase the number of operations per unit
time are to increase the number of transistors or to increase the operating
frequency. As technology has evolved, the transistors have been reduced in
size and the operating frequencies are getting higher. According to Moore's
law [47] [29], we can expect that the number of transistors on an integrated
circuit is doubles every 18 months. Current technology allows to work with
frequencies from 1.5 to 4 GHz. A common size of one transistor is measured
in nanometers and an integrated circuit can easily have hundreds of millions
of transistors.

This tendency cannot be sustained inde�nitely because the current silicon
technology has physical limits on the scale and frequency of operation. It also
happens that grouping large amounts of transistors increases heat generation.
Therefore, it is necessary to have cooling systems in order to ensure correct
functioning of the circuits, which also increases the power consumption of
the device. The hardware limitations have forced developers to �nd another
way to increase performance.

The solution is easy, use many computers working together and simulta-
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neously. But to perform this task requires the development of di�erent kind
of software. Traditionally, software has been created for serial computing.
To solve a problem, we construct an algorithm that it is implemented in
a serial instruction stream. These instructions are executed in the central
processing unit of a computer (CPU). When an instruction is completed, the
following one is executed.

Parallel computing (see [17] [44]) is a programming technique in which
many instructions are executed simultaneously. A great way to deal with
problems is to divide it into smaller problems that can be solved simultane-
ously.

There are di�erent types of parallel computing, according to the instruc-
tions to be parallelized: bit-level operations, instructions, data or tasks.
Parallel computers can be classi�ed according to their hardware into two
groups.

The �rst group is composed of multicore and multiprocessing computers
with multiple processing elements in a single machine, see( [32] [9] [21] [8]).
The second group are the Clusters, the MPP(Massively Parallel Processing)
and Grids that use multiple computers to work on the same task. The GPUs
are in the �rst group (see [41], [19], [50], [54]).

2.1.1 Amdahl Law

As explained above, we can assume that the ability to parallelize can be
used to improve processing speed inde�nitely. But it is not. To increase
speed by parallelization of a code, one needs to know which parts of this
can be parallelized. Amdahl's Law gives us a way to calculate the maximum
improvement of a code when a part of this is improved. [24]

A =
1

(1− Fm) + Fm
Am

(2.1.1)

A is the acceleration or velocity gain achieved in the entire program-
ming code due to the improvement of one of its sub-codes.

Am is the acceleration or velocity gain achieved into the sub-codes
improved.

Fm is the fraction between the time of execution of the sub-code im-
proved and the time of execution of the complete code.

In simple terms, Amdahl's Law says that it is the algorithm the one
that decides the speed improvement not the number of processors. At the
end, you reach a situation in which the algorithm cannot be parallelized
anymore. [1]
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Figure 2.1: The increase of speed of a program using multiple processors
in distributed computing fraction is limited by the sequential program.
Picture taken from wikipedia.org

2.2 CUDA

CUDA is the computing engine in NVIDIA GPUs that is accessible to soft-
ware developers through variants of industry standard programming lan-
guages. Although CUDA was designed as an extension of C, it has also
adapted to other languages like Python, Perl, Fortran, Java, ruby Lua ,
Haskell, MATLAB,IDL and Mathematica.

CUDA gives developers access to the virtual instruction set and memory
of the parallel computational elements. GPUs have a parallel throughput ar-
chitecture that emphasizes executing many concurrent threads slowly, rather
than executing a single thread very quickly. This approach of solving general
purpose problems on GPUs is known as GPGPU [41].

2.2.1 Basic CUDA concepts

These concepts are extensively explained in [39].

Thread

Thread is a group of instructions that is the minimum GPU parallel com-
puting unit. The execution of each instruction of the thread is in series and
it is isolated from the rest of threads. [46]
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Thread Block

A set of threads which share a Stream Multiprocessor, its shared memory
space, and thread synchronization primitives.

Grid

Multiple Thread Blocks are organized in a two dimensional grid. Each block
can be identi�ed by a two dimensional index, it is accessible using the order
blockIdx.

Kernel

CUDA allows to de�ne functions, called kernels. When called, they are
executed N times in parallel by N di�erent CUDA threads. Where N is �xed
by the programmer [39, p. 7].

Warp

It is a group of 32 threads that are created, managed, scheduled, and exe-
cuted in a Stream Multiprocessor. It uses SIMT (Single Instruction Multiple
Thread) architecture to perform all of these tasks. [20]

2.2.2 GPU architecture

The execution of multiple data at the same time requires a basic structure
that is repeated. It does not mean that a GPU is composed only by a one
type of basic structure. In contrast, it is organized by di�erent groups of
basic units which have a hierarchical organization. This organization allows
to manage and schedule multiple threads simultaneously. The basic unit of
processing is Stream Processor(SP). A group of eight SP formed a Stream
Multiprocessor(SM). Two SM formed a Texture Processor Cluster(TPC).
To perform all of these processes is needed the use of di�erent types of
memories [33].

Texture Processor Cluster

Each TPC is composed of:
One Stream Memory Controller.
Two Stream Multiprocessor .
One Texture Unit L1.

Stream Multiprocessor

Each SM is composed of:
Eight Stream Processor.
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Figure 2.2: Host and device execution of GPU code. Picture taken
from [39]

Two Special Function Unit.
One Shared Memory.
One I cache.
One C cache.
One Multi-threaded instruction fetch and issue unit (MTissue).

Stream Processor

Each of this contains a Multiply-Add(MAD) unit. SP is the basic unit of
calculation in GPU.

Special Function Unit

SFU are used to perform transcendental functions. Each SFU contains four
�oating-point multipliers.

Global Memory

It is a large o�-chip Dynamic Random Access Memory (DRAM). At the be-
ginning of the execution all data is stored here. It can be directly addressable
from a kernel using pointers.
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Shared Memory

Because it is on-chip, the shared memory space is much faster than the
local and global memory spaces. Shared memory is divided into equally-
sized memory modules, called banks, which can be accessed simultaneously.
The banks are organized such that contiguous 32-bit words are assigned to
successive banks and each bank has a bandwidth of 32 bits per two clock
cycles. For devices of compute capability 1.x, the most common (warp) size
is 32 bits, and the number of banks is 16.

Local Memory

Local memory is used to describe memory owned by a single thread. This
memory is often composed of on-chip registers, but can also contain o�-chip
memory when the on-chip space is depleted.

Constant Memory

On-chip memory of 8 KB per SM(64 KB total), with data originally residing
in global memory. The cache is single ported, so simultaneous request within
an SM must point to the same address or delays will occur.

Coalesced Memory Access

Coalesced (see [11, 18, 23]) memory transaction occurs when all the threads
in a half-warp access global memory at the same time. The correct way to do
this is to have consecutive threads accessing consecutive memory addresses.
It is simpler to see this with an easy example.

If threads 0, 1, 2, and 3 read global memory 0x0, 0x4, 0x8, and 0xc, it
should be a coalesced read.

In a matrix example, one should take into account that if the matrix
resides linearly in memory, the performance will increase. Memory access
should re�ect how your matrix is stored in the device memory. If we take
the 3x4 matrix below:

0 1 2 3
4 5 6 7
8 9 a b,

then the memory access could be perform row by row, in a way that (r, c)
maps to memory (r · 4 + c).

0 1 2 3 4 5 6 7 8 9 a b
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Assuming that every matrix element has to accessed, there are at least two
ways to perform the GPU memory access.

thread 0: 0, 1, 2
thread 1: 3, 4, 5
thread 2: 6, 7, 8
thread 3: 9, a, b

or

thread 0: 0, 4, 8
thread 1: 1, 5, 9
thread 2: 2, 6, a
thread 3: 3, 7, b

Both forms of accessing the device memory read each element once. But to
achieve the maximum performance, only the second way is coalescent. In
the �rst option, memory access is 0, 3, 6, 9, which is neither consecutive
nor coalesced. The second option is 0, 1, 2, 3, is consecutive and therefore
coalescent.

2.2.3 Information �ux in GPU

The fact that CUDA is a C extension does not imply that we can still follow
traditional programming techniques. Although there are some similarities.
To leverage the capabilities of GPUs, it is necessary to work with dynamic
memory [23]. Indeed, GPU programming requires also the use of the CPU.
This section explains the structure of a typical CUDA code.
The use of dynamic memory allows us to manage the memory through the

Figure 2.3: CUDA processing �ow. Picture taken from [39]).

program execution. Usually, the procedure to allocate memory for a vector
called Vector of type �oat of size 10 is as follows:

1 f l o a t Vector [ 1 0 ] ;

De�ning the vector by this way implies that its size cannot change through-
out the program execution.In contrast, using dynamic memory, we have:
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1 f l o a t ∗Vector ;
Vector = f l o a t ∗malloc (10∗ s i z e o f ( f l o a t ) ) ;

The size of the array is a variable and it can change during the execution of
the program.

First Step: Allocate memory in the host

All the elements necessary for the execution on GPU (arrays and struc-
tures) have to have a partner in the CPU. Normally, when naming their
corresponding pointers, a pre�x is added as follows: h_{variablename},
d_{variablename}.

f l o a t ∗h_Vector ;
2 f l o a t ∗d_Vector ;

Second Step: Allocate memory in the device

CUDA provides a function similar to malloc() in C called cudaMalloc() which
allows us to allocate memory on the GPU.

cudaMalloc ( ( void ∗∗)&d_Vector , 10∗ s i z e o f ( f l o a t ) )

Third Step: Initializing values in the host

The values are initiated in the CPU. The values of the vector h_A can be
initialized as:

1 f o r ( i =0; i <10; i++)
h_Vector [ i ] = . . . // expre s i on to g ive va lue s to the vec to r in

the host ;

Forth Step: Copying values from the host to device

Cuda provides another function to copy the values from the CPU memory
to the GPU memory.

cudaMemcpy( d_Vector , h_Vector ,10∗ s i z e o f ( f l o a t ) ,
cudaMemcpyHostToDevice ) ;

d_Vector :destination
h_Vector :origin

10*sizeof(�oat ):size of memory to copy
cudaMemcpyHostToDevice :type of instruction
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Fifth Step: Executing Kernel in the device

Before running the kernel, you need the number of threads and blocks
that will need to perform the operation. We create two variables of type
dim3(three dimensional arrays). If we are to operate with vectors of size DIM
and blocks the size MAX_BLOCK_SIZE, we need at leastDIM/MAX_BLOCK_SIZE+
1 blocks and DIM threads.

1 dim3 b locks ( (DIM/MAX_BLOCK_SIZE)+1 ,1 , 1 ) ;
dim3 threads (MAX_BLOCK_SIZE, 1 , 1 ) ;

After that, we can invoke the kernel:

Kernel_name<<<blocks , threads>>>(kernel_arguments ) ;

Sixth Step: Copying values from the device to the host

With the same function of the forth step we can copy the result of the kernel
from the device to the host.

1 cudaMemcpy( h_Vector , d_Vector ,10∗ s i z e o f ( f l o a t ) ,
cudaMemcpyDeviceToHost ) ;

h_Vector :destination
d_Vector :origin

10*sizeof(�oat ): size of memory to copy
cudaMemcpyDeviceToHost: type of instruction

Seventh Step: Free memory from the device

After �nishing the kernel execution, it is necessary to free the GPU memory.
This is done with the instruction cudaFree(pointer). It is also a good practice
to free the CPU memory.

1 cudaFree ( d_Vector ) ;
f r e e ( h_Vector ) ;

2.2.4 Programming features in CUDA

In summary, in order to make a program in CUDA, we want algorithms to
exhibit the following features:

Parallelizable:

All algorithms should follow a sequence of steps and in general, not all the
steps can be parallelized. Typically, algorithms with many conditionals and
perform operations when the di�erence between the number of inputs and
outputs are very large. One example is the dot product of two vectors. This
operation has 2N inputs (for dimension N) and only one output value.
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Simplicity in the operations:

We have seen in the previous sections that one SM contains 8 SP an 2 SFU.
In one clock cycle the SM can perform eight operations simultaneously (ad-
ditions and multiplications). On the other hand, SFU can only perform two
operations simultaneously, which are powers, logarithms, and, trigonometric
functions. It means that the basic operations performed by an algorithm
implemented in CUDA should be additions and multiplications.

Minimizing the number of accesses between CPU and GPU:

To perform operations in the GPU, it is necessary copy the information from
the CPU host to the GPU device. But done this requires time. For large
amount of data, the copy process generates a bottleneck. This e�ect can
reduce considerably any gain of speed. For this reason, it is necessary to
minimize the transfer of information between the CPU and the GPU.

Minimizing dispersion in the execution of threads:

To maximize the capabilities of the GPU, the number of operations assigned
to the threads should be as similar as possible. A CUDA Kernel is executed
as many times as threads are, and it cannot �nish until each of all threads
are completed. It means, that the execution time of a kernel will increase
with the number of calculations of the largest thread.

See the following example: We can perform matrix vector multiplication
with a kernel. We will compute it using one thread for each row.

1 1 0 0
1 1 0 0
1 1 0 0
1 1 1 1




1
1
1
1

 (2.2.1)

With this choice, the �rst three threads have to wait until the last one ends.
The execution time of the kernel doubles for only one thread.

Reduce the use of structures:

The current version of CUDA supports the use of structures, but it is not
fully optimized. For this reason, the use of structures should be limited as
much as possible. If structures are used, they should be programmed in
a simple way. In contrast with other programming languages, the use of
structures of structures is highly ine�cient in CUDA.

Avoid recursion:

In the traditional programming is very common see expression like a[i] =
a[i] + b[i]i = 0...N . It means that the value of the sum a[i] + b[i] will be
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stored in a[i] once the addition has completed. By di�erence, in CUDA you
have to wait until all threads �nish a instruction to perform another one.
Recursion expressions cannot be used in CUDA.



Chapter 3

Model problem and Finite

Element Formulation

The objective is to implement in CUDA an algorithm to solve a system of
linear equations arising from a hp-FEM method, and test it in the Laplace
equation. Once done, we will compare the execution times of the program
implemented in C in parallel with the implementation in CUDA.

3.1 FEM

The �nite element method has its origins in the theory of structures. By
knowing the characteristics of individual structural elements and combining
them, the governing equations for the entire structure could be obtained.
This process produces a set of algebraic equations. The limitation on the
number of equations that could be solved is one of the major constraints of
the method. The introduction of the digital computer has made possible the
solution of large systems of equations.

Nowadays, Finite Element methods are used to solve di�erential equa-
tions problem in many areas of science and technology, including mechanics,
electromagnetism, �uid mechanics and many others. Di�erential equations
are mathematically studied from several di�erent perspectives, mostly con-
cerned to the set of functions that satisfy the equation. Only the simplest
di�erential equations have analytical solutions. Moreover, most of the sys-
tems that involve di�erential equations do not have a known exact solution
form. When it is not possible to �nd an explicit solution, it may be numeri-
cally approximated using computational techniques.

This makes the coupling of di�erential equations and high performance
computing an incredible tool to approximate solutions in engineering prob-
lems. While the governing equations and boundary conditions can usually
be written to these problems di�culties, introduced by irregular geometry
or other discontinuities, render makes the problems intractable analytically.

17
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To obtain a solution, simplifying assumptions must be considered, reducing
the problem to one that can be numerically approximated.

Numerical methods provide approximate values of the unknown quantity
in the region of interest (computational domain). In the FEM, this region
of interest is divided into numerous connected subregions or elements within
which approximate functions which are usually polynomials which are used
to represent the unknown quantity, see [53] [28].

3.1.1 Variational Formulation of Laplace Equation.

To solve the problem, we will �rst consider the Laplace equation with Dirich-
let boundary conditions.

(SP )

{
−∆u = f, in Ω ⊂ R3,

u|Γ = 0, on Γ = ∂Ω,
(3.1.1)

Where Ω is a bounded open domain in the spaceR3 = {x = (x1, x2, x3) : xi ∈ R}
with boundary Γ. Notice that:

∆u =
∂2u

∂x2
1

+
∂2u

∂x2
2

+
∂2u

∂x2
3

(3.1.2)

De�ning n̂ = (n1, n2, n3) as the normal(outward)to Γ. d−→x denotes the
element of volume in R3, and ds the surface element along Γ.
In general, we �nd that,∫

Ω

∂v

∂xi
wd−→x +

∫
Ω
v
∂w

∂xi
d−→x =

∫
Γ
vwn̂ids, i = 1, 2, 3.

Integrating by parts in the three coordinates:∫
Ω
∇v · ∇wd−→x =

∫
Γ
v
∂w

∂n
ds−

∫
Ω
v∆wdx,

where the normal derivative in the outward normal direction to the boundary
Γ, is:

∂w

∂n
=
∂w

∂x1
n1 +

∂w

∂x2
n2 +

∂w

∂x3
n3.

u satis�es 3.1.1 and the solution to the variational problem is u ∈ V . Since
we only consider Dirichlet boundary conditions, the term associated with
Neumann boundary conditions vanishes. Thus, we have:

a(u, v) = (f, v) ∀v ∈ V,

where

a(u, v) =

∫
Ω
∇u · ∇vd−→x ,

(f, v) =

∫
Ω
fvd−→x .
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Ω can be subdivided into a set Th = C1, . . . , Cm of non-overlapping cubes Ci,

Ω =
m⋃
i=1

Ci = C1

⋃
C2

⋃
. . .
⋃
Cm,

We can now de�ne Vh as follows,

Vh = {v: v is continous on Ω, v|k is linear in K ∈ Th, v|Γ = 0} ,
The space Vh consists of all continuous functions that are linear on each cube
and vanish on Γ. De�ning the basis of Vh as follows.

ϕj(Ni) = δij ≡

{
1 if i = j

0 if i 6= j
i, j = 1, . . . ,M. (3.1.3)

Thus, the support of ϕj consist of the cubes with the common node nj . The
function vh ∈ Vh has now the expression,

vh(x) =

M∑
j=1

ηjϕj(x), ηj = v(nj), for x ∈ Ω (3.1.4)

It is possible to formulate the �nite element method for 3.1.1 starting from
the variational formulation 3.1.3.

a(uh, vh) = (f, vh) ∀vh ∈ Vh.
Where the sti�ness matrix is aMxM matrix, whose elements are de�ned as:

aij = a(ϕi, ϕj),

and b = (bi) is a size M vector which elements are de�ned as

bi = (f, ϕi).

Sti�ness matrix A is usually computed by summing the contributions of the
di�erent cubes:

a(ϕi, ϕj) =
∑
C∈Th

aC(ϕi, ϕj),

where,

aC(ϕi, ϕj) =

∫
C
∇ϕi · ∇ϕjd−→x ,

Then, sti�ness matrix and load vector are de�ned in their discrete version as:
A =

∑
C∈Th

∫
C
∇ϕi · ∇ϕjd−→x ,

b =

∫
Ω
fϕid

−→x ,
(3.1.5)
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Where A matrix, is a sparse matrix. Each diagonal entry of the matrix
represents the interaction of each basis function with itself, while o�-diagonal
entries correspond to interactions between di�erent basis functions. Basis
functions that do not share support result in a zero contribution to the
sti�ness matrix. Thus, the resulting matrix is highly populated with zeros.

3.1.2 hp-FEM

The hp-FEM (see [25], [12], [7])is a general version of the FEM. This nu-
merical method is based on polynomials approximations that makes use of
elements of variable size h and polynomial degree p. This method converges
exponentially fast, when the mesh is re�ned using a suitable combination
of h-re�nements and p-re�nements. The h-re�nements are performed by
dividing elements into smaller ones. The p-re�nements are obtained by in-
creasing the polynomial order in shape functions (see [53]). This exponential
convergence (see [10]) makes the method one of the best possible choice when
implementing a numerical simulation.

The hp-FEM e�ciency relies on the capability of approximate functions
with larger polynomial order, or smaller piecewise-linear elements. This
capability is also extended to all the elements inside the grid. And more
importantly, di�erent elements may have di�erent size h and and/or di�erent
polynomial order approximation p, which is known as hp-adaptivity.

The implemented code have this capability and be able to properly sim-
ulate di�erent situations where h and p can vary as requested by the user.



Chapter 4

Linear equation solvers

In this chapter we are going to study the basic characteristics of the most
common linear equation solvers. After that we will justify the selection one
of them to be implemented in CUDA. To learn more about GPU implemen-
tation of linear algebra, see [31].
The problem is expressed mathematically by this way. We want to solve the
following linear system of n equations with n unknowns x1, x2, . . . , xn:

a11x1 + a12x2 + . . .+ a1nxn = b1
a21x1 + a22x2 + . . .+ a2nxn = b2

...
an1x1 + an2x2 + . . .+ annxn = bn

(4.0.1)

In matrix form, we have:
Ax = b (4.0.2)

a11 a12 ... a1n

a21 a22 ... a2n
...

...
. . .

...
an1 an2 ... ann



x1

x2
...
xn

 =


b1
b2
...
bn

 (4.0.3)

For the existence of solution det(A) 6= 0.

4.1 Gaussian elimination

This linear algebra procedure �rst perform a forward elimination. Gaussian
elimination reduces a given system to ones triangular. Second, it performs
a backward elimination to solve the linear system [4].

First step : eliminate x1 in the rows:2,...,n by linear combination of rows.
Second step : eliminate x2 in the rows:3,...,n by linear combination of rows.

21
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Iteratively after n-1 steps
u11 u12 ... u1n

0 u22 ... u2n
...

...
. . .

...
0 0 ... unn



x1

x2
...
xn

 =


k1

k2
...
kn

 (4.1.1)

Gaussian Elimination algorithm: forward elimination and triangular form

k = 1, . . . , n−1



a
(k+1)
ij = a

(k)
ij i = 1, . . . , k j = 1, . . . , n

a
(k+1)
ij = 0 i = k + 1, . . . , n j = 1, . . . , k

a
(k+1)
ij = a

(k)
ij −

a
(k)
ik a

(k)
kj

a
(k)
kk

i = k + 1, . . . , n j = k + 1, . . . , n

b
(k+1)
i = b

(k)
i i = 1, . . . , k

b
(k+1)
i = b

(k)
i −

a
(k)
ik b

(k)
k

a
(k)
kk

i = k + 1, . . . , n

(4.1.2)
By backward elimination, it means that we star by eliminating xn in the

rows:1,...,n-1 by linear combination of rows. By iteration of this process the
matrix only have ones in the main diagonal, so we get the solution x.

4.2 LU decomposition

We will study a direct method for solving linear systems: the LU decompo-
sition. Given a matrix A, the aim is to build a lower triangular matrix L
and an upper triangular matrix which has the following property: diagonal
elements of L are unity and A=LU. [6]
For the resolution of linear system : Ax=b, the system becomes

LUx = b⇔
{

Ly = b (1),
Ux = y (2).

(4.2.1)

L =


1
l21 1
...

...
. . .

ln1 ln2 · · · lnn

U =


u11 u12 · · · u1n

u22 · · · u2n

. . .
...
unn

 (4.2.2)

We solve the system (1) to �nd the vector y, then the system (2) to �nd the
vector x. The resolution is facilitated by the triangular shape of the matrices.
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Ly = b⇔


y1 = b1/l11

yi =
1

lii
(bi −

i−1∑
j=1

lijyj) ∀i = 2, 3, . . . , n.
(4.2.3)

Ux = y ⇔


xn = yn/unn

xi =
1

uii
(yi −

n∑
j=i+1

uijxj) ∀i = n− 1, n− 2, . . . , 1. (4.2.4)

Before starting the system solution L and U must be found, which typically
are solved by Gaussian elimination.

4.3 Cholesky decomposition

Given a symmetric positive de�nite matrix A, the aim is to build a lower
triangular matrix L which has the following property: the product of L and
its transpose is equal to A. [2]

A = LLT (4.3.1)a11 a21 a31

a21 a22 a32

a31 a32 a33

 =

l11 0 0
l21 l22 0
l31 l32 l33

l11 l21 l31

0 l22 l32

0 0 l33

 (4.3.2)

a11 a21 a31

a21 a22 a32

a31 a32 a33

 =

 l211 l21l11 l31l11

l21l11 l221 + l222 l31l21 + l32l22

l31l11 l31l21 + l32l22 l231 + l232 + l233

 (4.3.3)

For the diagonal elements (lkk) of L there is a calculation pattern:

l11 =
√
a11

l22 =
√
a22 − l221

...

lkk =

√√√√akk −
k−1∑
j=1

l2kj

(4.3.4)

For the elements below the diagonal (lik, where i > k) there is also a
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calculation pattern:

l21 =
1

l11
a21

l31 =
1

l11
a31

l32 =
1

l22
(a32 − l31l21)

...

lik =
1

lkk

aik − k−1∑
j=1

lijlkj


(4.3.5)

For the resolution of linear system : Ax=b, the system becomes

LLTx = b⇔
{

Ly = b (1),
LTx = y (2).

(4.3.6)

We solve the system (1) to �nd the vector y, then the system (2) to �nd
the vector x. The resolution is facilitated by the triangular shape of the
matrices.

4.4 Conjugate Gradient

This numerical method allows you to solve linear systems whose matrix is
symmetric and positive de�nite. The search for successive directions makes
possible to reach the exact solution of the linear system. [45] [3]
A is a n×n symmetric and positive de�nite matrix (AT = A, xTAx > 0, ∀x ∈
Rn).
We can de�ne the following scalar product on Rn:

〈u, v〉A = uTAv (4.4.1)

Two elementsu, v ∈ Rn are A-conjuguate if:

uTAv = 0 (4.4.2)

Conjugate Gradient Method consists in building a vectorial sequence (pk)
of n A-conjugate vectors . Consequently, the sequence p1, p2, . . . , pn form a
basis of Rn. The exact solution x? can be expanded like follows:

x? = α1p1 + · · ·+ αnpn (4.4.3)

where

αk =
p>k b

p>k Apk
, k = 1, . . . , n. (4.4.4)
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The exact solution x? is also the unique one minimizer of the functional
J(x) = 1

2x
>Ax − b>x, x ∈ Rn.We can compute∇J(x) = Ax − b, . It

means that :
∇J(x?) = 0 (4.4.5)

We de�ne the residual vector of the linear system:

rk = b−Axk = −∇J(xk) (4.4.6)

rk is the direction of the gradient of the functional J in xk.
The new direction of descent pk+1 is the same as its A-conjugation with pk,
we have then:

pk+1 = rk −
p>k Ark

p>k Apk
pk (4.4.7)

It is the choice of the coe�cient
p>k Ark
p>k Apk

which allows the A-conjugation of

the directions pk.
If we compute(Apk+1, pk) = 0∀k,because pk+1, pk are A-conjugation vectors.

4.5 Preconditioned Conjugate Gradient

Solving linear systems resulting from the �nite elements method shows the
limits of the conjugate gradient. Preconditioners are often used to increase
the convergence rate . The convergence rate of the iterative methods depends
on the spectral condition number of the preconditioned system.A good con-
vergence is obtained when the spectral condition number is bounded and
close to one.The technique of Preconditioned Conjugate Gradient Method
consists in introducing a matrix C subsidiary. [16]

It happens sometimes that the spectral condition number κ(A) is too
high (eigenvalues are not well distributed). Preconditionnement consists in
introducing regular matrix C ∈Mn(R) and solving the system:

C−1(Ax) = C−1b⇔ Ax = b (4.5.1)

When choosing a preconditioner must take into account the computational
cost of inverting the matrix C, and the memory size required for storage.
The following subsections present two preconditioners.

4.5.1 Jacobi Preconditioner

Jacobi Preconditioner consists in taking the diagonal of A for the matrix C,
i.e.

Cij =

{
Aii ifi = j,
0 ifi 6= j.

(4.5.2)

Advantages of such preconditioner are the facility of its implementation and
the low memory it needs. But we can �nd other preconditioners such that
resolution of the linear system is fastest.
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4.5.2 SSOR Preconditioner

SSOR Preconditioner(Symmetric Successive Over Relaxation) We decom-
pose the symmetric matrix A like follows:

A = L+D + L> (4.5.3)

where L is the strictly lower part of A and D is the diagonal of A. SSOR
Preconditioner consists in taking:

C = (
D

ω
+ L)

ω

2− ω
D−1(

D

ω
+ L>) (4.5.4)

where ω is a relaxation parameter. A necessary and su�cient condition of
the Preconditioned Gradient Method algorithm is to �x the parameter ω in
the interval [0, 2].

4.6 The most suitable algorithm

In this section, we will review the main features of the algorithms a proce-
dures to discuss which is the best choice for programming in CUDA. Accord-
ing to the ideas expose in section 2.2.4.

Gaussian elimination

First : Presents disparity in resource use as initially need to make threads n
zeros in the �rst column, n-1 threads for zeros in the second and so on until
only need one. In breach of the criterion of parallelizable.
Second : Presents recursion element by element. In breach of the criterion of
programming in CUDA.

LU decomposition

First : It presents a big problem when parallelize the equations 4.2.3,4.2.4.
To determine yiandxi it is necessary to �nd them and know the xi, yi earlier.
In breach of the criterion of parallelizable.
Second : Apart inherits parallelization problems Gaussian elimination.

Cholesky decomposition

First :In 4.3.4 we see how they are using to calculate liisquare roots, in breach
of the criterion of simplicity in the basic operations.
Second : In 4.3.4, 4.3.5 equations are summations of di�erent sizes, thus lead-
ing to di�erent times of computation in breach of the criterion of minimizing
dispersion in the execution of threads.
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Conjugate Gradient

In equation 4.4.7 presents recursion, also in the evolution of the solution x,
in breach of the criterion of avoid recursion.

Preconditioned Conjugate Gradient

The recursion problem is still present but with suitable preconditioner the
number of iterations required may be reduced considerably.
All algorithms have problems when we try to select one to implement in
CUDA. However, the problem of recursion can be solved using auxiliary
vectors to store the results of the operation. Another option is use libraries
such as CUBLAS that can perform recursion with speci�c functions [38,
p. 25].
With all this, the most appropriate algorithm to parallelize on

CUDA are the Conjugate Gradient and Preconditioned Conjugate

Gradient.
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Implementation

In this chapter we explain how CUDA CG and PCG solvers are implemented.
The �rst section focuses on the algorithm. In the second section we will
explain the need to implement a matrix compression method and will see
some examples. The third section focuses on the basic operations needed to
perform the algorithm. The last section explain the structure of the code.

5.1 Algorithms

This algorithm terminates when the maximum number of iterations imax has
been exceeded, or when ‖ri‖ 6 ε‖r0‖.
The fast recursive formula for the residual is usually used, but once every N
iterations, the exact residual is recalculated to remove accumulated �oating
point error. N is arbitrary, it might be appropriate. If the tolerance is close
to the limits of the �oating point precision of the machine, a test should
be added after δ is evaluated to check if δ 6 ε2δ0 and if this test holds
true, the exact residual should also be recomputed and δ re-evaluated. This
prevents the procedure from terminating early due to �oating point round-o�
error. [48] [52]

Given matrix A, vector b, starting vector x, a maximum number of iter-
ation imax and error tolerance ε < 1.

5.1.1 CG Algorithm

28
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i← 0
r ← b−Ax
d← r
δnew ← rT r
δo ← δnew
while i < imax and δnew > δoε

2 do

end

q ← Ad
α← δnew

dT q
x← x+ αd
if i is divisible by iiter then

r ← b−Ax
else

r ← r − αq
δo ← δnew
δnew ← rT r
β ← δnew

δo
d← r + βd
i← i+ 1

Algorithm 1: CG Algorithm

5.1.2 PCG Algorithm
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i← 0
r ← b−Ax
d←M−1r
δnew ← rTd
δo ← δnew
while i < imax and δnew > δoε

2 do

end

q ← Ad
α← δnew

dT q
x← x+ αd
if i is divisible by iiter then

r ← b−Ax
else

r ← r − αq
s←M−1r
δo ← δnew
δnew ← rT s
β ← δnew

δo
d← s+ βd
i← i+ 1

Algorithm 2: PCG Algorithm

5.2 Sparse matrix formats

This section explains the compression formats for sparse matrices. There is
not a best method to compress sparse matrices because the e�ciency of the
method depends on the sparsity pattern.

COO

The coordinate format is a simple storage scheme. The matrix information
is stored in three arrays. The element jth not null is stored in jth position
of the array data[j]. The other arrays contain the coordinates of the element
row[j],col[j]. 

1 −2 0 0
0 3 1 0
2 0 −5 1
0 2 0 4

 (5.2.1)

data[] =
[
1 −2 3 1 2 −5 1 2 4

]
(5.2.2)

row[] =
[
0 0 1 1 2 2 2 3 3

]
(5.2.3)

col[] =
[
0 1 1 2 0 2 3 1 3

]
(5.2.4)
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It can be seen that in the row array indexes are repeated as many times as
elements are not null, so we need more memory to store repeated information.
However, the size of the three arrays are the same. It is an advantage in GPU
computing because it produces full coalescence.

CRS

The compressive row storage format is a improvement of COO storage scheme.
The matrix information is stored in three arrays of di�erent size. Non null
elements are stored sequentially in the array data[](from left to the right in
rows and up to down in columns), in consequence the size of data is the
number of non null elements in the matrix. The vector col[] stores the posi-
tion of the element jth in the row. The third is an integer vector that stores
where the row starts in vector data, where the last element is the number of
total non null elements. 

1 −2 0 0
0 3 1 0
2 0 −5 1
0 2 0 4

 (5.2.5)

data[] =
[
1 −2 3 1 2 −5 1 2 4

]
(5.2.6)

col[] =
[
0 1 1 2 0 2 3 1 3

]
(5.2.7)

cout[] =
[
0 2 4 7 9

]
(5.2.8)

In this format cout contains the start of the row k in kth position and the
end in k + 1th. This is an advantage when you have to iterate an instruction
in rows. In contrast, rows have not got the same number of non null elements.
It means that there will be di�erent times of computation when we multiply
a matrix by a vector.

More information about sparse matrix formats can be found in [26] [40]
[30] [51]

5.3 Basic operations for CG and PCG

In this section we are going to explain all mathematical operations required
to perform the CG and PCG method and its implementation in CUDA. All
of they are well known.

5.3.1 Dot product

If you have two real vectors a , b of size N. We can compute its dot product
as:

~a ·~b =
N∑
i=1

ai · bi (5.3.1)
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A c code to perform dot product could be:

f l o a t C_DotProduct ( f l o a t ∗a , f l o a t ∗b , i n t N)
2 {

4 i n t i ;
f l o a t dot ;

6 dot =0.0 ;
f o r ( i =0; i<N; i++)

8 dot+=(a [ i ]∗b [ i ] ) ;

10 re turn dot ;
}

If we think for a moment we can realise that the dot product is an op-
eration with 2N inputs and one output. It means that at one moment the
program execution must be serialized(a waste of time in CUDA). We can
parallelize the pairwise sum, but the addition of the result is in serial.

1 __global__ f l o a t CUDA_DotProduct( f l o a t ∗a , f l o a t ∗b , f l o a t ∗
a_dot_b , i n t N)

{
3 i n t i ;

f l o a t dot ;
5 i n t row = blockIdx . x ∗ blockDim . x + threadIdx . x ;

i f ( row < N && row >= 0)
7 a_dot_b [ row ] = a [ row ]∗ b [ row ] ;

9 __syncthreads ( ) ;
dot =0.0 ;

11 f o r ( i =0; i<N; i++)
dot+=(a [ i ]∗b [ i ] ) ;

13

re turn dot ;
15 }

To exploit parallelism of the GPU the idea is that the addition of terms
is done by pairs,and this process is repeated until the result is �nd. In theory
it is a good idea but has some details. The dimension of the vector does not
have to be a multiple of two, so there will be to keep in mind that we will
have additional terms, we have not added.
Also we must remember that information can be easily shared among the
threads in a Block. We can use this property to perform the addition by
blocks and continue the sum adding the results of each Block.
There is another algorithm that calculates the dot product which is fully
explained in this article. [27]
In the program we have used the function cublasSdot()of the CUBLAS li-
brary, which performs the dot product highly e�cient. In the ( [38]) its
exposed how it works.
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Figure 5.1: Addition of terms in dot product done by pairs. Picture
taken from [27]

5.3.2 Vector addition

In some steps of the algorithm like r = b−Ax we need to compute a sum of
vectors of size N. This operation involves three arrays allocated in the device
memory. In contrast with the dot product we have 2N input values and N
output values. In this case the idea of the parallelism is very simple:
Computing each element as a sum of the corresponding terms in pairs.

−→a +
−→
b =

−−−→
a+ b (5.3.2)

a1

a2
...
an

+


b1
b2
...
bn

 =


a+ b1
a+ b2

...
a+ bn

 (5.3.3)

We must note that despite its simplicity not all sums are performed simulta-
neously. So before using the result of the sum in another operation, we must
be sure that all the terms have been calculated. It can be done by using the
command syncthread().

1 void C_Vector_Addition ( f l o a t ∗a , f l o a t ∗b , f l o a t ∗a_add_b , i n t N)
{

3 i n t i ;

5 f o r ( i =0; i<N; i++)
a_add_b [ i ]=a [ i ]+b [ i ] ;

7 }
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1 __global__ void CUDA_Vector_Addition ( f l o a t ∗a , f l o a t ∗b , f l o a t ∗
a_add_b , i n t N)

{
3 i n t row = blockIdx . x ∗ blockDim . x + threadIdx . x ;

i f ( row < N && row >= 0)
5 a_add_b [ row ] = a [ row ]∗ b [ row ] ;

7 __syncthreads ( ) ;
}

This code can't be used to solve equations like: a = a+ b (typically done in
c)because you can't have accessed at positions to write until all operations
are done. Change this way of thing is one of the most typical mistakes when
programming in CUDA. [14]

5.3.3 Matrix vector multiply in CRS

Although the matrix-vector operation is well known, it should be noted that
the matrix is stored in CRS format and we have to choose properly the
instructions to perform for each thread of code.
For a matrix of dimension N this operation implies N2 +N input data and
N output data.

a11 a12 ... a1N

a21 a22 ... a2N
...

...
. . .

...
aN1 aN2 ... aNN



x1

x2
...
xN

 =


∑N

i=1 a1ixi∑N
i=1 a2ixi

...∑N
i=1 aNixi

 (5.3.4)

Each term of the multiply vector is a sum of products of the same row.
=⇒=⇒=⇒=⇒
=⇒=⇒=⇒=⇒
=⇒=⇒=⇒=⇒
=⇒=⇒=⇒=⇒




=⇒
=⇒
=⇒
=⇒

 =


=⇒
=⇒
=⇒
=⇒

 (5.3.5)

We can compute each element with one thread. The kernel to compute
matrix vector operation with a matrix storage in a two dimensional array.

__global__ void Matrix_Vector_GPU( f l o a t ∗∗A, // Matrix
2 f l o a t ∗vector_in , // Input vec to r

f l o a t ∗vector_out , // Output vec to r
4 i n t N) //Dimension
{

6 i n t i ; // i t e r a t i o n index
i n t row = blockIdx . x ∗ blockDim . x + threadIdx . x ;

8 i f ( row < N && row >= 0)
f o r ( j =0; j < N; j++)

10 vector_out [ row]+= A[ row ] [ j ]∗ vector_in [ j ]
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12 __syncthreads ( ) ;
}

The kernel to compute matrix vector operation with a matrix storage in CRS
format.

1 __global__ void Matrix_Vector_CRS_GPU( f l o a t ∗data , // Matrix
in CRS format

i n t ∗ co l_pos i t i on ,
3 i n t ∗ cout ,

f l o a t ∗vector_in , // Input vec to r
5 f l o a t ∗vector_out // Output vec to r

i n t N) //Dimension
7 {

i n t i ; // index
9 i n t s ta r t , end ; // i t e r a t i o n l im i t s

i n t row = blockIdx . x ∗ blockDim . x + threadIdx . x ;
11 f l o a t sum ;

i f ( row < DIM && row >= 0)
13 {

sum = 0 . 0 ;
15 s t a r t = cout [ row ] ; // cout [ k ] t e l l us where the k row beg ins

end = cout [ row+1] ; // cout [ k+1] t e l l us where the k row ends
17

f o r ( i = s t a r t ; i < end ; i++)
19 sum+= data [ i ] ∗ vector_in [ co l_pos i t i on [ i ] ] ;

21 vector_out [ row]=sum ;
}

23 __syncthreads ( ) ;
}

5.3.4 SAXPY (Single-precision real Alpha X Plus Y)

At each step of the algorithm we have to recalculate x, r and p. All these
calculations are of the form:

x(m) ←− x(m−1) + α(m)p(m−1) (5.3.6)

r(m) ←− r(m−1) − α(m)Ap(m−1) (5.3.7)

p(m) ←− r(m) + β(m)p(m−1) (5.3.8)

All of them depend on the same in the previous step. These operations are
basically additions, and the kernel required to perform this operation is sim-
ple.

__global__ void Add_Vectors ( f l o a t ∗a , // f i r s t input vec to r
2 f l o a t ∗b , // second input vec to r

f l o a t ∗ saxpy , // add i t i on vec to r
4 f l o a t s ign1 ,
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f l o a t s ign2 ,
6 i n t N)
{

8 i n t row = blockIdx . x ∗ blockDim . x + threadIdx . x ;
i f ( row < N && row >= 0)

10 {
saxpy [ row ] = s ign1 ∗ a [ row ] + s ign2 ∗ b [ row ] ;

12 }
__syncthreads ( ) ;

14

a [ row]=saxpy [ row ] ;
16 }

Despite its simplicity is kind of operations require an intermediate vector
to store the result and copy it to the original vector.The syncthreads com-
mand is essential because the elements of the a vector will not be overwritten
until all them are calculated.
One of the premises in GPU computing is to reduce the stored memory. To
take full advantage of the GPU capabilities is necessary to consider these de-
tails. Nvidia provides libraries in which these functions are optimized [38].
SAXPY (Single-precision real Alpha X Plus Y) multiplies the vector x by
the scalar α and adds it to the vector y overwriting the latest vector with
the result. Hence, the performed operation is y[j] = αx[j] + y[j]. [13]

5.4 Structure of the code

The code has been structured as follows:

1.- To generate a sparse symmetric positive de�nite matrix A. It's the
kind of matrices generated by hp-FEM. A is the sti�ness matrix.

2.- To generate a solution vector −→x sol.

3.- To generate a vector
−→
b with the matrix-vector product A−→x sol =

−→
b

4.- Using an algorithm implemented in CUDA the system of equations

A−→x =
−→
b is solved. The execution time tcuda is measured.

5.- Using an algorithm implemented in C parallel the system of equa-

tions A−→x =
−→
b is solved. The execution time tparallel is measured.

6.- We compare execution times
tcuda
tparallel

The vector −→x sol allows us to check the obtained solutions.



Chapter 6

Results

The results exposed in this chapter was obtained with a version of the pro-
gram that works with static memory. This fact, only allows to arrive to
dimension 40000 (approximately the size of the RAM memory of the CPU
in double precision). This limitation is a problem to show the advantages
of GPU computing. In this order of size the CUDA implementation of the
solver works between 2-3 times faster in GPU than CPU. For lower size
(the order of thousands) CUDA does not improves CPU implementation,
the GPU programs spent the most of time copying within CPU and GPU.

For higher dimension, the implementation of the program with dynamic
memory provokes segmentation faults in the execution. With dynamic mem-
ory sizes of millions can be easily reach.

Another fact relevant is that the hp-FEM in Laplace problem generates
an structure of matrix that is usually solved in a reduce number of iterations
(for moderate tolerances). For dimension 40000, the program �nish in less
than 4000 iterations.
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Chapter 7

Conclusions and future work

The CUDA implementation of a iterative solver versus CPU implementation
only exhibits improvements at higher dimension. At lower dimensions it is
most practical CPU implementation. At this dimension, all the speed im-
provements in the basic operations are neglected by time of CPU to GPU
copying process.

In our future work we want to solve the problem with dynamic memory
implementation. The solve of this problem will provide us a very powerful
to solve systems of linear equations. Also, we want to be able to implement
a preconditioner. It will allow us to face higher dimension (tens of millions).
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