Detection of slight variations in combustion conditions with machine learning and computer vision
Financiación H2020 / H2020 Funds
Resumen: When monitoring combustion conditions, detecting minor variations, which may be complex even for the human eye, is critical for providing a fast response and correcting deviations. The aim of this study is to detect slight variations in combustion conditions by developing a flame monitoring system using machine learning and computer vision techniques applied to color images. Predictive models are developed for fuel blends with different heating values. The predictive models classify the combustion equivalence ratio based on multiple conditions, using a mean step size of 0.10 between states, a lower value than previously reported in related studies. Three machine learning algorithms are used for each fuel blend: logistic regression, support vector machine, and artificial neural network (multilayer perceptron). These models are fed the statistical, geometrical, and textural features extracted from the color images of the flames. The classification achieves accuracies from 0.78 to 0.97 in the detection of slight variations in the combustion conditions for all heating values. Thus, the monitoring system developed in this study is a promising alternative for implementation on an industrial scale and quick detection of changes in combustion conditions.
Idioma: Inglés
DOI: 10.1016/j.engappai.2023.106772
Año: 2023
Publicado en: ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE 126 , Part A (2023), 106772 [11 pp.]
ISSN: 0952-1976

Factor impacto JCR: 7.5 (2023)
Categ. JCR: AUTOMATION & CONTROL SYSTEMS rank: 6 / 84 = 0.071 (2023) - Q1 - T1
Categ. JCR: ENGINEERING, MULTIDISCIPLINARY rank: 5 / 181 = 0.028 (2023) - Q1 - T1
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 25 / 353 = 0.071 (2023) - Q1 - T1
Categ. JCR: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE rank: 24 / 197 = 0.122 (2023) - Q1 - T1

Factor impacto CITESCORE: 9.6 - Control and Systems Engineering (Q1) - Electrical and Electronic Engineering (Q1) - Artificial Intelligence (Q1)

Factor impacto SCIMAGO: 1.749 - Artificial Intelligence (Q1) - Control and Systems Engineering (Q1) - Electrical and Electronic Engineering (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/820771/EU/ Boosting new Approaches for flexibility Management By Optimizing process Off-gas and waste use/BAMBOO
Financiación: info:eu-repo/grantAgreement/EC/H2020/869939/EU/Implementation of a smart RETROfitting framework in the process industry towards its operation with variable, biobased and circular FEEDstock/RETROFEED
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-11-22-12:11:11)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2023-09-21, última modificación el 2024-11-25


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)