Resumen: We study Jordan 3-graded Lie algebras satisfying 3-graded polynomial identities. Taking advantage of the Tits-Kantor-Koecher construction, we interpret the PI-condition in terms of their associated Jordan pairs, which allows us to formulate an analogue of Posner-Rowen Theorem for strongly prime PI Jordan 3-graded Lie algebras. Arbitrary PI Jordan 3-graded Lie algebras are also described by introducing the Kostrikin radical of the Lie algebras. Idioma: Inglés DOI: 10.1016/j.jpaa.2023.107543 Año: 2024 Publicado en: JOURNAL OF PURE AND APPLIED ALGEBRA 228, 4 (2024), 107543 [18 pp.] ISSN: 0022-4049 Factor impacto JCR: 0.8 (2024) Categ. JCR: MATHEMATICS rank: 193 / 483 = 0.4 (2024) - Q2 - T2 Categ. JCR: MATHEMATICS, APPLIED rank: 234 / 343 = 0.682 (2024) - Q3 - T3 Factor impacto SCIMAGO: 0.947 - Algebra and Number Theory (Q1)