Wearable low-cost and low-energy consumption gas sensor with machine learning to recognise outdoor areas
Resumen: Urban air quality, impacted by human-made pollution, impacts health and requires continuous monitoring. MQ sensors are the preferred air quality sensors despite their high energy consumption due to their cost, requiring the use machine learning to classify different types of air. The aim of this paper is to evaluate a monitoring solution with low-cost and low-energy consumption to classify urban and rural air. A single MQ sensor will be used with a network with edge and fog computing to balance the energy consumption. Edge computing was included in the node for feature extraction, and fog computing was applied in the smartphone to classify the data using machine learning. Different sensors and time buffers are compared in order to find the adequate sensor for data generation and time buffer for feature extraction. The results indicate that it has been possible to achieve accuracies of 100% using a single sensor, the MQ2, with time buffers of 45 to 60 measures. With this proposal, it is possible to reduce the energy consumed by data gathering to 25% of the original consumption due to the use of a single sensor, thanks to the reduction in the sensors used in the previous prototype. Moreover, it has been possible to reduce the energy linked to data forwarding by almost 97 % due to using a time buffer.
Idioma: Inglés
DOI: 10.1109/JSEN.2024.3442874
Año: 2024
Publicado en: IEEE SENSORS JOURNAL 24, 19 (2024), 30845-30852
ISSN: 1530-437X

Factor impacto JCR: 4.5 (2024)
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 16 / 79 = 0.203 (2024) - Q1 - T1
Categ. JCR: PHYSICS, APPLIED rank: 53 / 187 = 0.283 (2024) - Q2 - T1
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 98 / 366 = 0.268 (2024) - Q2 - T1

Factor impacto SCIMAGO: 1.039 - Instrumentation (Q1) - Electrical and Electronic Engineering (Q1)

Financiación: info:eu-repo/grantAgreement/ES/AEI/PID2022-136779OB-C31
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2025-09-22-14:50:42)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos



 Registro creado el 2024-09-26, última modificación el 2025-09-23


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)