Mathematical modeling and forecasting of COVID-19: experience in Santiago de Cuba province
Resumen: In the province of Santiago de Cuba, Cuba, the COVID-19 epidemic has a limited progression that shows an early small-number peak of infections. Most published mathematical models fit data with high numbers of confirmed cases. In contrast, small numbers of cases make it difficult to predict the course of the epidemic. We present two known models adapted to capture the noisy dynamics of COVID-19 in the Santiago de Cuba province. Parameters of both models were estimated using the approximate-Bayesian-computation framework with dedicated error laws. One parameter of each model was updated on key dates of travel restrictions. Both models approximately predicted the infection peak and the end of the COVID-19 epidemic in Santiago de Cuba. The first model predicted 57 reported cases and 16 unreported cases. Additionally, it estimated six initially exposed persons. The second model forecasted 51 confirmed cases at the end of the epidemic. In conclusion, an opportune epidemiological investigation, along with the low number of initially exposed individuals, might partly explain the favorable evolution of the COVID-19 epidemic in Santiago de Cuba. With the available data, the simplest model predicted the epidemic evolution with greater precision, and the more complex model helped to explain the epidemic phenomenology.
Idioma: Inglés
DOI: 10.31349/RevMexFis.67.123
Año: 2021
Publicado en: REVISTA MEXICANA DE FISICA 67, 1 (2021), 123-136
ISSN: 0035-001X

Factor impacto JCR: 1.702 (2021)
Categ. JCR: PHYSICS, MULTIDISCIPLINARY rank: 55 / 86 = 0.64 (2021) - Q3 - T2
Factor impacto CITESCORE: 1.9 - Social Sciences (Q2) - Physics and Astronomy (Q3)

Factor impacto SCIMAGO: 0.248 - Physics and Astronomy (miscellaneous) (Q3) - Education (Q3)

Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Matemática Aplicada (Dpto. Matemática Aplicada)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2023-05-18-14:04:06)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-03-16, última modificación el 2023-05-19


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)