Motivic zeta functions on Q-Gorenstein varieties
Resumen: We study motivic zeta functions for Q-divisors in a Q-Gorenstein variety. By using a toric partial resolution of singularities we reduce this study to the local case of two normal crossing divisors where the ambient space is an abelian quotient singularity. For the latter we provide a closed formula which is worked out directly on the quotient singular variety. As a first application we provide a family of surface singularities where the use of weighted blow-ups reduces the set of candidate poles drastically. We also present an example of a quotient singularity under the action of a nonabelian group, from which we compute some invariants of motivic nature after constructing a Q-resolution.
Idioma: Inglés
DOI: 10.1016/j.aim.2020.107192
Año: 2020
Publicado en: Advances in Mathematics 370 (2020), 107192 [34 pp]
ISSN: 0001-8708

Factor impacto JCR: 1.688 (2020)
Categ. JCR: MATHEMATICS rank: 56 / 330 = 0.17 (2020) - Q1 - T1
Factor impacto SCIMAGO: 2.281 - Mathematics (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-17R
Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-20R
Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón
Financiación: info:eu-repo/grantAgreement/ES/MCIU/CAS18-00473
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-76868-C2-2-P
Tipo y forma: Article (PostPrint)
Exportado de SIDERAL (2024-04-10-08:43:11)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2021-05-25, modifiée le 2024-04-10


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)