Preparation of Cu cluster catalysts by simultaneous cooling-microwave heating: application in radical cascade annulation

Song, L. ; Manno, R. (Universidad de Zaragoza) ; Ranjan, P. ; Sebastian, V. (Universidad de Zaragoza) ; Irusta, S. (Universidad de Zaragoza) ; Mallada, R. (Universidad de Zaragoza) ; Van Meervelt, L. ; Santamaria, J. (Universidad de Zaragoza) ; Van der Eycken, E.V.
Preparation of Cu cluster catalysts by simultaneous cooling-microwave heating: application in radical cascade annulation
Financiación H2020 / H2020 Funds
Resumen: One of the hallmarks of microwave irradiation is its selective heating mechanism. In the past 30 years, alternative designs of chemical reactors have been introduced, where the microwave (MW) absorber occupies a limited reactor volume but the surrounding environment is MW transparent. This advantage results in a different heating profile or even the possibility to quickly cool down the system. Simultaneous cooling-microwave heating has been largely adopted for organic chemical transformations. However, to the best of our knowledge there are no reports of its application in the field of nanocluster synthesis. In this work, we propose an innovative one-pot procedure for the synthesis of Cu nanoclusters. The cluster nucleation was selectively MW-activated inside the pores of a highly ordered mesoporous substrate. Once the nucleation event occurred, the crystallization reaction was instantaneously quenched, precluding the growth events and favoring the production of Cu clusters with a homogenous size distribution. Herein, we demonstrated that Cu nanoclusters could be successfully adopted for radical cascade annulations ofN-alkoxybenzamides, resulting in various tricyclic and tetracyclic isoquinolones, which are widely present in lots of natural products and bioactive compounds. Compared to reported homogeneous methods, supported Cu nanoclusters provide a better platform for a green, sustainable and efficient heterogeneous approach for the synthesis of tricyclic and tetracyclic isoquinolones, avoiding a variety of toxic waste/byproducts and metal contamination in the final products.
Idioma: Inglés
DOI: 10.1039/d0na00980f
Año: 2021
Publicado en: Nanoscale Advances 3, 3 (2021), 1087-1095
ISSN: 2516-0230

Factor impacto JCR: 5.598 (2021)
Categ. JCR: CHEMISTRY, MULTIDISCIPLINARY rank: 56 / 180 = 0.311 (2021) - Q2 - T1
Categ. JCR: MATERIALS SCIENCE, MULTIDISCIPLINARY rank: 111 / 345 = 0.322 (2021) - Q2 - T1
Categ. JCR: NANOSCIENCE & NANOTECHNOLOGY rank: 55 / 109 = 0.505 (2021) - Q3 - T2

Factor impacto CITESCORE: 5.7 - Engineering (Q1) - Materials Science (Q1) - Physics and Astronomy (Q1) - Chemical Engineering (Q2)

Factor impacto SCIMAGO: 1.043 - Atomic and Molecular Physics, and Optics (Q1) - Materials Science (miscellaneous) (Q1) - Engineering (miscellaneous) (Q1) - Bioengineering (Q1)

Financiación: info:eu-repo/grantAgreement/EC/H2020/721290/EU/European Training Network for Continuous Sonication and Microwave Reactors/COSMIC
Tipo y forma: Article (Published version)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)
Área (Departamento): Área Tecnologi. Medio Ambiente (Dpto. Ing.Quím.Tecnol.Med.Amb.)

Exportado de SIDERAL (2023-05-18-13:46:34)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > tecnologias_del_medio_ambiente
articulos > articulos-por-area > ingenieria_quimica



 Notice créée le 2021-05-25, modifiée le 2023-05-19


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)