000102128 001__ 102128
000102128 005__ 20230519145407.0
000102128 0247_ $$2doi$$a10.3390/biology10020135
000102128 0248_ $$2sideral$$a124359
000102128 037__ $$aART-2021-124359
000102128 041__ $$aeng
000102128 100__ $$0(orcid)0000-0001-6727-563X$$aUrdeitx, P.$$uUniversidad de Zaragoza
000102128 245__ $$aEnhanced piezoelectric fibered extracellular matrix to promote cardiomyocyte maturation and tissue formation: a 3d computational model
000102128 260__ $$c2021
000102128 5060_ $$aAccess copy available to the general public$$fUnrestricted
000102128 5203_ $$aMechanical and electrical stimuli play a key role in tissue formation, guiding cell processes such as cell migration, differentiation, maturation, and apoptosis. Monitoring and controlling these stimuli on in vitro experiments is not straightforward due to the coupling of these different stimuli. In addition, active and reciprocal cell–cell and cell–extracellular matrix interactions are essential to be considered during formation of complex tissue such as myocardial tissue. In this sense, computational models can offer new perspectives and key information on the cell microenvironment. Thus, we present a new computational 3D model, based on the Finite Element Method, where a complex extracellular matrix with piezoelectric properties interacts with cardiac muscle cells during the first steps of tissue formation. This model includes collective behavior and cell processes such as cell migration, maturation, differentiation, proliferation, and apoptosis. The model has employed to study the initial stages of in vitro cardiac aggregate formation, considering cell–cell junctions, under different extracellular matrix configurations. Three different cases have been purposed to evaluate cell behavior in fibered, mechanically stimulated fibered, and mechanically stimulated piezoelectric fibered extra-cellular matrix. In this last case, the cells are guided by the coupling of mechanical and electrical stimuli. Accordingly, the obtained results show the formation of more elongated groups and enhancement in cell proliferation.
000102128 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FSE/T24-20R$$9info:eu-repo/grantAgreement/ES/MINECO-AEI/PID2019-104009RB-I00-AEI-10.13039-501100011033
000102128 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000102128 590__ $$a5.168$$b2021
000102128 592__ $$a0.903$$b2021
000102128 594__ $$a2.8$$b2021
000102128 591__ $$aBIOLOGY$$b21 / 94 = 0.223$$c2021$$dQ1$$eT1
000102128 593__ $$aBiochemistry, Genetics and Molecular Biology (miscellaneous)$$c2021$$dQ1
000102128 593__ $$aAgricultural and Biological Sciences (miscellaneous)$$c2021$$dQ1
000102128 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000102128 700__ $$0(orcid)0000-0003-0088-7222$$aDoweidar, M.H.$$uUniversidad de Zaragoza
000102128 7102_ $$15004$$2605$$aUniversidad de Zaragoza$$bDpto. Ingeniería Mecánica$$cÁrea Mec.Med.Cont. y Teor.Est.
000102128 773__ $$g10, 2 (2021), 135 [27 pp.]$$tBiology$$x2079-7737
000102128 8564_ $$s12787996$$uhttps://zaguan.unizar.es/record/102128/files/texto_completo.pdf$$yVersión publicada
000102128 8564_ $$s2620337$$uhttps://zaguan.unizar.es/record/102128/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000102128 909CO $$ooai:zaguan.unizar.es:102128$$particulos$$pdriver
000102128 951__ $$a2023-05-18-13:49:28
000102128 980__ $$aARTICLE