Asymptotic divergences and strong dichotomy
Resumen: The Schnorr-Stimm dichotomy theorem [31] concerns finite-state gamblers that bet on infinite sequences of symbols taken from a finite alphabet S. The theorem asserts that, for any such sequence S, the following two things are true. (1) If S is not normal in the sense of Borel (meaning that every two strings of equal length appear with equal asymptotic frequency in S), then there is a finite-state gambler that wins money at an infinitely-often exponential rate betting on S. (2) If S is normal, then any finite-state gambler betting on S loses money at an exponential rate betting on S. In this paper we use the Kullback-Leibler divergence to formulate the lower asymptotic divergence div(S||a) of a probability measure a on S from a sequence S over S and the upper asymptotic divergence Div(S||a) of a from S in such a way that a sequence S is a-normal (meaning that every string w has asymptotic frequency a(w) in S) if and only if Div(S||a) = 0. We also use the Kullback-Leibler divergence to quantify the total risk RiskG(w) that a finite-state gambler G takes when betting along a prefix w of S. Our main theorem is a strong dichotomy theorem that uses the above notions to quantify the exponential rates of winning and losing on the two sides of the Schnorr-Stimm dichotomy theorem (with the latter routinely extended from normality to a-normality). Modulo asymptotic caveats in the paper, our strong dichotomy theorem says that the following two things hold for prefixes w of S. (10) The infinitely-often exponential rate of winning in 1 is 2Div(S||a)|w| . (20) The exponential rate of loss in 2 is 2-RiskG(w) . We also use (10) to show that 1 - Div(S||a)/c, where c = log(1/mina¿S a(a)), is an upper bound on the finite-state a-dimension of S and prove the dual fact that 1 - div(S||a)/c is an upper bound on the finite-state strong a-dimension of S.
Idioma: Inglés
DOI: 10.4230/LIPIcs.STACS.2020.51
Año: 2020
Publicado en: Leibniz international proceedings in informatics 154 (2020), 51 [15 pp.]
ISSN: 1868-8969

Factor impacto SCIMAGO: 0.54 - Software - Logic

Financiación: info:eu-repo/grantAgreement/ES/MICINN/TIN2016-80347-R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2021-09-02-08:51:58)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos



 Registro creado el 2021-08-20, última modificación el 2021-09-02


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)