Mapillary street-level sequences: A dataset for lifelong place recognition
Financiación H2020 / H2020 Funds
Resumen: Lifelong place recognition is an essential and challenging task in computer vision with vast applications in robust localization and efficient large-scale 3D reconstruction. Progress is currently hindered by a lack of large, diverse, publicly available datasets. We contribute with Mapillary Street-Level Sequences (SLS), a large dataset for urban and suburban place recognition from image sequences. It contains more than 1.6 million images curated from the Mapillary collaborative mapping platform. The dataset is orders of magnitude larger than current data sources, and is designed to reflect the diversities of true lifelong learning. It features images from 30 major cities across six continents, hundreds of distinct cameras, and substantially different viewpoints and capture times, spanning all seasons over a nine year period. All images are geo-located with GPS and compass, and feature high-level attributes such as road type. We propose a set of benchmark tasks designed to push state-of-the-art performance and provide baseline studies. We show that current state-of-the-art methods still have a long way to go, and that the lack of diversity in existing datasets have prevented generalization to new environments. The dataset and benchmarks are available for academic research.
Idioma: Inglés
DOI: 10.1109/CVPR42600.2020.00270
Año: 2020
Publicado en: Proceedings - IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2020), 2623-2632
ISSN: 1063-6919

Factor impacto SCIMAGO: 4.658 - Software - Computer Vision and Pattern Recognition

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/T45-17R
Financiación: info:eu-repo/grantAgreement/EC/H2020/757360/EU/Measuring with no tape/NoTape
Financiación: info:eu-repo/grantAgreement/ES/MCIU-AEI-FEDER/PGC2018-096367-B-I00
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2021-09-02-10:21:11)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-08-20, última modificación el 2021-09-02


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)