Optimization of the design of polygeneration systems for the residential sector under different self-consumption regulations
Resumen: Polygeneration systems enable natural resources to be exploited efficiently, decreasing CO2 emissions and achieving economic savings relative to the conventional separate production. However, their economic feasibility depends on the legal framework. Preliminary design of polygeneration systems for the residential sector based on the last Spanish self-consumption regulations RD 900/2015 and RD 244/2019 was carried out in Zaragoza, Spain. Both regulations were applied to individual and collective installations. Several technologies, appropriate for the energy supply to residential buildings, for example, photovoltaics, wind turbines, solar thermal collectors, microcogeneration engines, heat pump, gas boiler, absorption chiller, and thermal and electric energy storage were considered candidate technologies for the polygeneration system. A mixed integer linear programming model was developed to minimize the total annual cost of polygeneration systems. Scenarios with and without electricity sale were considered. CO2 emissions were also calculated to estimate the environmental impact. Results show that RD 900/2015 discourages the investment in self-consumption systems whereas the RD 244/2019 encourages them, especially in renewable energy technologies. Moreover, in economic terms, it is more profitable to invest in collective self-consumption installations over individual installations. However, this does not necessarily represent a significant reduction of CO2 emissions with respect to individual installations since the natural gas consumption tends to increase as its unit price decreases because of the increase of its consumption level. Thus, more appropriate pricing of natural gas in residential sector, in which its cost would not be reduced when increasing its consumption, would be required to achieve significant CO2 emissions reduction. In all cases, the photovoltaic panels (PV) are competitive and profitable without subsidies in self-consumption schemes and the reversible heat pump (HP) played an important role for the CO2 emissions reduction. In a horizon to achieve zero CO2 emissions, the net metering scheme could be an interesting and profitable alternative to be considered.
Idioma: Inglés
DOI: 10.1002/er.5738
Año: 2020
Publicado en: International Journal of Energy Research 44, 14 (2020), 11248-11273
ISSN: 0363-907X

Factor impacto JCR: 5.164 (2020)
Categ. JCR: NUCLEAR SCIENCE & TECHNOLOGY rank: 1 / 34 = 0.029 (2020) - Q1 - T1
Categ. JCR: ENERGY & FUELS rank: 43 / 114 = 0.377 (2020) - Q2 - T2

Factor impacto SCIMAGO: 0.808 - Energy Engineering and Power Technology (Q1) - Renewable Energy, Sustainability and the Environment (Q1) - Nuclear Energy and Engineering (Q1) - Fuel Technology (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/Construyendo Europa desde Aragón
Financiación: info:eu-repo/grantAgreement/ES/DGA/T55-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/ENE2017-87711-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2022-04-26-08:57:02)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-08-20, última modificación el 2022-04-26


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)