000106688 001__ 106688
000106688 005__ 20230519145447.0
000106688 0247_ $$2doi$$a10.3390/antiox10060913
000106688 0248_ $$2sideral$$a124624
000106688 037__ $$aART-2021-124624
000106688 041__ $$aeng
000106688 100__ $$0(orcid)0000-0002-0474-255X$$aGuío, Jorge$$uUniversidad de Zaragoza
000106688 245__ $$aThioredoxin dependent changes in the redox states of FurA from Anabaena sp. PCC7120
000106688 260__ $$c2021
000106688 5060_ $$aAccess copy available to the general public$$fUnrestricted
000106688 5203_ $$aFurA is a multifunctional regulator in cyanobacteria that contains five cysteines, four of them arranged into two CXXC motifs. Lack of a structural zinc ion enables FurA to develop disulfide reductase activity. In vivo, FurA displays several redox isoforms, and the oxidation state of its cysteines determines its activity as regulator and its ability to bind different metabolites. Because of the relationship between FurA and the control of genes involved in oxidative stress defense and photosynthetic metabolism, we sought to investigate the role of type m thioredoxin TrxA as a potential redox partner mediating dithiol-disulfide exchange reactions necessary to facilitate the interaction of FurA with its different ligands. Both in vitro cross-linking assays and in vivo two-hybrid studies confirmed the interaction between FurA and TrxA. Light to dark transitions resulted in reversible oxidation of a fraction of the regulator present in Anabaena sp. PCC7120. Reconstitution of an electron transport chain using E. coli NADPH-thioredoxin-reductase followed by alkylation of FurA reduced cysteines evidenced the ability of TrxA to reduce FurA. Furthermore, the use of site-directed mutants allowed us to propose a plausible mechanism for FurA reduction. These results point to TrxA as one of the redox partners that modulates FurA performance.
000106688 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E35-17R$$9info:eu-repo/grantAgreement/ES/MCIU/PID2019-104889GB-I00$$9info:eu-repo/grantAgreement/ES/MINECO/BFU2016-77671-P
000106688 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000106688 590__ $$a7.675$$b2021
000106688 592__ $$a1.008$$b2021
000106688 594__ $$a6.5$$b2021
000106688 591__ $$aBIOCHEMISTRY & MOLECULAR BIOLOGY$$b50 / 297 = 0.168$$c2021$$dQ1$$eT1
000106688 593__ $$aBiochemistry$$c2021$$dQ1
000106688 591__ $$aFOOD SCIENCE & TECHNOLOGY$$b12 / 144 = 0.083$$c2021$$dQ1$$eT1
000106688 593__ $$aPhysiology$$c2021$$dQ1
000106688 591__ $$aCHEMISTRY, MEDICINAL$$b4 / 63 = 0.063$$c2021$$dQ1$$eT1
000106688 593__ $$aMolecular Biology$$c2021$$dQ1
000106688 593__ $$aClinical Biochemistry$$c2021$$dQ1
000106688 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000106688 700__ $$0(orcid)0000-0002-8181-2689$$aBes, Mª Teresa$$uUniversidad de Zaragoza
000106688 700__ $$aBalsera, Mónica
000106688 700__ $$0(orcid)0000-0001-5327-4046$$aCalvo-Beguería, L.
000106688 700__ $$0(orcid)0000-0001-6435-3540$$aSevilla, E.$$uUniversidad de Zaragoza
000106688 700__ $$0(orcid)0000-0002-2742-3711$$aPeleato, Mª Luisa$$uUniversidad de Zaragoza
000106688 700__ $$0(orcid)0000-0001-8644-4574$$aFillat, Mª Francisca$$uUniversidad de Zaragoza
000106688 7102_ $$11002$$2412$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Fisiología Vegetal
000106688 7102_ $$11002$$2060$$aUniversidad de Zaragoza$$bDpto. Bioq.Biolog.Mol. Celular$$cÁrea Bioquímica y Biolog.Mole.
000106688 773__ $$g10, 6 (2021), 913 [14 pp.]$$pAntioxidants$$tAntioxidants$$x2076-3921
000106688 8564_ $$s1856832$$uhttps://zaguan.unizar.es/record/106688/files/texto_completo.pdf$$yVersión publicada
000106688 8564_ $$s2707540$$uhttps://zaguan.unizar.es/record/106688/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000106688 909CO $$ooai:zaguan.unizar.es:106688$$particulos$$pdriver
000106688 951__ $$a2023-05-18-14:39:37
000106688 980__ $$aARTICLE