Unsupervised Neural Networks for Identification of Aging Conditions in Li-Ion Batteries
Resumen: This paper explores a new methodology based on data-driven approaches to identify and track degradation processes in Li-ion batteries. Our goal is to study if it is possible to differentiate the state of degradation of cells that present similar aging in terms of overall parameters (similar remaining capacity, state of health or internal resistance), but that have had different applications or conditions of use (different discharge currents, depth of discharges, temperatures, etc.). For this purpose, this study proposed to analyze voltage waveforms of cells obtained in cycling tests by using an unsupervised neural network, the Self-Organizing Map (SOM). In this work, a laboratory dataset of real Li-ion cells was used, and the SOM algorithm processed battery cell features, thus carrying out smart sensing of the battery. It was shown that our methodology differentiates the previous conditions of use (history) of a cell, complementing conventional metrics such as the state of health, which could be useful for the growing second-life market because it allows for determining more precisely the state of disease of a battery and assesses its suitability for a specific application.
Idioma: Inglés
DOI: 10.3390/electronics10182294
Año: 2021
Publicado en: Electronics 10, 18 (2021), 2294 [20 pp]
ISSN: 2079-9292

Factor impacto JCR: 2.69 (2021)
Categ. JCR: COMPUTER SCIENCE, INFORMATION SYSTEMS rank: 100 / 163 = 0.613 (2021) - Q3 - T2
Categ. JCR: PHYSICS, APPLIED rank: 82 / 161 = 0.509 (2021) - Q3 - T2
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 139 / 274 = 0.507 (2021) - Q3 - T2

Factor impacto CITESCORE: 3.7 - Computer Science (Q2) - Engineering (Q2)

Factor impacto SCIMAGO: 0.59 - Computer Networks and Communications (Q2) - Signal Processing (Q2) - Hardware and Architecture (Q2) - Control and Systems Engineering (Q2)

Financiación: info:eu-repo/grantAgreement/ES/FEDER/CDTI/MIR-20201042 CARDHIN
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/TIN2017-88841-R
Tipo y forma: Artículo (Versión definitiva)
Área (Departamento): Área Tecnología Electrónica (Dpto. Ingeniería Electrón.Com.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.


Exportado de SIDERAL (2024-01-22-15:33:21)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2021-10-08, última modificación el 2024-01-22


Versión publicada:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)