An Accurate and Robust Numerical Scheme for Transport Equations

Llorente Lázaro, Víctor Javier
Pascau Benito, Antonio (dir.)

Universidad de Zaragoza, 2020


Resumen: En esta tesis se presenta una nueva técnica de discretización para ecuaciones de transporte en problemas de convección-difusión para el rango completo de números de Péclet. La discretización emplea el flujo exacto de una ecuación de transporte unidimensional en estado estacionario para deducir una ecuación discreta de tres puntos en problemas unidimensionales y cinco puntos en problemas bidimensionales. Con "flujo exacto" se entiende que se puede obtener la solución exacta en función de integrales de algunos parámetros del fluido y flujo, incluso si estos parámetros son vari- ables en un volumen de control. Las cuadraturas de alto orden se utilizan para lograr resultados numéricos cercanos a la precisión de la máquina, incluso con mallas bastas.
Como la discretización es esencialmente unidimensional, no está garantizada una solución con precisión de máquina para problemas multidimensionales, incluso en los casos en que las integrales a lo largo de cada coordenada cartesiana tienen una primitiva. En este sentido, la contribución principal de esta tesis consiste en una forma simple y elegante de obtener soluciones en problemas multidimensionales sin dejar de utilizar la formulación unidimensional. Además, si el problema es tal que la solución tiene precisión de máquina en el problema unidimensional a lo largo de las líneas coordenadas, también la tendrá para el dominio multidimensional.


Resumen (otro idioma): In this thesis, we present a novel discretization technique for transport equations in convection-diffusion problems across the whole range of Péclet numbers. The discretization employs the exact flux of a steady-state one-dimensional transport equation to derive a discrete equation with a three-point stencil in one-dimensional problems and a five-point stencil in two-dimensional ones. With "exact flux" it is meant that the exact solution can be obtained as a function of integrals of some fluid and flow parameters, even if these parameters are variable across a control volume. High-order quadratures are used to achieve numerical results close to machine- accuracy even with coarse grids. As the discretization is essentially one-dimensional, getting the machine- accurate solution of multidimensional problems is not guaranteed even in cases where the integrals along each Cartesian coordinate have a primitive. In this regard, the main contribution of this thesis consists in a simple and elegant way of getting solutions in multidimensional problems while still using the one-dimensional formulation. Moreover, if the problem is such that the solution is machine-accurate in the one-dimensional problem along coordinate lines, it will also be for the multidimensional domain.

Pal. clave: mecanica de fluidos ; analisis numerico ; ecuaciones diferenciales en derivadas parciales ; cuadratura

Titulación: Programa de Doctorado en Ingeniería Mecánica
Plan(es): Plan 514
Nota: Presentado: 22 10 2020
Nota: Tesis-Univ. Zaragoza, , 2020

Creative Commons License





 Registro creado el 2021-11-10, última modificación el 2021-11-10


Texto completo:
Descargar el texto completo
PDF

Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)