Semi-Supervised Semantic Segmentation with Pixel-Level Contrastive Learning from a Class-wise Memory Bank
Resumen: This work presents a novel approach for semi-supervised semantic segmentation. The key element of this approach is our contrastive learning module that enforces the segmentation network to yield similar pixel-level feature representations for same-class samples across the whole dataset. To achieve this, we maintain a memory bank continuously updated with relevant and high-quality feature vectors from labeled data. In an end-to-end training, the features from both labeled and unlabeled data are optimized to be similar to same-class samples from the memory bank. Our approach outperforms the current state-of-the-art for semi-supervised semantic segmentation and semi-supervised domain adaptation on well-known public benchmarks, with larger improvements on the most challenging scenarios, i.e., less available labeled data.
Idioma: Inglés
DOI: 10.1109/ICCV48922.2021.00811
Año: 2021
Publicado en: Proceedings (IEEE International Conference on Computer Vision) 2021 (2021), 8219-8228
ISSN: 1550-5499

Originalmente disponible en: Texto completo de la revista

Financiación: info:eu-repo/grantAgreement/ES/DGA/T45-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO-FEDER/PGC2018-098817-A-I00
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Ingen.Sistemas y Automát. (Dpto. Informát.Ingenie.Sistms.)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)


Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2023-05-26-08:13:32)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Ingeniería de Sistemas y Automática
Articles > Artículos por área > Lenguajes y Sistemas Informáticos



 Record created 2021-11-15, last modified 2023-05-26


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)