Design and operational performance maps of calcium looping thermochemical energy storage for concentrating solar power plants
Financiación H2020 / H2020 Funds
Resumen: Calcium-looping thermochemical energy storage associated to concentrating solar plants appears as promising technology given its potential to increase the storage period and energy density of the stored material. Up to now, research efforts focused on the global efficiency of the TCES associated to different power cycles under fixed modes of operation: day or night. However, TCES will never operate under a stationary situation but will experience different operation points to adapt to solar availability and energy demand from the power cycle. The aim is to analyse the influence of those variables which define the operation points, under energy storage and release modes, in the design of the heat exchangers network, storage tanks and reactors involved in the TCES system. The equipment in the conceptual plant have been modelled accounting variable storage/discharge fractions in the mass balances. The results show a suitable capture efficiency, quantifies the stored power and define the size and performance of the heat exchangers required to operate the system. The behaviour of each heat exchanger and their relevance in heat integration with a power plant is derived. The novelty relies in the analysis of potential situations arising from different combinations of charge/discharge fractions of storage tanks.
Idioma: Inglés
DOI: 10.1016/j.energy.2020.119715
Año: 2021
Publicado en: Energy 220 (2021), 119715 [11 pp.]
ISSN: 0360-5442

Factor impacto JCR: 8.857 (2021)
Categ. JCR: THERMODYNAMICS rank: 3 / 63 = 0.048 (2021) - Q1 - T1
Categ. JCR: ENERGY & FUELS rank: 24 / 119 = 0.202 (2021) - Q1 - T1

Factor impacto CITESCORE: 13.4 - Engineering (Q1) - Energy (Q1) - Environmental Science (Q1)

Factor impacto SCIMAGO: 2.041 - Energy (miscellaneous) (Q1) - Energy Engineering and Power Technology (Q1) - Building and Construction (Q1) - Civil and Structural Engineering (Q1) - Renewable Energy, Sustainability and the Environment (Q1) - Management, Monitoring, Policy and Law (Q1) - Mechanical Engineering (Q1) - Modeling and Simulation (Q1) - Fuel Technology (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/T46-17R
Financiación: info:eu-repo/grantAgreement/EC/H2020/727348/EU/SOlar Calcium-looping integRAtion for Thermo-Chemical Energy Storage/SOCRATCES
Financiación: info:eu-repo/grantAgreement/ES/MCIU/FPU17-03902
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Máquinas y Motores Térmi. (Dpto. Ingeniería Mecánica)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2023-05-18-14:19:26)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Máquinas y Motores Térmicos



 Record created 2022-01-11, last modified 2023-05-19


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)