Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature

Cazaña, F. (Universidad de Zaragoza) ; Latorre, N. (Universidad de Zaragoza) ; Tarifa, P. (Universidad de Zaragoza) ; Royo, C.J. (Universidad de Zaragoza) ; Sebastián, V. (Universidad de Zaragoza) ; Romeo, E. (Universidad de Zaragoza) ; Centeno, M.A. ; Monzón, A. (Universidad de Zaragoza)
Performance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature
Resumen: This work explores the preparation of graphene-related materials (GRMs) grown on stainless steel foams via catalytic decomposition of methane (CDM). The main active phases for the reaction are the Fe nanoparticles segregated from the stainless-steel after the activation stage of the foam. The effect of the feed composition and reaction temperature has been studied in order to maximize the productivity, stability and selectivity to GRMs. The maximum productivity attained was 0.116 gC/gfoam h operating at 950 °C with a feed ratio of CH4/H2 = 3 (42.9 %CH4:14.3 %H2). The carbonaceous nanomaterials (CNMs) obtained were characterized by X-Ray diffraction, Raman spectroscopy and by transmission and scanning electron microscopy. The parameters of the kinetic model developed are directly related to the relevant stages of the process, including carburization, diffusion-precipitation and deactivation-regeneration. The balance among these sequential stages determines the overall performance of the activated foam. In conditions of rapid carburization of the Fe NPs (pCH4 > 14 %), the productivity to CNMs is favoured, avoiding an initial deactivation of the active sites by fouling with amorphous carbon. After a rapid carburization, the selectivity to the different CNMs is governed by the ratio CH4/H2, and mainly by the temperature. Thus, the formation of GRMs, mainly Few Layer Graphene (FLG) and even graphene, is favoured at temperatures above 900 °C. At lower temperatures, carbon nanotubes are formed.
Idioma: Inglés
DOI: 10.1016/j.cattod.2020.12.003
Año: 2022
Publicado en: Catalysis Today 383 (2022), 236-246
ISSN: 0920-5861

Factor impacto JCR: 5.3 (2022)
Categ. JCR: CHEMISTRY, APPLIED rank: 14 / 72 = 0.194 (2022) - Q1 - T1
Categ. JCR: ENGINEERING, CHEMICAL rank: 28 / 141 = 0.199 (2022) - Q1 - T1
Categ. JCR: CHEMISTRY, PHYSICAL rank: 57 / 161 = 0.354 (2022) - Q2 - T2

Factor impacto CITESCORE: 11.9 - Chemistry (Q1) - Chemical Engineering (Q1)

Factor impacto SCIMAGO: 1.053 - Chemistry (miscellaneous) (Q1) - Catalysis (Q2)

Financiación: info:eu-repo/grantAgreement/ES/MICINN/BES-2014-069010
Financiación: info:eu-repo/grantAgreement/ES/MICINN/ENE2017-82451-C3
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Ingeniería Química (Dpto. Ing.Quím.Tecnol.Med.Amb.)

Creative Commons Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace. No puede utilizar el material para una finalidad comercial. Si remezcla, transforma o crea a partir del material, no puede difundir el material modificado.


Exportado de SIDERAL (2024-03-18-12:41:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos



 Registro creado el 2022-01-11, última modificación el 2024-03-19


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)