000109382 001__ 109382
000109382 005__ 20240319080947.0
000109382 0247_ $$2doi$$a10.1016/j.cattod.2020.12.003
000109382 0248_ $$2sideral$$a122386
000109382 037__ $$aART-2022-122386
000109382 041__ $$aeng
000109382 100__ $$0(orcid)0000-0001-9220-9909$$aCazaña, F.$$uUniversidad de Zaragoza
000109382 245__ $$aPerformance of AISI 316L-stainless steel foams towards the formation of graphene related nanomaterials by catalytic decomposition of methane at high temperature
000109382 260__ $$c2022
000109382 5060_ $$aAccess copy available to the general public$$fUnrestricted
000109382 5203_ $$aThis work explores the preparation of graphene-related materials (GRMs) grown on stainless steel foams via catalytic decomposition of methane (CDM). The main active phases for the reaction are the Fe nanoparticles segregated from the stainless-steel after the activation stage of the foam. The effect of the feed composition and reaction temperature has been studied in order to maximize the productivity, stability and selectivity to GRMs. The maximum productivity attained was 0.116 gC/gfoam h operating at 950 °C with a feed ratio of CH4/H2 = 3 (42.9 %CH4:14.3 %H2). The carbonaceous nanomaterials (CNMs) obtained were characterized by X-Ray diffraction, Raman spectroscopy and by transmission and scanning electron microscopy. The parameters of the kinetic model developed are directly related to the relevant stages of the process, including carburization, diffusion-precipitation and deactivation-regeneration. The balance among these sequential stages determines the overall performance of the activated foam. In conditions of rapid carburization of the Fe NPs (pCH4 > 14 %), the productivity to CNMs is favoured, avoiding an initial deactivation of the active sites by fouling with amorphous carbon. After a rapid carburization, the selectivity to the different CNMs is governed by the ratio CH4/H2, and mainly by the temperature. Thus, the formation of GRMs, mainly Few Layer Graphene (FLG) and even graphene, is favoured at temperatures above 900 °C. At lower temperatures, carbon nanotubes are formed.
000109382 536__ $$9info:eu-repo/grantAgreement/ES/MICINN/BES-2014-069010$$9info:eu-repo/grantAgreement/ES/MICINN/ENE2017-82451-C3
000109382 540__ $$9info:eu-repo/semantics/openAccess$$aby-nc-nd$$uhttp://creativecommons.org/licenses/by-nc-nd/3.0/es/
000109382 590__ $$a5.3$$b2022
000109382 592__ $$a1.053$$b2022
000109382 591__ $$aCHEMISTRY, APPLIED$$b14 / 72 = 0.194$$c2022$$dQ1$$eT1
000109382 593__ $$aChemistry (miscellaneous)$$c2022$$dQ1
000109382 591__ $$aENGINEERING, CHEMICAL$$b28 / 141 = 0.199$$c2022$$dQ1$$eT1
000109382 593__ $$aCatalysis$$c2022$$dQ2
000109382 591__ $$aCHEMISTRY, PHYSICAL$$b57 / 161 = 0.354$$c2022$$dQ2$$eT2
000109382 594__ $$a11.9$$b2022
000109382 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/acceptedVersion
000109382 700__ $$0(orcid)0000-0001-6360-4475$$aLatorre, N.$$uUniversidad de Zaragoza
000109382 700__ $$aTarifa, P.$$uUniversidad de Zaragoza
000109382 700__ $$0(orcid)0000-0002-5713-1402$$aRoyo, C.J.$$uUniversidad de Zaragoza
000109382 700__ $$0(orcid)0000-0002-6873-5244$$aSebastián, V.$$uUniversidad de Zaragoza
000109382 700__ $$0(orcid)0000-0002-2363-2735$$aRomeo, E.$$uUniversidad de Zaragoza
000109382 700__ $$aCenteno, M.A.
000109382 700__ $$0(orcid)0000-0002-7836-5777$$aMonzón, A.$$uUniversidad de Zaragoza
000109382 7102_ $$15005$$2555$$aUniversidad de Zaragoza$$bDpto. Ing.Quím.Tecnol.Med.Amb.$$cÁrea Ingeniería Química
000109382 773__ $$g383 (2022), 236-246$$pCatal. today$$tCatalysis Today$$x0920-5861
000109382 8564_ $$s1817543$$uhttps://zaguan.unizar.es/record/109382/files/texto_completo.pdf$$yPostprint
000109382 8564_ $$s2419776$$uhttps://zaguan.unizar.es/record/109382/files/texto_completo.jpg?subformat=icon$$xicon$$yPostprint
000109382 909CO $$ooai:zaguan.unizar.es:109382$$particulos$$pdriver
000109382 951__ $$a2024-03-18-12:41:36
000109382 980__ $$aARTICLE