Confined cell migration and asymmetric hydraulic environments to evaluate the metastatic potential of cancer cells

Juste-Lanas, Yago (Universidad de Zaragoza) ; Guerrero, Pedro E. (Universidad de Zaragoza) ; Camacho-Gomez, Daniel (Universidad de Zaragoza) ; Hervas-Raluy, Silvia (Universidad de Zaragoza) ; García-Aznar, J.M. (Universidad de Zaragoza) ; Gómez-Benito, María José (Universidad de Zaragoza)
Confined cell migration and asymmetric hydraulic environments to evaluate the metastatic potential of cancer cells
Financiación H2020 / H2020 Funds
Resumen: Metastasis, a hallmark of cancer development, is also the leading reason for most cancer-related deaths. Furthermore, cancer cells are highly adaptable to microenvironments and can migrate along pre-existing channel-like tracks of anatomical structures. However, more representative three-dimensional models are required to reproduce the heterogeneity of metastatic cell migration in vivo to further understand the metastasis mechanism and develop novel therapeutic strategies against it. Here, we designed and fabricated different microfluidic-based devices that recreate confined migration and diverse environments with asymmetric hydraulic resistances. Our results show different migratory potential between metastatic and nonmetastatic cancer cells in confined environments. Moreover, although nonmetastatic cells have not been tested against barotaxis due to their low migration capacity, metastatic cells present an enhanced preference to migrate through the lowest resistance path, being sensitive to barotaxis. This device, approaching the study of metastasis capability based on confined cell migration and barotactic cell decisions, may pave the way for the implementation of such technology to determine and screen the metastatic potential of certain cancer cells.
Idioma: Inglés
DOI: 10.1115/1.4053143
Año: 2022
Publicado en: JOURNAL OF BIOMECHANICAL ENGINEERING-TRANSACTIONS OF THE ASME 144, 7 (2022), 074502 [29 pp.]
ISSN: 0148-0731

Factor impacto JCR: 1.7 (2022)
Categ. JCR: ENGINEERING, BIOMEDICAL rank: 81 / 96 = 0.844 (2022) - Q4 - T3
Categ. JCR: BIOPHYSICS rank: 56 / 70 = 0.8 (2022) - Q4 - T3

Factor impacto CITESCORE: 3.2 - Medicine (Q2) - Engineering (Q2)

Factor impacto SCIMAGO: 0.45 - Physiology (medical) (Q3) - Biomedical Engineering (Q3)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FEDER/RIS3-LMP74-18
Financiación: info:eu-repo/grantAgreement/EC/H2020/826494/EU/PRedictive In-silico Multiscale Analytics to support cancer personalized diaGnosis and prognosis, Empowered by imaging biomarkers/PRIMAGE
Financiación: info:eu-repo/grantAgreement/ES/MCIU/FPU17-03867
Financiación: info:eu-repo/grantAgreement/ES/MICINN/RTI2018-094494-B-C21
Tipo y forma: Article (PostPrint)
Área (Departamento): Área Biología Celular (Dpto. Bioq.Biolog.Mol. Celular)
Área (Departamento): Área Mec.Med.Cont. y Teor.Est. (Dpto. Ingeniería Mecánica)

Exportado de SIDERAL (2024-03-18-12:46:55)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > mec._de_medios_continuos_y_teor._de_estructuras
articulos > articulos-por-area > biologia_celular



 Notice créée le 2022-01-11, modifiée le 2024-03-19


Postprint:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)