Proof of conjectures on the standard deviation, skewness and kurtosis of the shifted Gompertz distribution
Resumen: Three conjectures on the standard deviation, skewness and kurtosis of the shifted Gompertz distribution, as the shape parameter increases to +∞, are proved. In this regard, the exponential integral function and polygamma functions are used in the proofs. In addition, an explicit expression for the ith moment of this probabilistic model is obtained. These results allow to place the shifted Gompertz distribution in the Skewness–Kurtosis diagram, providing a valuable help in the decision to choose the shifted Gompertz distribution among the models to fit data. Their usefulness is illustrated by fitting a real malaria data set using the maximum likelihood method for estimating the parameters of the shifted Gompertz distribution and some classical models. Goodness-of-fit measures are used to compare their performance.
Idioma: Inglés
DOI: 10.57805/revstat.v19i1.336
Año: 2021
Publicado en: REVSTAT-STATISTICAL JOURNAL 19, 1 (2021), 131-143
ISSN: 1645-6726

Originalmente disponible en: Texto completo de la revista

Factor impacto JCR: 0.985 (2021)
Categ. JCR: STATISTICS & PROBABILITY rank: 101 / 125 = 0.808 (2021) - Q4 - T3
Factor impacto CITESCORE: 1.5 - Mathematics (Q3)

Factor impacto SCIMAGO: 0.352 - Statistics and Probability (Q3)

Tipo y forma: Article (Published version)
Área (Departamento): Área Estadís. Investig. Opera. (Dpto. Métodos Estadísticos)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2023-05-26-08:13:36)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles > Artículos por área > Estadística e Investigación Operativa



 Record created 2022-01-11, last modified 2023-05-26


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)