Characterization of Atrial Propagation Patterns and Fibrotic Substrate With a Modified Omnipolar Electrogram Strategy in Multi-Electrode Arrays
Financiación H2020 / H2020 Funds
Resumen: Introduction: The omnipolar electrogram method was recently proposed to try to generate orientation-independent electrograms. It estimates the electric field from the bipolar electrograms of a clique, under the assumption of locally plane and homogeneous propagation. The local electric field evolution over time describes a loop trajectory from which omnipolar signals in the propagation direction, substrate and propagation features, are derived. In this work, we propose substrate and conduction velocity mapping modalities based on a modified version of the omnipolar electrogram method, which aims to reduce orientation-dependent residual components in the standard approach.

& nbsp;

Methods: A simulated electrical propagation in 2D, with a tissue including a circular patch of diffuse fibrosis, was used for validation. Unipolar electrograms were calculated in a multi-electrode array, also deriving bipolar electrograms along the two main directions of the grid. Simulated bipolar electrograms were also contaminated with real noise, to assess the robustness of the mapping strategies against noise. The performance of the maps in identifying fibrosis and in reproducing unipolar reference voltage maps was evaluated. Bipolar voltage maps were also considered for performance comparison.

& nbsp;

Results: Results show that the modified omnipolar mapping strategies are more accurate and robust against noise than bipolar and standard omnipolar maps in fibrosis detection (accuracies higher than 85 vs. 80% and 70%, respectively). They present better correlation with unipolar reference voltage maps than bipolar and original omnipolar maps (Pearson''s correlations higher than 0.75 vs. 0.60 and 0.70, respectively).

& nbsp;

Conclusion: The modified omnipolar method improves fibrosis detection, characterization of substrate and propagation, also reducing the residual sensitivity to directionality over the standard approach and improving robustness against noise. Nevertheless, studies with real electrograms will elucidate its impact in catheter ablation interventions.


Idioma: Inglés
DOI: 10.3389/fphys.2021.674223
Año: 2021
Publicado en: FRONTIERS IN PHYSIOLOGY 12 (2021)
ISSN: 1664-042X

Factor impacto JCR: 4.755 (2021)
Categ. JCR: PHYSIOLOGY rank: 20 / 81 = 0.247 (2021) - Q1 - T1
Factor impacto CITESCORE: 6.6 - Medicine (Q1) - Biochemistry, Genetics and Molecular Biology (Q2)

Factor impacto SCIMAGO: 1.126 - Physiology (medical) (Q1) - Physiology (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA-FSE/T39-20R-BSICoS group
Financiación: info:eu-repo/grantAgreement/EC/H2020/766082/EU/MultidisciplinarY training network for ATrial fibRillation monItoring, treAtment and progression/MY-ATRIA
Financiación: info:eu-repo/grantAgreement/ES/MICINN-FEDER/PID2019-105674RB-I00
Financiación: info:eu-repo/grantAgreement/ES/MICINN/PID2019-104881RB-I00
Tipo y forma: Article (Published version)
Área (Departamento): Área Teoría Señal y Comunicac. (Dpto. Ingeniería Electrón.Com.)
Exportado de SIDERAL (2023-05-18-15:14:31)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos > articulos-por-area > teoria_de_la_senal_y_comunicaciones



 Notice créée le 2022-01-15, modifiée le 2023-05-19


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)