Laplacian coflow for warped G2-structures
Resumen: We consider the Laplacian coflow of a G2-structure on warped products of the form M7=M6×fS1 with M6 a compact 6-manifold endowed with an SU(3)-structure. We give an explicit reinterpretation of this flow as a set of evolution equations of the differential forms defining the SU(3)-structure on M6 and the warping function f. Necessary and sufficient conditions for the existence of solution for this flow are given. Finally we describe new solutions for this flow where the SU(3)-structure on M6 is nearly Kähler, symplectic half-flat or balanced. © 2020 Elsevier B.V.
Idioma: Inglés
DOI: 10.1016/j.difgeo.2020.101593
Año: 2020
Publicado en: Differential Geometry and its Application 69 (2020), 101593 1-19
ISSN: 0926-2245

Originalmente disponible en: Texto completo de la revista

Factor impacto JCR: 0.694 (2020)
Categ. JCR: MATHEMATICS rank: 240 / 330 = 0.727 (2020) - Q3 - T3
Categ. JCR: MATHEMATICS, APPLIED rank: 238 / 265 = 0.898 (2020) - Q4 - T3

Factor impacto SCIMAGO: 0.551 - Analysis (Q2) - Geometry and Topology (Q2) - Computational Theory and Mathematics (Q2)

Tipo y forma: Article (PostPrint)
Área (Departamento): Área Didáctica Matemática (Dpto. Matemáticas)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2022-02-08-11:18:30)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-02-08, last modified 2022-02-08


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)