Combining the Band-Limited Parameterization and Semi-Lagrangian Runge–Kutta Integration for Efficient PDE-Constrained LDDMM
Resumen: The family of PDE-constrained Large Deformation Diffeomorphic Metric Mapping (LDDMM) methods is emerging as a particularly interesting approach for physically meaningful diffeomorphic transformations. The original combination of Gauss–Newton–Krylov optimization and Runge–Kutta integration shows excellent numerical accuracy and fast convergence rate. However, its most significant limitation is the huge computational complexity, hindering its extensive use in Computational Anatomy applied studies. This limitation has been treated independently by the problem formulation in the space of band-limited vector fields and semi-Lagrangian integration. The purpose of this work is to combine both in three variants of band-limited PDE-constrained LDDMM for further increasing their computational efficiency. The accuracy of the resulting methods is evaluated extensively. For all the variants, the proposed combined approach shows a significant increment of the computational efficiency. In addition, the variant based on the deformation state equation is positioned consistently as the best performing method across all the evaluation frameworks in terms of accuracy and efficiency.
Idioma: Inglés
DOI: 10.1007/s10851-021-01016-4
Año: 2021
Publicado en: JOURNAL OF MATHEMATICAL IMAGING AND VISION (2021), [25 pp]
ISSN: 0924-9907

Factor impacto JCR: 1.627 (2021)
Categ. JCR: MATHEMATICS, APPLIED rank: 107 / 267 = 0.401 (2021) - Q2 - T2
Categ. JCR: COMPUTER SCIENCE, SOFTWARE ENGINEERING rank: 80 / 110 = 0.727 (2021) - Q3 - T3
Categ. JCR: COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE rank: 117 / 146 = 0.801 (2021) - Q4 - T3

Factor impacto CITESCORE: 3.8 - Mathematics (Q1) - Physics and Astronomy (Q2) - Computer Science (Q2)

Factor impacto SCIMAGO: 0.752 - Applied Mathematics (Q2) - Computer Vision and Pattern Recognition (Q2) - Statistics and Probability (Q2) - Modeling and Simulation (Q2) - Geometry and Topology (Q2)

Financiación: info:eu-repo/grantAgreement/ES/DGA/COS2MOS research group
Financiación: info:eu-repo/grantAgreement/ES/MINECO/PID2019-104358RB-I00
Financiación: info:eu-repo/grantAgreement/ES/MINECO/TIN2016-80347-R
Tipo y forma: Artículo (PostPrint)
Área (Departamento): Área Lenguajes y Sistemas Inf. (Dpto. Informát.Ingenie.Sistms.)

Derechos Reservados Derechos reservados por el editor de la revista


Exportado de SIDERAL (2023-05-18-13:52:49)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Artículos > Artículos por área > Lenguajes y Sistemas Informáticos



 Registro creado el 2022-02-08, última modificación el 2023-05-19


Postprint:
 PDF
Valore este documento:

Rate this document:
1
2
3
 
(Sin ninguna reseña)