Identifying clinical clusters with distinct trajectories in first-episode psychosis through an unsupervised machine learning technique
Resumen: The extreme variability in symptom presentation reveals that individuals diagnosed with a first-episode psychosis (FEP) may encompass different sub-populations with potentially different illness courses and, hence, different treatment needs. Previous studies have shown that sociodemographic and family environment factors are associated with more unfavorable symptom trajectories. The aim of this study was to examine the dimensional structure of symptoms and to identify individuals’ trajectories at early stage of illness and potential risk factors associated with poor outcomes at follow-up in non-affective FEP. One hundred and forty-four non-affective FEP patients were assessed at baseline and at 2-year follow-up. A Principal component analysis has been conducted to identify dimensions, then an unsupervised machine learning technique (fuzzy clustering) was performed to identify clinical subgroups of patients. Six symptom factors were extracted (positive, negative, depressive, anxiety, disorganization and somatic/cognitive). Three distinct clinical clusters were determined at baseline: mild; negative and moderate; and positive and severe symptoms, and five at follow-up: minimal; mild; moderate; negative and depressive; and severe symptoms. Receiving a low-dose antipsychotic, having a more severe depressive symptomatology and a positive family history for psychiatric disorders were risk factors for poor recovery, whilst having a high cognitive reserve and better premorbid adjustment may confer a better prognosis. The current study provided a better understanding of the heterogeneous profile of FEP. Early identification of patients who could likely present poor outcomes may be an initial step for the development of targeted interventions to improve illness trajectories and preserve psychosocial functioning.
Idioma: Inglés
DOI: 10.1016/j.euroneuro.2021.01.095
Año: 2021
Publicado en: EUROPEAN NEUROPSYCHOPHARMACOLOGY 47 (2021), 112-129
ISSN: 0924-977X

Financiación: info:eu-repo/grantAgreement/ES/FEDER/Una manera de hacer Europa
Financiación: info:eu-repo/grantAgreement/ES/MINECO-ISCIII/CIBERSAM
Financiación: info:eu-repo/grantAgreement/ES/MINECO-ISCIII-FEDER/PI08-0208
Financiación: info:eu-repo/grantAgreement/ES/MINECO-ISCIII-FEDER/PI11-00325
Financiación: info:eu-repo/grantAgreement/ES/MINECO-ISCIII-FEDER/PI14-00612
Tipo y forma: Article (PostPrint)
Área (Departamento): Area Psiquiatría (Dpto. Medicina, Psiqu. y Derm.)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use. You may not use the material for commercial purposes. If you remix, transform, or build upon the material, you may not distribute the modified material.


Exportado de SIDERAL (2022-05-19-11:22:23)

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-02-08, last modified 2022-05-19


Postprint:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)