The monodromy conjecture for a space monomial curve with a plane semigroup
Resumen: This article investigates the monodromy conjecture for a space monomial curve that appears as the special fiber of an equisingular family of curves with a plane branch as generic fiber. Roughly speaking, the monodromy conjecture states that every pole of the motivic, or related, Igusa zeta function induces an eigenvalue of monodromy. As the poles of the motivic zeta function associated with such a space monomial curve have been determined in earlier work, it remains to study the eigenvalues of monodromy. After reducing the problem to the curve seen as a Cartier divisor on a generic embedding surface, we construct an embedded Q-resolution of this pair and use an A’Campo formula in terms of this resolution to compute the zeta function of monodromy. Combining all results, we prove the monodromy conjecture for this class of monomial curves.
Idioma: Inglés
DOI: 10.5565/PUBLMAT6522105
Año: 2021
Publicado en: Publicacions Matematiques 65, 2 (2021), 529-597
ISSN: 0214-1493

Originalmente disponible en: Texto completo de la revista

Factor impacto JCR: 1.475 (2021)
Categ. JCR: MATHEMATICS rank: 72 / 333 = 0.216 (2021) - Q1 - T1
Factor impacto CITESCORE: 2.1 - Mathematics (Q2)

Factor impacto SCIMAGO: 1.046 - Mathematics (miscellaneous) (Q1)

Financiación: info:eu-repo/grantAgreement/ES/DGA/E22-17R
Financiación: info:eu-repo/grantAgreement/ES/MINECO/MTM2016-76868-C2-2-P
Tipo y forma: Article (Published version)
Área (Departamento): Área Geometría y Topología (Dpto. Matemáticas)

Rights Reserved All rights reserved by journal editor


Exportado de SIDERAL (2023-05-18-16:09:59)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-02-15, last modified 2023-05-19


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)