000112121 001__ 112121
000112121 005__ 20240319080957.0
000112121 0247_ $$2doi$$a10.1039/d1nr06303k
000112121 0248_ $$2sideral$$a128091
000112121 037__ $$aART-2022-128091
000112121 041__ $$aeng
000112121 100__ $$aSol Fernández, S. del
000112121 245__ $$aMagnetogenetics: remote activation of cellular functions triggered by magnetic switches
000112121 260__ $$c2022
000112121 5060_ $$aAccess copy available to the general public$$fUnrestricted
000112121 5203_ $$aDuring the last decade, the possibility to remotely control intracellular pathways using physical tools has opened the way to novel and exciting applications, both in basic research and clinical applications. Indeed, the use of physical and non-invasive stimuli such as light, electricity or magnetic fields offers the possibility of manipulating biological processes with spatial and temporal resolution in a remote fashion. The use of magnetic fields is especially appealing for in vivo applications because they can penetrate deep into tissues, as opposed to light. In combination with magnetic actuators they are emerging as a new instrument to precisely manipulate biological functions. This approach, coined as magnetogenetics, provides an exclusive tool to study how cells transform mechanical stimuli into biochemical signalling and offers the possibility of activating intracellular pathways connected to temperature-sensitive proteins. In this review we provide a critical overview of the recent developments in the field of magnetogenetics. We discuss general topics regarding the three main components for magnetic field-based actuation: the magnetic fields, the magnetic actuators and the cellular targets. We first introduce the main approaches in which the magnetic field can be used to manipulate the magnetic actuators, together with the most commonly used magnetic field configurations and the physicochemical parameters that can critically influence the magnetic properties of the actuators. Thereafter, we discuss relevant examples of magneto-mechanical and magneto-thermal stimulation, used to control stem cell fate, to activate neuronal functions, or to stimulate apoptotic pathways, among others. Finally, although magnetogenetics has raised high expectations from the research community, to date there are still many obstacles to be overcome in order for it to become a real alternative to optogenetics for instance. We discuss some controversial aspects related to the insufficient elucidation of the mechanisms of action of some magnetogenetics constructs and approaches, providing our opinion on important challenges in the field and possible directions for the upcoming years. © 2022 The Royal Society of Chemistry.
000112121 536__ $$9info:eu-repo/grantAgreement/ES/DGA-FEDER/E15-17R$$9info:eu-repo/grantAgreement/EC/H2020/853468/EU/Remote control of cellular signalling triggered by magnetic switching/SIROCCO$$9This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No H2020 853468-SIROCCO$$9info:eu-repo/grantAgreement/ES/MINECO/PGC2018-096016-B-I00$$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2014-15512$$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2015-17640$$9info:eu-repo/grantAgreement/ES/MINECO/RYC-2019-026860-I
000112121 540__ $$9info:eu-repo/semantics/openAccess$$aby$$uhttp://creativecommons.org/licenses/by/3.0/es/
000112121 590__ $$a6.7$$b2022
000112121 592__ $$a1.62$$b2022
000112121 591__ $$aMATERIALS SCIENCE, MULTIDISCIPLINARY$$b83 / 343 = 0.242$$c2022$$dQ1$$eT1
000112121 593__ $$aNanoscience and Nanotechnology$$c2022$$dQ1
000112121 591__ $$aPHYSICS, APPLIED$$b27 / 160 = 0.169$$c2022$$dQ1$$eT1
000112121 593__ $$aMaterials Science (miscellaneous)$$c2022$$dQ1
000112121 591__ $$aCHEMISTRY, MULTIDISCIPLINARY$$b43 / 178 = 0.242$$c2022$$dQ1$$eT1
000112121 591__ $$aNANOSCIENCE & NANOTECHNOLOGY$$b37 / 107 = 0.346$$c2022$$dQ2$$eT2
000112121 594__ $$a13.6$$b2022
000112121 655_4 $$ainfo:eu-repo/semantics/article$$vinfo:eu-repo/semantics/publishedVersion
000112121 700__ $$aMartínez Vicente, P.
000112121 700__ $$aGomollón Zueco, P.
000112121 700__ $$aCastro Hinojosa, C.
000112121 700__ $$0(orcid)0000-0003-2366-3598$$aGutiérrez, L.$$uUniversidad de Zaragoza
000112121 700__ $$0(orcid)0000-0001-5559-8757$$aFratila, R. M.
000112121 700__ $$0(orcid)0000-0002-2861-2469$$aMoros, M.
000112121 7102_ $$12009$$2750$$aUniversidad de Zaragoza$$bDpto. Química Analítica$$cÁrea Química Analítica
000112121 773__ $$g14, 6 (2022), 2091-2118$$pNanoscale$$tNanoscale$$x2040-3364
000112121 8564_ $$s9014245$$uhttps://zaguan.unizar.es/record/112121/files/texto_completo.pdf$$yVersión publicada
000112121 8564_ $$s2748493$$uhttps://zaguan.unizar.es/record/112121/files/texto_completo.jpg?subformat=icon$$xicon$$yVersión publicada
000112121 909CO $$ooai:zaguan.unizar.es:112121$$particulos$$pdriver
000112121 951__ $$a2024-03-18-13:47:32
000112121 980__ $$aARTICLE