On Mechanical and Electrical Coupling Determination at Piezoelectric Harvester by Customized Algorithm Modeling and Measurable Properties
Financiación H2020 / H2020 Funds
Resumen: Piezoelectric harvesters use the actuation potential of the piezoelectric material to transform mechanical and vibrational energies into electrical power, scavenging energy from their environment. Few research has been focused on the development and understanding of the piezoelectric harvesters from the material themselves and the real piezoelectric and mechanical properties of the harvester. In the present work, the authors propose a behavior real model based on the experimentally measured electromechanical parameters of a homemade PZT bimorph harvester with the aim to predict its Vrms output. To adjust the harvester behavior, an iterative customized algorithm has been developed in order to adapt the electromechanical coupling coefficient, finding the relationship between the harvester actuator and generator behavior. It has been demonstrated that the harvester adapts its elongation and its piezoelectric coefficients combining the effect of the applied mechanical strain and the electrical behavior as a more realistic behavior due to the electromechanical nature of the material. The complex rms voltage output of the homemade bimorph harvester in the frequency domain has been successfully reproduced by the proposed model. The Behavior Real Model, BRM, developed could become a powerful tool for the design and manufacturing of a piezoelectric harvester based on its customized dimensions, configuration, and the piezoelectric properties of the smart materials.
Idioma: Inglés
DOI: 10.3390/s22083080
Año: 2022
Publicado en: Sensors 22, 8 (2022), 3080 [21 p.]
ISSN: 1424-8220

Factor impacto JCR: 3.9 (2022)
Categ. JCR: CHEMISTRY, ANALYTICAL rank: 26 / 86 = 0.302 (2022) - Q2 - T1
Categ. JCR: INSTRUMENTS & INSTRUMENTATION rank: 19 / 63 = 0.302 (2022) - Q2 - T1
Categ. JCR: ENGINEERING, ELECTRICAL & ELECTRONIC rank: 100 / 274 = 0.365 (2022) - Q2 - T2

Factor impacto CITESCORE: 6.8 - Engineering (Q1) - Chemistry (Q1) - Biochemistry, Genetics and Molecular Biology (Q2) - Physics and Astronomy (Q1)

Factor impacto SCIMAGO: 0.764 - Instrumentation (Q1) - Analytical Chemistry (Q1) - Medicine (miscellaneous) (Q2) - Information Systems (Q2) - Biochemistry (Q2) - Atomic and Molecular Physics, and Optics (Q2) - Electrical and Electronic Engineering (Q2)

Financiación: info:eu-repo/grantAgreement/EC/H2020/869884/EU/RE-manufaCturing and Refurbishment LArge Industrial equipMent/RECLAIM
Tipo y forma: Article (Published version)
Área (Departamento): Área Tecnología Electrónica (Dpto. Ingeniería Electrón.Com.)
Exportado de SIDERAL (2024-03-18-13:59:11)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
articulos



 Notice créée le 2022-05-03, modifiée le 2024-03-19


Versión publicada:
 PDF
Évaluer ce document:

Rate this document:
1
2
3
 
(Pas encore évalué)