Counting non-isomorphic generalized Hamilton quaternions
Resumen: In this paper we study the isomorphisms of generalized Hamilton quaternions (a,b/R) where R is a finite unital commutative ring of odd characteristic and a,b∈R. We obtain the number of non-isomorphic classes of generalized Hamilton quaternions in the case where R is a principal ideal ring. This extends the case R=Z/nZ where n is an odd integer.
Idioma: Alemán
DOI: 10.24330/ieja.1058426
Año: 2022
Publicado en: International Electronic Journal of Algebra 31 (2022), 143-160
ISSN: 1306-6048

Factor impacto CITESCORE: 0.7 - Mathematics (Q4)

Factor impacto SCIMAGO: 0.443 - Algebra and Number Theory (Q2)

Tipo y forma: Article (Published version)

Creative Commons You must give appropriate credit, provide a link to the license, and indicate if changes were made. You may do so in any reasonable manner, but not in any way that suggests the licensor endorses you or your use.


Exportado de SIDERAL (2023-09-13-11:14:15)


Visitas y descargas

Este artículo se encuentra en las siguientes colecciones:
Articles



 Record created 2022-05-11, last modified 2023-09-14


Versión publicada:
 PDF
Rate this document:

Rate this document:
1
2
3
 
(Not yet reviewed)