Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Comparison of Machine Learning Methods Using Spectralis OCT for Diagnosis and Disability Progression Prognosis in Multiple Sclerosis
Estadísticas de uso
Gráficos
Comparison of Machine Learning Methods Using Spectralis OCT for Diagnosis and Disability Progression Prognosis in Multiple Sclerosis
Montolío, A.
(Universidad de Zaragoza)
;
Cegoñino, J.
(Universidad de Zaragoza)
;
Garcia-Martin, E.
;
Pérez del Palomar, A.
(Universidad de Zaragoza)
Resumen:
Machine learning approaches in diagnosis and prognosis of multiple sclerosis (MS) were analysed using retinal nerve fiber layer (RNFL) thickness, measured by optical coherence tomography (OCT). A cross-sectional study (72 MS patients and 30 healthy controls) was used for diagnosis. These 72 MS patients were involved in a 10-year longitudinal follow-up study for prognostic purposes. Structural measurements of RNFL thickness were performed using different Spectralis OCT protocols: fast macular thickness protocol to measure macular RNFL, and fast RNFL thickness protocol and fast RNFL-N thickness protocol to measure peripapillary RNFL. Binary classifiers such as multiple linear regression (MLR), support vector machines (SVM), decision tree (DT), k-nearest neighbours (k-NN), Naïve Bayes (NB), ensemble classifier (EC) and long short-term memory (LSTM) recurrent neural network were tested. For MS diagnosis, the best acquisition protocol was fast macular thickness protocol using k-NN (accuracy: 95.8%; sensitivity: 94.4%; specificity: 97.2%; precision: 97.1%; AUC: 0.958). For MS prognosis, our model with a 3-year follow up to predict disability progression 8 years later was the best predictive model. DT performed best for fast macular thickness protocol (accuracy: 91.3%; sensitivity: 90.0%; specificity: 92.5%; precision: 92.3%; AUC: 0.913) and SVM for fast RNFL-N thickness protocol (accuracy: 91.3%; sensitivity: 87.5%; specificity: 95.0%; precision: 94.6%; AUC: 0.913). This work concludes that measurements of RNFL thickness obtained with Spectralis OCT have a good ability to diagnose MS and to predict disability progression in MS patients. This machine learning approach would help clinicians to have valuable information. © 2022, The Author(s).
Idioma:
Inglés
DOI:
10.1007/s10439-022-02930-3
Año:
2022
Publicado en:
Annals of Biomedical Engineering
50, 5 (2022), 507-528
ISSN:
0090-6964
Factor impacto JCR:
3.8 (2022)
Categ. JCR:
ENGINEERING, BIOMEDICAL
rank: 47 / 96 = 0.49
(2022)
- Q2
- T2
Factor impacto CITESCORE:
7.7 -
Engineering
(Q1)
Factor impacto SCIMAGO:
0.848 -
Biomedical Engineering
(Q2)
Financiación:
info:eu-repo/grantAgreement/ES/ISCIII/PI17-01726
Financiación:
info:eu-repo/grantAgreement/ES/MEC/BES-2017-080384
Financiación:
info:eu-repo/grantAgreement/ES/MINECO/DPI2016-79302-R
Tipo y forma:
Artículo (Versión definitiva)
Área (Departamento):
Área Mec.Med.Cont. y Teor.Est.
(
Dpto. Ingeniería Mecánica
)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2024-03-18-13:16:03)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-06-06, última modificación el 2024-03-19
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks