Estudios
I+D+I
Institución
Internacional
Vida Universitaria
Repositorio Institucional de Documentos
Buscar
Enviar
Personalizar
Sus alertas
Sus carpetas
Sus búsquedas
Ayuda
EN
/
ES
Página principal
>
Artículos
> Nanomechanical Study of Enzyme: Coenzyme Complexes: Bipartite Sites in Plastidic Ferredoxin-NADP+ Reductase for the Interaction with NADP+
Estadísticas de uso
Gráficos
Nanomechanical Study of Enzyme: Coenzyme Complexes: Bipartite Sites in Plastidic Ferredoxin-NADP+ Reductase for the Interaction with NADP+
Pérez-Domínguez, S.
;
Caballero-Mancebo, S.
;
Marcuello, C.
;
Martínez-Júlvez, M.
(Universidad de Zaragoza)
;
Medina, M.
(Universidad de Zaragoza)
;
Gracia Lostao, A.
Resumen:
Plastidic ferredoxin-NADP+ reductase (FNR) transfers two electrons from two ferredoxin or flavodoxin molecules to NADP+, generating NADPH. The forces holding the Anabaena FNR:NADP+ complex were analyzed by dynamic force spectroscopy, using WT FNR and three C-terminal Y303 variants, Y303S, Y303F, and Y303W. FNR was covalently immobilized on mica and NADP+ attached to AFM tips. Force–distance curves were collected for different loading rates and specific unbinding forces were analyzed under the Bell–Evans model to obtain the mechanostability parameters associated with the dissociation processes. The WT FNR:NADP+ complex presented a higher mechanical stability than that reported for the complexes with protein partners, corroborating the stronger affinity of FNR for NADP+. The Y303 mutation induced changes in the FNR:NADP+ interaction mechanical stability. NADP+ dissociated from WT and Y303W in a single event related to the release of the adenine moiety of the coenzyme. However, two events described the Y303S:NADP+ dissociation that was also a more durable complex due to the strong binding of the nicotinamide moiety of NADP+ to the catalytic site. Finally, Y303F shows intermediate behavior. Therefore, Y303, reported as crucial for achieving catalytically competent active site geometry, also regulates the concerted dissociation of the bipartite nucleotide moieties of the coenzyme. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.
Idioma:
Inglés
DOI:
10.3390/antiox11030537
Año:
2022
Publicado en:
Antioxidants
11, 3 (2022), 537 [20 pp]
ISSN:
2076-3921
Factor impacto JCR:
7.0 (2022)
Categ. JCR:
BIOCHEMISTRY & MOLECULAR BIOLOGY
rank: 46 / 285 = 0.161
(2022)
- Q1
- T1
Categ. JCR:
FOOD SCIENCE & TECHNOLOGY
rank: 13 / 142 = 0.092
(2022)
- Q1
- T1
Categ. JCR:
CHEMISTRY, MEDICINAL
rank: 6 / 60 = 0.1
(2022)
- Q1
- T1
Factor impacto CITESCORE:
8.8 -
Biochemistry, Genetics and Molecular Biology
(Q1)
Factor impacto SCIMAGO:
1.084 -
Biochemistry
(Q1) -
Clinical Biochemistry
(Q1) -
Food Science
(Q1) -
Physiology
(Q1) -
Molecular Biology
(Q2) -
Cell Biology
(Q2)
Financiación:
info:eu-repo/grantAgreement/ES/DGA-FEDER/E35-20R
Financiación:
info:eu-repo/grantAgreement/ES/MICINN-AEI/PID2019-103901GB-I00
Tipo y forma:
Artículo (Versión definitiva)
Área (Departamento):
Área Bioquímica y Biolog.Mole.
(
Dpto. Bioq.Biolog.Mol. Celular
)
Debe reconocer adecuadamente la autoría, proporcionar un enlace a la licencia e indicar si se han realizado cambios. Puede hacerlo de cualquier manera razonable, pero no de una manera que sugiera que tiene el apoyo del licenciador o lo recibe por el uso que hace.
Exportado de SIDERAL (2024-03-18-13:23:58)
Enlace permanente:
Copiar
Visitas y descargas
Este artículo se encuentra en las siguientes colecciones:
Artículos
Volver a la búsqueda
Registro creado el 2022-06-17, última modificación el 2024-03-19
Versión publicada:
PDF
Valore este documento:
Rate this document:
1
2
3
4
5
(Sin ninguna reseña)
Añadir a una carpeta personal
Exportar como
BibTeX
,
MARC
,
MARCXML
,
DC
,
EndNote
,
NLM
,
RefWorks